This file is indexed.

/usr/include/viennacl/compressed_matrix.hpp is in libviennacl-dev 1.7.1+dfsg1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
#ifndef VIENNACL_COMPRESSED_MATRIX_HPP_
#define VIENNACL_COMPRESSED_MATRIX_HPP_

/* =========================================================================
   Copyright (c) 2010-2016, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/compressed_matrix.hpp
    @brief Implementation of the compressed_matrix class
*/

#include <vector>
#include <list>
#include <map>
#include "viennacl/forwards.h"
#include "viennacl/vector.hpp"

#include "viennacl/linalg/sparse_matrix_operations.hpp"

#include "viennacl/tools/tools.hpp"
#include "viennacl/tools/entry_proxy.hpp"

#ifdef VIENNACL_WITH_UBLAS
#include <boost/numeric/ublas/matrix_sparse.hpp>
#endif

namespace viennacl
{
namespace detail
{

  /** @brief Implementation of the copy of a host-based sparse matrix to the device.
    *
    * See convenience copy() routines for type requirements of CPUMatrixT
    */
  template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
  void copy_impl(const CPUMatrixT & cpu_matrix,
                 compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
                 vcl_size_t nonzeros)
  {
    assert( (gpu_matrix.size1() == 0 || viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
    assert( (gpu_matrix.size2() == 0 || viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );

    viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), cpu_matrix.size1() + 1);
    viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), nonzeros);
    std::vector<NumericT> elements(nonzeros);

    vcl_size_t row_index  = 0;
    vcl_size_t data_index = 0;

    for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1();
         row_it != cpu_matrix.end1();
         ++row_it)
    {
      row_buffer.set(row_index, data_index);
      ++row_index;

      for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin();
           col_it != row_it.end();
           ++col_it)
      {
        col_buffer.set(data_index, col_it.index2());
        elements[data_index] = *col_it;
        ++data_index;
      }
      data_index = viennacl::tools::align_to_multiple<vcl_size_t>(data_index, AlignmentV); //take care of alignment
    }
    row_buffer.set(row_index, data_index);

    gpu_matrix.set(row_buffer.get(),
                   col_buffer.get(),
                   &elements[0],
        cpu_matrix.size1(),
        cpu_matrix.size2(),
        nonzeros);
  }
}

//
// host to device:
//

//provide copy-operation:
/** @brief Copies a sparse matrix from the host to the OpenCL device (either GPU or multi-core CPU)
  *
  * There are some type requirements on the CPUMatrixT type (fulfilled by e.g. boost::numeric::ublas):
  * - .size1() returns the number of rows
  * - .size2() returns the number of columns
  * - const_iterator1    is a type definition for an iterator along increasing row indices
  * - const_iterator2    is a type definition for an iterator along increasing columns indices
  * - The const_iterator1 type provides an iterator of type const_iterator2 via members .begin() and .end() that iterates along column indices in the current row.
  * - The types const_iterator1 and const_iterator2 provide members functions .index1() and .index2() that return the current row and column indices respectively.
  * - Dereferenciation of an object of type const_iterator2 returns the entry.
  *
  * @param cpu_matrix   A sparse matrix on the host.
  * @param gpu_matrix   A compressed_matrix from ViennaCL
  */
template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy(const CPUMatrixT & cpu_matrix,
          compressed_matrix<NumericT, AlignmentV> & gpu_matrix )
{
  if ( cpu_matrix.size1() > 0 && cpu_matrix.size2() > 0 )
  {
    //determine nonzeros:
    vcl_size_t num_entries = 0;
    for (typename CPUMatrixT::const_iterator1 row_it = cpu_matrix.begin1();
         row_it != cpu_matrix.end1();
         ++row_it)
    {
      vcl_size_t entries_per_row = 0;
      for (typename CPUMatrixT::const_iterator2 col_it = row_it.begin();
           col_it != row_it.end();
           ++col_it)
      {
        ++entries_per_row;
      }
      num_entries += viennacl::tools::align_to_multiple<vcl_size_t>(entries_per_row, AlignmentV);
    }

    if (num_entries == 0) //we copy an empty matrix
      num_entries = 1;

    //set up matrix entries:
    viennacl::detail::copy_impl(cpu_matrix, gpu_matrix, num_entries);
  }
}


