This file is indexed.

/usr/include/viennacl/linalg/amg.hpp is in libviennacl-dev 1.7.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
#ifndef VIENNACL_LINALG_AMG_HPP_
#define VIENNACL_LINALG_AMG_HPP_

/* =========================================================================
   Copyright (c) 2010-2016, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/linalg/amg.hpp
    @brief Main include file for algebraic multigrid (AMG) preconditioners.  Experimental.

    Implementation contributed by Markus Wagner
*/

#include <vector>
#include <cmath>
#include "viennacl/forwards.h"
#include "viennacl/tools/tools.hpp"
#include "viennacl/linalg/prod.hpp"
#include "viennacl/linalg/direct_solve.hpp"
#include "viennacl/compressed_matrix.hpp"

#include "viennacl/linalg/detail/amg/amg_base.hpp"
#include "viennacl/linalg/sparse_matrix_operations.hpp"
#include "viennacl/linalg/amg_operations.hpp"
#include "viennacl/tools/timer.hpp"
#include "viennacl/linalg/direct_solve.hpp"
#include "viennacl/linalg/lu.hpp"

#include <map>

#ifdef VIENNACL_WITH_OPENMP
 #include <omp.h>
#endif

#define VIENNACL_AMG_MAX_LEVELS 20

namespace viennacl
{
namespace linalg
{

class amg_coarse_problem_too_large_exception : public std::runtime_error
{
public:
  amg_coarse_problem_too_large_exception(std::string const & msg, vcl_size_t num_points) : std::runtime_error(msg), c_points_(num_points) {}

  /** @brief Returns the number of coarse points for which no further coarsening could be applied */
  vcl_size_t coarse_points() const { return c_points_; }

private:
  vcl_size_t c_points_;
};


namespace detail
{
  /** @brief Sparse Galerkin product: Calculates A_coarse = trans(P)*A_fine*P = R*A_fine*P
    *
    * @param A_fine    Operator matrix on fine grid (quadratic)
    * @param P         Prolongation/Interpolation matrix
    * @param R         Restriction matrix
    * @param A_coarse  Result matrix on coarse grid (Galerkin operator)
    */
  template<typename NumericT>
  void amg_galerkin_prod(compressed_matrix<NumericT> & A_fine,
                         compressed_matrix<NumericT> & P,
                         compressed_matrix<NumericT> & R, //P^T
                         compressed_matrix<NumericT> & A_coarse)
  {

    compressed_matrix<NumericT> A_fine_times_P(viennacl::traits::context(A_fine));

    // transpose P in memory (no known way of efficiently multiplying P^T * B for CSR-matrices P and B):
    viennacl::linalg::detail::amg::amg_transpose(P, R);

    // compute Galerkin product using a temporary for the result of A_fine * P
    A_fine_times_P = viennacl::linalg::prod(A_fine, P);
    A_coarse = viennacl::linalg::prod(R, A_fine_times_P);

  }


  /** @brief Setup AMG preconditioner
  *
  * @param list_of_A                  Operator matrices on all levels
  * @param list_of_P                  Prolongation/Interpolation operators on all levels
  * @param list_of_R                  Restriction operators on all levels
  * @param list_of_amg_level_context  Auxiliary datastructures for managing the grid hierarchy (coarse nodes, etc.)
  * @param tag                        AMG preconditioner tag
  */
  template<typename NumericT, typename AMGContextListT>
  vcl_size_t amg_setup(std::vector<compressed_matrix<NumericT> > & list_of_A,
                       std::vector<compressed_matrix<NumericT> > & list_of_P,
                       std::vector<compressed_matrix<NumericT> > & list_of_R,
                       AMGContextListT & list_of_amg_level_context,
                       amg_tag & tag)
  {
    // Set number of iterations. If automatic coarse grid construction is chosen (0), then set a maximum size and stop during the process.
    vcl_size_t iterations = tag.get_coarse_levels();
    if (iterations == 0)
      iterations = VIENNACL_AMG_MAX_LEVELS;

    for (vcl_size_t i=0; i<iterations; ++i)
    {
      list_of_amg_level_context[i].switch_context(tag.get_setup_context());
      list_of_amg_level_context[i].resize(list_of_A[i].size1(), list_of_A[i].nnz());

      // Construct C and F points on coarse level (i is fine level, i+1 coarse level).
      detail::amg::amg_coarse(list_of_A[i], list_of_amg_level_context[i], tag);

      // Calculate number of C and F points on level i.
      unsigned int c_points = list_of_amg_level_context[i].num_coarse_;
      unsigned int f_points = static_cast<unsigned int>(list_of_A[i].size1()) - c_points;

      if (f_points == 0 && c_points > tag.get_coarsening_cutoff())
      {
        std::stringstream ss;
        ss << "No further coarsening possible (" << c_points << " coarse points). Consider changing the strong connection threshold or increasing the coarsening cutoff." << std::endl;
        throw amg_coarse_problem_too_large_exception(ss.str(), c_points);
      }

