/usr/include/viennacl/fft.hpp is in libviennacl-dev 1.7.1+dfsg1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 | #ifndef VIENNACL_FFT_HPP
#define VIENNACL_FFT_HPP
/* =========================================================================
Copyright (c) 2010-2016, Institute for Microelectronics,
Institute for Analysis and Scientific Computing,
TU Wien.
Portions of this software are copyright by UChicago Argonne, LLC.
-----------------
ViennaCL - The Vienna Computing Library
-----------------
Project Head: Karl Rupp rupp@iue.tuwien.ac.at
(A list of authors and contributors can be found in the manual)
License: MIT (X11), see file LICENSE in the base directory
============================================================================= */
/** @file viennacl/fft.hpp
@brief All routines related to the Fast Fourier Transform. Experimental.
*/
#include <viennacl/vector.hpp>
#include <viennacl/matrix.hpp>
#include "viennacl/linalg/fft_operations.hpp"
#include "viennacl/traits/handle.hpp"
#include <cmath>
#include <stdexcept>
/// @cond
namespace viennacl
{
namespace detail
{
namespace fft
{
inline bool is_radix2(vcl_size_t data_size)
{
return !((data_size > 2) && (data_size & (data_size - 1)));
}
} //namespace fft
} //namespace detail
/**
* @brief Generic inplace version of 1-D Fourier transformation.
*
* @param input Input vector, result will be stored here.
* @param batch_num Number of items in batch
* @param sign Sign of exponent, default is -1.0
*/
template<class NumericT, unsigned int AlignmentV>
void inplace_fft(viennacl::vector<NumericT, AlignmentV>& input, vcl_size_t batch_num = 1,
NumericT sign = -1.0)
{
vcl_size_t size = (input.size() >> 1) / batch_num;
if (!viennacl::detail::fft::is_radix2(size))
{
viennacl::vector<NumericT, AlignmentV> output(input.size());
viennacl::linalg::direct(input, output, size, size, batch_num, sign);
viennacl::copy(output, input);
}
else
viennacl::linalg::radix2(input, size, size, batch_num, sign);
}
/**
* @brief Generic version of 1-D Fourier transformation.
*
* @param input Input vector.
* @param output Output vector.
* @param batch_num Number of items in batch.
* @param sign Sign of exponent, default is -1.0
*/
template<class NumericT, unsigned int AlignmentV>
void fft(viennacl::vector<NumericT, AlignmentV>& input,
viennacl::vector<NumericT, AlignmentV>& output, vcl_size_t batch_num = 1, NumericT sign = -1.0)
{
vcl_size_t size = (input.size() >> 1) / batch_num;
if (viennacl::detail::fft::is_radix2(size))
{
viennacl::copy(input, output);
viennacl::linalg::radix2(output, size, size, batch_num, sign);
}
else
viennacl::linalg::direct(input, output, size, size, batch_num, sign);
}
/**
* @brief Generic inplace version of 2-D Fourier transformation.
*
* @param input Input matrix, result will be stored here.
* @param sign Sign of exponent, default is -1.0
*/
template<class NumericT, unsigned int AlignmentV>
void inplace_fft(viennacl::matrix<NumericT, viennacl::row_major, AlignmentV>& input,
NumericT sign = -1.0)
{
vcl_size_t rows_num = input.size1();
vcl_size_t cols_num = input.size2() >> 1;
vcl_size_t cols_int = input.internal_size2() >> 1;
// batch with rows
if (viennacl::detail::fft::is_radix2(cols_num))
viennacl::linalg::radix2(input, cols_num, cols_int, rows_num, sign,
viennacl::linalg::host_based::detail::fft::FFT_DATA_ORDER::ROW_MAJOR);
else
{
viennacl::matrix<NumericT, viennacl::row_major, AlignmentV> output(input.size1(),
input.size2());
viennacl::linalg::direct(input, output, cols_num, cols_int, rows_num, sign,
viennacl::linalg::host_based::detail::fft::FFT_DATA_ORDER::ROW_MAJOR);
input = output;
}
// batch with cols
if (viennacl::detail::fft::is_radix2(rows_num))
viennacl::linalg::radix2(input, rows_num, cols_int, cols_num, sign,
viennacl::linalg::host_based::detail::fft::FFT_DATA_ORDER::COL_MAJOR);
else
{
viennacl::matrix<NumericT, viennacl::row_major, AlignmentV> output(input.size1(),
input.size2());
viennacl::linalg::direct(input, output, rows_num, cols_int, cols_num, sign,
viennacl::linalg::host_based::detail::fft::FFT_DATA_ORDER::COL_MAJOR);
input = output;
}
}
/**
* @brief Generic version of 2-D Fourier transformation.
*
* @param input Input vector.
* @param output Output vector.