//adapted for std::vector< std::map < > > argument:
/** @brief Copies a sparse square matrix in the std::vector< std::map < > > format to an OpenCL device. Use viennacl::tools::sparse_matrix_adapter for non-square matrices.
  *
  * @param cpu_matrix   A sparse square matrix on the host using STL types
  * @param gpu_matrix   A compressed_matrix from ViennaCL
  */
template<typename SizeT, typename NumericT, unsigned int AlignmentV>
void copy(const std::vector< std::map<SizeT, NumericT> > & cpu_matrix,
          compressed_matrix<NumericT, AlignmentV> & gpu_matrix )
{
  vcl_size_t nonzeros = 0;
  vcl_size_t max_col = 0;
  for (vcl_size_t i=0; i<cpu_matrix.size(); ++i)
  {
    if (cpu_matrix[i].size() > 0)
      nonzeros += ((cpu_matrix[i].size() - 1) / AlignmentV + 1) * AlignmentV;
    if (cpu_matrix[i].size() > 0)
      max_col = std::max<vcl_size_t>(max_col, (cpu_matrix[i].rbegin())->first);
  }

  viennacl::detail::copy_impl(tools::const_sparse_matrix_adapter<NumericT, SizeT>(cpu_matrix, cpu_matrix.size(), max_col + 1),
                              gpu_matrix,
                              nonzeros);
}

#ifdef VIENNACL_WITH_UBLAS
/** @brief Convenience routine for copying a sparse uBLAS matrix to a ViennaCL matrix.
  *
  * Optimization which copies the data directly from the internal uBLAS buffers.
  */
template<typename ScalarType, typename F, vcl_size_t IB, typename IA, typename TA>
void copy(const boost::numeric::ublas::compressed_matrix<ScalarType, F, IB, IA, TA> & ublas_matrix,
          viennacl::compressed_matrix<ScalarType, 1> & gpu_matrix)
{
  assert( (gpu_matrix.size1() == 0 || viennacl::traits::size1(ublas_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (gpu_matrix.size2() == 0 || viennacl::traits::size2(ublas_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );

  //we just need to copy the CSR arrays:
  viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), ublas_matrix.size1() + 1);
  for (vcl_size_t i=0; i<=ublas_matrix.size1(); ++i)
    row_buffer.set(i, ublas_matrix.index1_data()[i]);

  viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), ublas_matrix.nnz());
  for (vcl_size_t i=0; i<ublas_matrix.nnz(); ++i)
    col_buffer.set(i, ublas_matrix.index2_data()[i]);

  gpu_matrix.set(row_buffer.get(),
                 col_buffer.get(),
                 &(ublas_matrix.value_data()[0]),
      ublas_matrix.size1(),
      ublas_matrix.size2(),
      ublas_matrix.nnz());

}
#endif

#ifdef VIENNACL_WITH_ARMADILLO
/** @brief Convenience routine for copying a sparse Armadillo matrix to a ViennaCL matrix.
  *
  * Since Armadillo uses a column-major format, while ViennaCL uses row-major, we need to transpose.
  * This is done fairly efficiently working on the CSR arrays directly, rather than (slowly) building an STL matrix.
  */
template<typename NumericT, unsigned int AlignmentV>
void copy(arma::SpMat<NumericT> const & arma_matrix,
          viennacl::compressed_matrix<NumericT, AlignmentV> & vcl_matrix)
{
  assert( (vcl_matrix.size1() == 0 || static_cast<vcl_size_t>(arma_matrix.n_rows) == vcl_matrix.size1()) && bool("Size mismatch") );
  assert( (vcl_matrix.size2() == 0 || static_cast<vcl_size_t>(arma_matrix.n_cols) == vcl_matrix.size2()) && bool("Size mismatch") );

  viennacl::backend::typesafe_host_array<unsigned int> row_buffer(vcl_matrix.handle1(), arma_matrix.n_rows + 1);
  viennacl::backend::typesafe_host_array<unsigned int> col_buffer(vcl_matrix.handle2(), arma_matrix.n_nonzero);
  viennacl::backend::typesafe_host_array<NumericT    > value_buffer(vcl_matrix.handle(), arma_matrix.n_nonzero);

