/usr/include/viennacl/linalg/cg.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | #ifndef VIENNACL_LINALG_CG_HPP_
#define VIENNACL_LINALG_CG_HPP_
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file viennacl/linalg/cg.hpp
@brief The conjugate gradient method is implemented here
*/
#include <vector>
#include <map>
#include <cmath>
#include <numeric>
#include "viennacl/forwards.h"
#include "viennacl/tools/tools.hpp"
#include "viennacl/linalg/ilu.hpp"
#include "viennacl/linalg/prod.hpp"
#include "viennacl/linalg/inner_prod.hpp"
#include "viennacl/linalg/norm_2.hpp"
#include "viennacl/traits/clear.hpp"
#include "viennacl/traits/size.hpp"
#include "viennacl/meta/result_of.hpp"
#include "viennacl/linalg/iterative_operations.hpp"
namespace viennacl
{
namespace linalg
{
/** @brief A tag for the conjugate gradient Used for supplying solver parameters and for dispatching the solve() function
*/
class cg_tag
{
public:
/** @brief The constructor
*
* @param tol Relative tolerance for the residual (solver quits if ||r|| < tol * ||r_initial||)
* @param max_iterations The maximum number of iterations
*/
cg_tag(double tol = 1e-8, unsigned int max_iterations = 300) : tol_(tol), abs_tol_(0), iterations_(max_iterations) {}
/** @brief Returns the relative tolerance */
double tolerance() const { return tol_; }
/** @brief Returns the absolute tolerance */
double abs_tolerance() const { return abs_tol_; }
/** @brief Sets the absolute tolerance */
void abs_tolerance(double new_tol) { if (new_tol >= 0) abs_tol_ = new_tol; }
/** @brief Returns the maximum number of iterations */
unsigned int max_iterations() const { return iterations_; }
/** @brief Return the number of solver iterations: */
unsigned int iters() const { return iters_taken_; }
void iters(unsigned int i) const { iters_taken_ = i; }
/** @brief Returns the estimated relative error at the end of the solver run */
double error() const { return last_error_; }
/** @brief Sets the estimated relative error at the end of the solver run */
void error(double e) const { last_error_ = e; }
private:
double tol_;
double abs_tol_;
unsigned int iterations_;
//return values from solver
mutable unsigned int iters_taken_;
mutable double last_error_;
};
namespace detail
{
/** @brief handles the no_precond case at minimal overhead */
template<typename VectorT, typename PreconditionerT>
class z_handler{
public:
z_handler(VectorT & residual) : z_(residual){ }
VectorT & get() { return z_; }
private:
VectorT z_;
};
template<typename VectorT>
class z_handler<VectorT, viennacl::linalg::no_precond>{
public:
z_handler(VectorT & residual) : presidual_(&residual){ }
VectorT & get() { return *presidual_; }
private:
VectorT * presidual_;
};
}
namespace detail
{
/** @brief Implementation of a pipelined conjugate gradient algorithm (no preconditioner), specialized for ViennaCL types.
*
* Pipelined version from A. T. Chronopoulos and C. W. Gear, J. Comput. Appl. Math. 25(2), 153–168 (1989)
*
* @param A The system matrix
* @param rhs The load vector
* @param tag Solver configuration tag
* @param monitor A callback routine which is called at each GMRES restart
* @param monitor_data Data pointer to be passed to the callback routine to pass on user-specific data
* @return The result vector
*/
//template<typename MatrixType, typename ScalarType>
template<typename MatrixT, typename NumericT>
viennacl::vector<NumericT> pipelined_solve(MatrixT const & A, //MatrixType const & A,
viennacl::vector<NumericT> const & rhs,
cg_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
typedef typename viennacl::vector<NumericT>::difference_type difference_type;
viennacl::vector<NumericT> result(rhs);
viennacl::traits::clear(result);
viennacl::vector<NumericT> residual(rhs);
viennacl::vector<NumericT> p(rhs);
viennacl::vector<NumericT> Ap = viennacl::linalg::prod(A, p);
viennacl::vector<NumericT> inner_prod_buffer = viennacl::zero_vector<NumericT>(3*256, viennacl::traits::context(rhs)); // temporary buffer
std::vector<NumericT> host_inner_prod_buffer(inner_prod_buffer.size());
vcl_size_t buffer_size_per_vector = inner_prod_buffer.size() / 3;
difference_type buffer_offset_per_vector = static_cast<difference_type>(buffer_size_per_vector);
NumericT norm_rhs_squared = viennacl::linalg::norm_2(residual); norm_rhs_squared *= norm_rhs_squared;
if (norm_rhs_squared <= tag.abs_tolerance() * tag.abs_tolerance()) //check for early convergence of A*x = 0
return result;
NumericT inner_prod_rr = norm_rhs_squared;
NumericT alpha = inner_prod_rr / viennacl::linalg::inner_prod(p, Ap);
NumericT beta = viennacl::linalg::norm_2(Ap); beta = (alpha * alpha * beta * beta - inner_prod_rr) / inner_prod_rr;
NumericT inner_prod_ApAp = 0;
NumericT inner_prod_pAp = 0;
for (unsigned int i = 0; i < tag.max_iterations(); ++i)
{