      // Stop routine when the maximal coarse level is found (no C or F point). Coarsest level is level i.
      if (c_points == 0 || f_points == 0)
        break;

      // Construct interpolation matrix for level i.
      detail::amg::amg_interpol(list_of_A[i], list_of_P[i], list_of_amg_level_context[i], tag);

      // Compute coarse grid operator (A[i+1] = R * A[i] * P) with R = trans(P).
      amg_galerkin_prod(list_of_A[i], list_of_P[i], list_of_R[i], list_of_A[i+1]);

      // send matrices to target context:
      list_of_A[i].switch_memory_context(tag.get_target_context());
      list_of_P[i].switch_memory_context(tag.get_target_context());
      list_of_R[i].switch_memory_context(tag.get_target_context());

      // If Limit of coarse points is reached then stop. Coarsest level is level i+1.
      if (tag.get_coarse_levels() == 0 && c_points <= tag.get_coarsening_cutoff())
        return i+1;
    }

    return iterations;
  }


  /** @brief Initialize AMG preconditioner
  *
  * @param mat                        System matrix
  * @param list_of_A                  Operator matrices on all levels
  * @param list_of_P                  Prolongation/Interpolation operators on all levels
  * @param list_of_R                  Restriction operators on all levels
  * @param list_of_amg_level_context  Auxiliary datastructures for managing the grid hierarchy (coarse nodes, etc.)
  * @param tag                        AMG preconditioner tag
  */
  template<typename MatrixT, typename InternalT1, typename InternalT2>
  void amg_init(MatrixT const & mat, InternalT1 & list_of_A, InternalT1 & list_of_P, InternalT1 & list_of_R, InternalT2 & list_of_amg_level_context, amg_tag & tag)
  {
    typedef typename InternalT1::value_type SparseMatrixType;

    vcl_size_t num_levels = (tag.get_coarse_levels() > 0) ? tag.get_coarse_levels() : VIENNACL_AMG_MAX_LEVELS;

    list_of_A.resize(num_levels+1, SparseMatrixType(tag.get_setup_context()));
    list_of_P.resize(num_levels,   SparseMatrixType(tag.get_setup_context()));
    list_of_R.resize(num_levels,   SparseMatrixType(tag.get_setup_context()));
    list_of_amg_level_context.resize(num_levels);

    // Insert operator matrix as operator for finest level.
    //SparseMatrixType A0(mat);
    //A.insert_element(0, A0);
    list_of_A[0].switch_memory_context(viennacl::traits::context(mat));
    list_of_A[0] = mat;
    list_of_A[0].switch_memory_context(tag.get_setup_context());
  }

  /** @brief Setup data structures for precondition phase for later use on the GPU
  *
  * @param result          Result vector on all levels
  * @param result_backup   Copy of result vector on all levels
  * @param rhs             RHS vector on all levels
  * @param residual        Residual vector on all levels
  * @param A               Operators matrices on all levels from setup phase
  * @param coarse_levels   Number of coarse levels for which the datastructures should be set up.
  * @param tag             AMG preconditioner tag
  */
  template<typename InternalVectorT, typename SparseMatrixT>
  void amg_setup_apply(InternalVectorT & result,
                       InternalVectorT & result_backup,
                       InternalVectorT & rhs,
                       InternalVectorT & residual,
                       SparseMatrixT const & A,
                       vcl_size_t coarse_levels,
                       amg_tag const & tag)
  {
    typedef typename InternalVectorT::value_type VectorType;

    result.resize(coarse_levels + 1);
    result_backup.resize(coarse_levels + 1);
    rhs.resize(coarse_levels + 1);
    residual.resize(coarse_levels);

    for (vcl_size_t level=0; level <= coarse_levels; ++level)
    {
             result[level] = VectorType(A[level].size1(), tag.get_target_context());
      result_backup[level] = VectorType(A[level].size1(), tag.get_target_context());
                rhs[level] = VectorType(A[level].size1(), tag.get_target_context());
    }
    for (vcl_size_t level=0; level < coarse_levels; ++level)
    {
      residual[level] = VectorType(A[level].size1(), tag.get_target_context());
    }
  }


  /** @brief Pre-compute LU factorization for direct solve (ublas library).
  *
  * Speeds up precondition phase as this is computed only once overall instead of once per iteration.
  *
  * @param op           Operator matrix for direct solve
  * @param A            Operator matrix on coarsest level
  * @param tag          AMG preconditioner tag
  */
  template<typename NumericT, typename SparseMatrixT>
  void amg_lu(viennacl::matrix<NumericT> & op,
              SparseMatrixT const & A,
              amg_tag const & tag)
  {
    op.switch_memory_context(tag.get_setup_context());
    op.resize(A.size1(), A.size2(), false);
    viennacl::linalg::detail::amg::assign_to_dense(A, op);

    viennacl::linalg::lu_factorize(op);
    op.switch_memory_context(tag.get_target_context());
  }

}

/** @brief AMG preconditioner class, can be supplied to solve()-routines
*/
template<typename MatrixT>
class amg_precond;