  // Step 1: Count number of nonzeros in each row
  for (vcl_size_t col=0; col < static_cast<vcl_size_t>(arma_matrix.n_cols); ++col)
  {
    vcl_size_t col_begin = static_cast<vcl_size_t>(arma_matrix.col_ptrs[col]);
    vcl_size_t col_end   = static_cast<vcl_size_t>(arma_matrix.col_ptrs[col+1]);
    for (vcl_size_t i = col_begin; i < col_end; ++i)
    {
      unsigned int row = arma_matrix.row_indices[i];
      row_buffer.set(row, row_buffer[row] + 1);
    }
  }

  // Step 2: Exclusive scan on row_buffer to obtain offsets
  unsigned int offset = 0;
  for (vcl_size_t i=0; i<row_buffer.size(); ++i)
  {
    unsigned int tmp = row_buffer[i];
    row_buffer.set(i, offset);
    offset += tmp;
  }

  // Step 3: Fill data
  std::vector<unsigned int> row_offsets(arma_matrix.n_rows);
  for (vcl_size_t col=0; col < static_cast<vcl_size_t>(arma_matrix.n_cols); ++col)
  {
    vcl_size_t col_begin = static_cast<vcl_size_t>(arma_matrix.col_ptrs[col]);
    vcl_size_t col_end   = static_cast<vcl_size_t>(arma_matrix.col_ptrs[col+1]);
    for (vcl_size_t i = col_begin; i < col_end; ++i)
    {
      unsigned int row = arma_matrix.row_indices[i];
      col_buffer.set(row_buffer[row] + row_offsets[row], col);
      value_buffer.set(row_buffer[row] + row_offsets[row], arma_matrix.values[i]);
      row_offsets[row] += 1;
    }
  }

  vcl_matrix.set(row_buffer.get(), col_buffer.get(), reinterpret_cast<NumericT*>(value_buffer.get()),
                 arma_matrix.n_rows, arma_matrix.n_cols, arma_matrix.n_nonzero);
}
#endif

#ifdef VIENNACL_WITH_EIGEN
/** @brief Convenience routine for copying a sparse Eigen matrix to a ViennaCL matrix.
  *
  * Builds a temporary STL matrix. Patches for avoiding the temporary matrix welcome.
  */
template<typename NumericT, int flags, unsigned int AlignmentV>
void copy(const Eigen::SparseMatrix<NumericT, flags> & eigen_matrix,
          compressed_matrix<NumericT, AlignmentV> & gpu_matrix)
{
  assert( (gpu_matrix.size1() == 0 || static_cast<vcl_size_t>(eigen_matrix.rows()) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (gpu_matrix.size2() == 0 || static_cast<vcl_size_t>(eigen_matrix.cols()) == gpu_matrix.size2()) && bool("Size mismatch") );

  std::vector< std::map<unsigned int, NumericT> >  stl_matrix(eigen_matrix.rows());

  for (int k=0; k < eigen_matrix.outerSize(); ++k)
    for (typename Eigen::SparseMatrix<NumericT, flags>::InnerIterator it(eigen_matrix, k); it; ++it)
      stl_matrix[it.row()][it.col()] = it.value();

  copy(tools::const_sparse_matrix_adapter<NumericT>(stl_matrix, eigen_matrix.rows(), eigen_matrix.cols()), gpu_matrix);
}
#endif


#ifdef VIENNACL_WITH_MTL4
/** @brief Convenience routine for copying a sparse MTL4 matrix to a ViennaCL matrix.
  *
  * Builds a temporary STL matrix for the copy. Patches for avoiding the temporary matrix welcome.
  */
template<typename NumericT, unsigned int AlignmentV>
void copy(const mtl::compressed2D<NumericT> & cpu_matrix,
          compressed_matrix<NumericT, AlignmentV> & gpu_matrix)
{
  assert( (gpu_matrix.size1() == 0 || static_cast<vcl_size_t>(cpu_matrix.num_rows()) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (gpu_matrix.size2() == 0 || static_cast<vcl_size_t>(cpu_matrix.num_cols()) == gpu_matrix.size2()) && bool("Size mismatch") );

  typedef mtl::compressed2D<NumericT>  MatrixType;

  std::vector< std::map<unsigned int, NumericT> >  stl_matrix(cpu_matrix.num_rows());

  using mtl::traits::range_generator;
  using mtl::traits::range::min;

  // Choose between row and column traversal
  typedef typename min<range_generator<mtl::tag::row, MatrixType>,
      range_generator<mtl::tag::col, MatrixType> >::type   range_type;
  range_type                                                      my_range;