tag.iters(i+1);
viennacl::linalg::pipelined_cg_vector_update(result, alpha, p, residual, Ap, beta, inner_prod_buffer);
viennacl::linalg::pipelined_cg_prod(A, p, Ap, inner_prod_buffer);
// bring back the partial results to the host:
viennacl::fast_copy(inner_prod_buffer.begin(), inner_prod_buffer.end(), host_inner_prod_buffer.begin());
inner_prod_rr = std::accumulate(host_inner_prod_buffer.begin(), host_inner_prod_buffer.begin() + buffer_offset_per_vector, NumericT(0));
inner_prod_ApAp = std::accumulate(host_inner_prod_buffer.begin() + buffer_offset_per_vector, host_inner_prod_buffer.begin() + 2 * buffer_offset_per_vector, NumericT(0));
inner_prod_pAp = std::accumulate(host_inner_prod_buffer.begin() + 2 * buffer_offset_per_vector, host_inner_prod_buffer.begin() + 3 * buffer_offset_per_vector, NumericT(0));
if (monitor && monitor(result, std::sqrt(std::fabs(inner_prod_rr / norm_rhs_squared)), monitor_data))
break;
if (std::fabs(inner_prod_rr / norm_rhs_squared) < tag.tolerance() * tag.tolerance() || std::fabs(inner_prod_rr) < tag.abs_tolerance() * tag.abs_tolerance()) //squared norms involved here
break;
alpha = inner_prod_rr / inner_prod_pAp;
beta = (alpha*alpha*inner_prod_ApAp - inner_prod_rr) / inner_prod_rr;
}
//store last error estimate:
tag.error(std::sqrt(std::fabs(inner_prod_rr) / norm_rhs_squared));
return result;
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::compressed_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
cg_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::coordinate_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
cg_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return detail::pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::ell_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
cg_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return detail::pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::sliced_ell_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
cg_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return detail::pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
/** @brief Overload for the pipelined CG implementation for the ViennaCL sparse matrix types */
template<typename NumericT>
viennacl::vector<NumericT> solve_impl(viennacl::hyb_matrix<NumericT> const & A,
viennacl::vector<NumericT> const & rhs,
cg_tag const & tag,
viennacl::linalg::no_precond,
bool (*monitor)(viennacl::vector<NumericT> const &, NumericT, void*) = NULL,
void *monitor_data = NULL)
{
return detail::pipelined_solve(A, rhs, tag, viennacl::linalg::no_precond(), monitor, monitor_data);
}
template<typename MatrixT, typename VectorT, typename PreconditionerT>
VectorT solve_impl(MatrixT const & matrix,
VectorT const & rhs,
cg_tag const & tag,
PreconditionerT const & precond,
bool (*monitor)(VectorT const &, typename viennacl::result_of::cpu_value_type<typename viennacl::result_of::value_type<VectorT>::type>::type, void*) = NULL,
void *monitor_data = NULL)
{
typedef typename viennacl::result_of::value_type<VectorT>::type NumericType;
typedef typename viennacl::result_of::cpu_value_type<NumericType>::type CPU_NumericType;
VectorT result = rhs;
viennacl::traits::clear(result);
VectorT residual = rhs;
VectorT tmp = rhs;
detail::z_handler<VectorT, PreconditionerT> zhandler(residual);
VectorT & z = zhandler.get();
precond.apply(z);
VectorT p = z;
CPU_NumericType ip_rr = viennacl::linalg::inner_prod(residual, z);
CPU_NumericType alpha;
CPU_NumericType new_ip_rr = 0;
CPU_NumericType beta;
CPU_NumericType norm_rhs_squared = ip_rr;
CPU_NumericType new_ipp_rr_over_norm_rhs;
if (norm_rhs_squared <= tag.abs_tolerance() * tag.abs_tolerance()) //solution is zero if RHS norm (squared) is zero
return result;
for (unsigned int i = 0; i < tag.max_iterations(); ++i)
{
tag.iters(i+1);
tmp = viennacl::linalg::prod(matrix, p);
alpha = ip_rr / viennacl::linalg::inner_prod(tmp, p);
result += alpha * p;
residual -= alpha * tmp;
z = residual;
precond.apply(z);
if (static_cast<VectorT*>(&residual)==static_cast<VectorT*>(&z))
new_ip_rr = std::pow(viennacl::linalg::norm_2(residual),2);
else
new_ip_rr = viennacl::linalg::inner_prod(residual, z);
new_ipp_rr_over_norm_rhs = new_ip_rr / norm_rhs_squared;
if (monitor && monitor(result, std::sqrt(std::fabs(new_ipp_rr_over_norm_rhs)), monitor_data))
break;
if (std::fabs(new_ipp_rr_over_norm_rhs) < tag.tolerance() * tag.tolerance() || std::fabs(new_ip_rr) < tag.abs_tolerance() * tag.abs_tolerance()) //squared norms involved here
break;
beta = new_ip_rr / ip_rr;
ip_rr = new_ip_rr;
p = z + beta*p;
}
//store last error estimate:
tag.error(std::sqrt(std::fabs(new_ip_rr / norm_rhs_squared)));
return result;
}
}
/** @brief Implementation of the preconditioned conjugate gradient solver, generic implementation for non-ViennaCL types.