* @param sign Sign of exponent, default is -1.0
*/
template<class NumericT, unsigned int AlignmentV>
void fft(viennacl::matrix<NumericT, viennacl::row_major, AlignmentV>& input, //TODO
viennacl::matrix<NumericT, viennacl::row_major, AlignmentV>& output, NumericT sign = -1.0)
{
vcl_size_t rows_num = input.size1();
vcl_size_t cols_num = input.size2() >> 1;
vcl_size_t cols_int = input.internal_size2() >> 1;
// batch with rows
if (viennacl::detail::fft::is_radix2(cols_num))
{
output = input;
viennacl::linalg::radix2(output, cols_num, cols_int, rows_num, sign,
viennacl::linalg::host_based::detail::fft::FFT_DATA_ORDER::ROW_MAJOR);
}
else
viennacl::linalg::direct(input, output, cols_num, cols_int, rows_num, sign,
viennacl::linalg::host_based::detail::fft::FFT_DATA_ORDER::ROW_MAJOR);
// batch with cols
if (viennacl::detail::fft::is_radix2(rows_num))
{
//std::cout<<"output"<<output<<std::endl;
viennacl::linalg::radix2(output, rows_num, cols_int, cols_num, sign,
viennacl::linalg::host_based::detail::fft::FFT_DATA_ORDER::COL_MAJOR);
}
else
{
viennacl::matrix<NumericT, viennacl::row_major, AlignmentV> tmp(output.size1(),
output.size2());
tmp = output;
//std::cout<<"tmp"<<tmp<<std::endl;
viennacl::linalg::direct(tmp, output, rows_num, cols_int, cols_num, sign,
viennacl::linalg::host_based::detail::fft::FFT_DATA_ORDER::COL_MAJOR);
}
}
/**
* @brief Generic inplace version of inverse 1-D Fourier transformation.
*
* Shorthand function for fft(sign = 1.0)
*
* @param input Input vector.
* @param batch_num Number of items in batch.
* @param sign Sign of exponent, default is -1.0
*/
template<class NumericT, unsigned int AlignmentV>
void inplace_ifft(viennacl::vector<NumericT, AlignmentV>& input, vcl_size_t batch_num = 1)
{
viennacl::inplace_fft(input, batch_num, NumericT(1.0));
viennacl::linalg::normalize(input);
}
/**
* @brief Generic version of inverse 1-D Fourier transformation.
*
* Shorthand function for fft(sign = 1.0)
*
* @param input Input vector.
* @param output Output vector.
* @param batch_num Number of items in batch.
* @param sign Sign of exponent, default is -1.0
*/
template<class NumericT, unsigned int AlignmentV>
void ifft(viennacl::vector<NumericT, AlignmentV>& input,
viennacl::vector<NumericT, AlignmentV>& output, vcl_size_t batch_num = 1)
{
viennacl::fft(input, output, batch_num, NumericT(1.0));
viennacl::linalg::normalize(output);
}
namespace linalg
{
/**
* @brief 1-D convolution of two vectors.
*
* This function does not make any changes to input vectors
*
* @param input1 Input vector #1.
* @param input2 Input vector #2.
* @param output Output vector.
*/
template<class NumericT, unsigned int AlignmentV>
void convolve(viennacl::vector<NumericT, AlignmentV>& input1,
viennacl::vector<NumericT, AlignmentV>& input2,
viennacl::vector<NumericT, AlignmentV>& output)
{
assert(input1.size() == input2.size());
assert(input1.size() == output.size());
//temporal arrays
viennacl::vector<NumericT, AlignmentV> tmp1(input1.size());
viennacl::vector<NumericT, AlignmentV> tmp2(input2.size());
viennacl::vector<NumericT, AlignmentV> tmp3(output.size());
// align input arrays to equal size
// FFT of input data
viennacl::fft(input1, tmp1);
viennacl::fft(input2, tmp2);
// multiplication of input data
viennacl::linalg::multiply_complex(tmp1, tmp2, tmp3);
// inverse FFT of input data
viennacl::ifft(tmp3, output);
}
/**
* @brief 1-D convolution of two vectors.
*
* This function can make changes to input vectors to avoid additional memory allocations.
*
* @param input1 Input vector #1.
* @param input2 Input vector #2.
* @param output Output vector.
*/
template<class NumericT, unsigned int AlignmentV>
void convolve_i(viennacl::vector<NumericT, AlignmentV>& input1,
viennacl::vector<NumericT, AlignmentV>& input2,
viennacl::vector<NumericT, AlignmentV>& output)
{
assert(input1.size() == input2.size());
assert(input1.size() == output.size());
viennacl::inplace_fft(input1);
viennacl::inplace_fft(input2);
viennacl::linalg::multiply_complex(input1, input2, output);
viennacl::inplace_ifft(output);
}
} //namespace linalg
} //namespace viennacl
/// @endcond
#endif
|