  // Type of outer cursor
  typedef typename range_type::type                               c_type;
  // Type of inner cursor
  typedef typename mtl::traits::range_generator<mtl::tag::nz, c_type>::type ic_type;

  // Define the property maps
  typename mtl::traits::row<MatrixType>::type                              row(cpu_matrix);
  typename mtl::traits::col<MatrixType>::type                              col(cpu_matrix);
  typename mtl::traits::const_value<MatrixType>::type                      value(cpu_matrix);

  // Now iterate over the matrix
  for (c_type cursor(my_range.begin(cpu_matrix)), cend(my_range.end(cpu_matrix)); cursor != cend; ++cursor)
    for (ic_type icursor(mtl::begin<mtl::tag::nz>(cursor)), icend(mtl::end<mtl::tag::nz>(cursor)); icursor != icend; ++icursor)
      stl_matrix[row(*icursor)][col(*icursor)] = value(*icursor);

  copy(tools::const_sparse_matrix_adapter<NumericT>(stl_matrix, cpu_matrix.num_rows(), cpu_matrix.num_cols()), gpu_matrix);
}
#endif







//
// device to host:
//
/** @brief Copies a sparse matrix from the OpenCL device (either GPU or multi-core CPU) to the host.
  *
  * There are two type requirements on the CPUMatrixT type (fulfilled by e.g. boost::numeric::ublas):
  * - resize(rows, cols)  A resize function to bring the matrix into the correct size
  * - operator(i,j)       Write new entries via the parenthesis operator
  *
  * @param gpu_matrix   A compressed_matrix from ViennaCL
  * @param cpu_matrix   A sparse matrix on the host.
  */
template<typename CPUMatrixT, typename NumericT, unsigned int AlignmentV>
void copy(const compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
          CPUMatrixT & cpu_matrix )
{
  assert( (viennacl::traits::size1(cpu_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (viennacl::traits::size2(cpu_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );

  if ( gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0 )
  {
    //get raw data from memory:
    viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), cpu_matrix.size1() + 1);
    viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), gpu_matrix.nnz());
    std::vector<NumericT> elements(gpu_matrix.nnz());

    //std::cout << "GPU->CPU, nonzeros: " << gpu_matrix.nnz() << std::endl;

    viennacl::backend::memory_read(gpu_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
    viennacl::backend::memory_read(gpu_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
    viennacl::backend::memory_read(gpu_matrix.handle(),  0, sizeof(NumericT)* gpu_matrix.nnz(), &(elements[0]));

    //fill the cpu_matrix:
    vcl_size_t data_index = 0;
    for (vcl_size_t row = 1; row <= gpu_matrix.size1(); ++row)
    {
      while (data_index < row_buffer[row])
      {
        if (col_buffer[data_index] >= gpu_matrix.size2())
        {
          std::cerr << "ViennaCL encountered invalid data at colbuffer[" << data_index << "]: " << col_buffer[data_index] << std::endl;
          return;
        }

        if (std::fabs(elements[data_index]) > static_cast<NumericT>(0))
          cpu_matrix(row-1, static_cast<vcl_size_t>(col_buffer[data_index])) = elements[data_index];
        ++data_index;
      }
    }
  }
}


/** @brief Copies a sparse matrix from an OpenCL device to the host. The host type is the std::vector< std::map < > > format .
  *
  * @param gpu_matrix   A compressed_matrix from ViennaCL
  * @param cpu_matrix   A sparse matrix on the host.
  */
template<typename NumericT, unsigned int AlignmentV>
void copy(const compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
          std::vector< std::map<unsigned int, NumericT> > & cpu_matrix)
{
  assert( (cpu_matrix.size() == gpu_matrix.size1()) && bool("Size mismatch") );

  tools::sparse_matrix_adapter<NumericT> temp(cpu_matrix, gpu_matrix.size1(), gpu_matrix.size2());
  copy(gpu_matrix, temp);
}