/** @brief AMG preconditioner class, can be supplied to solve()-routines.
*
*  Specialization for compressed_matrix
*/
template<typename NumericT, unsigned int AlignmentV>
class amg_precond< compressed_matrix<NumericT, AlignmentV> >
{
  typedef viennacl::compressed_matrix<NumericT, AlignmentV> SparseMatrixType;
  typedef viennacl::vector<NumericT>                        VectorType;
  typedef detail::amg::amg_level_context                    AMGContextType;

public:

  amg_precond() {}

  /** @brief The constructor. Builds data structures.
  *
  * @param mat  System matrix
  * @param tag  The AMG tag
  */
  amg_precond(compressed_matrix<NumericT, AlignmentV> const & mat,
              amg_tag const & tag)
  {
    tag_ = tag;

    // Initialize data structures.
    detail::amg_init(mat, A_list_, P_list_, R_list_, amg_context_list_, tag_);
  }

  /** @brief Start setup phase for this class and copy data structures.
  */
  void setup()
  {
    // Start setup phase.
    vcl_size_t num_coarse_levels = detail::amg_setup(A_list_, P_list_, R_list_, amg_context_list_, tag_);

    // Setup precondition phase (Data structures).
    detail::amg_setup_apply(result_list_, result_backup_list_, rhs_list_, residual_list_, A_list_, num_coarse_levels, tag_);

    // LU factorization for direct solve.
    detail::amg_lu(coarsest_op_, A_list_[num_coarse_levels], tag_);
  }


  /** @brief Precondition Operation
  *
  * @param vec       The vector to which preconditioning is applied to
  */
  template<typename VectorT>
  void apply(VectorT & vec) const
  {
    vcl_size_t level;

    // Precondition operation (Yang, p.3).
    rhs_list_[0] = vec;

    // Part 1: Restrict down to coarsest level
    for (level=0; level < residual_list_.size(); level++)
    {
      result_list_[level].clear();

      // Apply Smoother presmooth_ times.
      viennacl::linalg::detail::amg::smooth_jacobi(static_cast<unsigned int>(tag_.get_presmooth_steps()),
                                                   A_list_[level],
                                                   result_list_[level],
                                                   result_backup_list_[level],
                                                   rhs_list_[level],
                                                   static_cast<NumericT>(tag_.get_jacobi_weight()));

      // Compute residual.
      //residual[level] = rhs_[level] - viennacl::linalg::prod(A_[level], result_[level]);
      residual_list_[level] = viennacl::linalg::prod(A_list_[level], result_list_[level]);
      residual_list_[level] = rhs_list_[level] - residual_list_[level];

      // Restrict to coarse level. Result is RHS of coarse level equation.
      //residual_coarse[level] = viennacl::linalg::prod(R[level],residual[level]);
      rhs_list_[level+1] = viennacl::linalg::prod(R_list_[level], residual_list_[level]);
    }

    // Part 2: On highest level use direct solve to solve equation (on the CPU)
    result_list_[level] = rhs_list_[level];
    viennacl::linalg::lu_substitute(coarsest_op_, result_list_[level]);

    // Part 3: Prolongation to finest level
    for (int level2 = static_cast<int>(residual_list_.size()-1); level2 >= 0; level2--)
    {
      level = static_cast<vcl_size_t>(level2);

      // Interpolate error to fine level and correct solution.
      result_backup_list_[level] = viennacl::linalg::prod(P_list_[level], result_list_[level+1]);
      result_list_[level] += result_backup_list_[level];

      // Apply Smoother postsmooth_ times.
      viennacl::linalg::detail::amg::smooth_jacobi(static_cast<unsigned int>(tag_.get_postsmooth_steps()),
                                                   A_list_[level],
                                                   result_list_[level],
                                                   result_backup_list_[level],
                                                   rhs_list_[level],
                                                   static_cast<NumericT>(tag_.get_jacobi_weight()));
    }
    vec = result_list_[0];
  }

  /** @brief Returns the total number of multigrid levels in the hierarchy including the finest level. */
  vcl_size_t levels() const { return residual_list_.size(); }


  /** @brief Returns the problem/operator size at the respective multigrid level
    *
    * @param level     Index of the multigrid level. 0 is the finest level, levels() - 1 is the coarsest level.
    */
  vcl_size_t size(vcl_size_t level) const
  {
    assert(level < levels() && bool("Level index out of bounds!"));
    return residual_list_[level].size();
  }

  /** @brief Returns the associated preconditioner tag containing the configuration for the multigrid preconditioner. */
  amg_tag const & tag() const { return tag_; }

private:
  std::vector<SparseMatrixType> A_list_;
  std::vector<SparseMatrixType> P_list_;
  std::vector<SparseMatrixType> R_list_;
  std::vector<AMGContextType>   amg_context_list_;

  viennacl::matrix<NumericT>        coarsest_op_;

  mutable std::vector<VectorType> result_list_;
  mutable std::vector<VectorType> result_backup_list_;
  mutable std::vector<VectorType> rhs_list_;
  mutable std::vector<VectorType> residual_list_;

  amg_tag tag_;
};

}
}



#endif