*
* Following Algorithm 9.1 in "Iterative Methods for Sparse Linear Systems" by Y. Saad
*
* @param matrix The system matrix
* @param rhs The load vector
* @param tag Solver configuration tag
* @param precond A preconditioner. Precondition operation is done via member function apply()
* @return The result vector
*/
template<typename MatrixT, typename VectorT, typename PreconditionerT>
VectorT solve(MatrixT const & matrix, VectorT const & rhs, cg_tag const & tag, PreconditionerT const & precond)
{
return detail::solve_impl(matrix, rhs, tag, precond);
}
/** @brief Convenience overload for calling the CG solver using types from the C++ STL.
*
* A std::vector<std::map<T, U> > matrix is convenient for e.g. finite element assembly.
* It is not the fastest option for setting up a system, but often it is fast enough - particularly for just trying things out.
*/
template<typename IndexT, typename NumericT, typename PreconditionerT>
std::vector<NumericT> solve(std::vector< std::map<IndexT, NumericT> > const & A, std::vector<NumericT> const & rhs, cg_tag const & tag, PreconditionerT const & precond)
{
viennacl::compressed_matrix<NumericT> vcl_A;
viennacl::copy(A, vcl_A);
viennacl::vector<NumericT> vcl_rhs(rhs.size());
viennacl::copy(rhs, vcl_rhs);
viennacl::vector<NumericT> vcl_result = solve(vcl_A, vcl_rhs, tag, precond);
std::vector<NumericT> result(vcl_result.size());
viennacl::copy(vcl_result, result);
return result;
}
/** @brief Entry point for the unpreconditioned CG method.
*
* @param matrix The system matrix
* @param rhs Right hand side vector (load vector)
* @param tag A BiCGStab tag providing relative tolerances, etc.
*/
template<typename MatrixT, typename VectorT>
VectorT solve(MatrixT const & matrix, VectorT const & rhs, cg_tag const & tag)
{
return solve(matrix, rhs, tag, viennacl::linalg::no_precond());
}
template<typename VectorT>
class cg_solver
{
public:
typedef typename viennacl::result_of::cpu_value_type<VectorT>::type numeric_type;
cg_solver(cg_tag const & tag) : tag_(tag), monitor_callback_(NULL), user_data_(NULL) {}
template<typename MatrixT, typename PreconditionerT>
VectorT operator()(MatrixT const & A, VectorT const & b, PreconditionerT const & precond) const
{
if (viennacl::traits::size(init_guess_) > 0) // take initial guess into account
{
VectorT mod_rhs = viennacl::linalg::prod(A, init_guess_);
mod_rhs = b - mod_rhs;
VectorT y = detail::solve_impl(A, mod_rhs, tag_, precond, monitor_callback_, user_data_);
return init_guess_ + y;
}
return detail::solve_impl(A, b, tag_, precond, monitor_callback_, user_data_);
}
template<typename MatrixT>
VectorT operator()(MatrixT const & A, VectorT const & b) const
{
return operator()(A, b, viennacl::linalg::no_precond());
}
/** @brief Specifies an initial guess for the iterative solver.
*
* An iterative solver for Ax = b with initial guess x_0 is equivalent to an iterative solver for Ay = b' := b - Ax_0, where x = x_0 + y.
*/
void set_initial_guess(VectorT const & x) { init_guess_ = x; }
/** @brief Sets a monitor function pointer to be called in each iteration. Set to NULL to run without monitor.
*
* The monitor function is called with the current guess for the result as first argument and the current relative residual estimate as second argument.
* The third argument is a pointer to user-defined data, through which additional information can be passed.
* This pointer needs to be set with set_monitor_data. If not set, NULL is passed.
* If the montior function returns true, the solver terminates (either convergence or divergence).
*/
void set_monitor(bool (*monitor_fun)(VectorT const &, numeric_type, void *), void *user_data)
{
monitor_callback_ = monitor_fun;
user_data_ = user_data;
}
/** @brief Returns the solver tag containing basic configuration such as tolerances, etc. */
cg_tag const & tag() const { return tag_; }
private:
cg_tag tag_;
VectorT init_guess_;
bool (*monitor_callback_)(VectorT const &, numeric_type, void *);
void *user_data_;
};
}
}
#endif
|