#ifdef VIENNACL_WITH_UBLAS
/** @brief Convenience routine for copying a ViennaCL sparse matrix back to a sparse uBLAS matrix
  *
  * Directly populates the internal buffer of the uBLAS matrix, thus avoiding a temporary STL matrix.
  */
template<typename ScalarType, unsigned int AlignmentV, typename F, vcl_size_t IB, typename IA, typename TA>
void copy(viennacl::compressed_matrix<ScalarType, AlignmentV> const & gpu_matrix,
          boost::numeric::ublas::compressed_matrix<ScalarType> & ublas_matrix)
{
  assert( (viennacl::traits::size1(ublas_matrix) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (viennacl::traits::size2(ublas_matrix) == gpu_matrix.size2()) && bool("Size mismatch") );

  viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), gpu_matrix.size1() + 1);
  viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), gpu_matrix.nnz());

  viennacl::backend::memory_read(gpu_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
  viennacl::backend::memory_read(gpu_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());

  ublas_matrix.clear();
  ublas_matrix.reserve(gpu_matrix.nnz());

  ublas_matrix.set_filled(gpu_matrix.size1() + 1, gpu_matrix.nnz());

  for (vcl_size_t i=0; i<ublas_matrix.size1() + 1; ++i)
    ublas_matrix.index1_data()[i] = row_buffer[i];

  for (vcl_size_t i=0; i<ublas_matrix.nnz(); ++i)
    ublas_matrix.index2_data()[i] = col_buffer[i];

  viennacl::backend::memory_read(gpu_matrix.handle(),  0, sizeof(ScalarType) * gpu_matrix.nnz(), &(ublas_matrix.value_data()[0]));

}
#endif

#ifdef VIENNACL_WITH_ARMADILLO
/** @brief Convenience routine for copying a ViennaCL sparse matrix back to a sparse Armadillo matrix.
 *
 * Performance notice: Inserting the row-major data from the ViennaCL matrix to the column-major Armadillo-matrix is likely to be slow.
 * However, since this operation is unlikely to be performance-critical, further optimizations are postponed.
*/
template<typename NumericT, unsigned int AlignmentV>
void copy(viennacl::compressed_matrix<NumericT, AlignmentV> & vcl_matrix,
          arma::SpMat<NumericT> & arma_matrix)
{
  assert( (static_cast<vcl_size_t>(arma_matrix.n_rows) == vcl_matrix.size1()) && bool("Size mismatch") );
  assert( (static_cast<vcl_size_t>(arma_matrix.n_cols) == vcl_matrix.size2()) && bool("Size mismatch") );

  if ( vcl_matrix.size1() > 0 && vcl_matrix.size2() > 0 )
  {
    //get raw data from memory:
    viennacl::backend::typesafe_host_array<unsigned int> row_buffer(vcl_matrix.handle1(), vcl_matrix.size1() + 1);
    viennacl::backend::typesafe_host_array<unsigned int> col_buffer(vcl_matrix.handle2(), vcl_matrix.nnz());
    viennacl::backend::typesafe_host_array<NumericT>     elements  (vcl_matrix.handle(),  vcl_matrix.nnz());

    viennacl::backend::memory_read(vcl_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
    viennacl::backend::memory_read(vcl_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
    viennacl::backend::memory_read(vcl_matrix.handle(),  0, elements.raw_size(),     elements.get());

    arma_matrix.zeros();
    vcl_size_t data_index = 0;
    for (vcl_size_t row = 1; row <= vcl_matrix.size1(); ++row)
    {
      while (data_index < row_buffer[row])
      {
        assert(col_buffer[data_index] < vcl_matrix.size2() && bool("ViennaCL encountered invalid data at col_buffer"));
        if (elements[data_index] != static_cast<NumericT>(0.0))
          arma_matrix(row-1, col_buffer[data_index]) = elements[data_index];
        ++data_index;
      }
    }
  }
}
#endif

#ifdef VIENNACL_WITH_EIGEN
/** @brief Convenience routine for copying a ViennaCL sparse matrix back to a sparse Eigen matrix */
template<typename NumericT, int flags, unsigned int AlignmentV>
void copy(compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
          Eigen::SparseMatrix<NumericT, flags> & eigen_matrix)
{
  assert( (static_cast<vcl_size_t>(eigen_matrix.rows()) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (static_cast<vcl_size_t>(eigen_matrix.cols()) == gpu_matrix.size2()) && bool("Size mismatch") );

  if ( gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0 )
  {
    //get raw data from memory:
    viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), gpu_matrix.size1() + 1);
    viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), gpu_matrix.nnz());
    std::vector<NumericT> elements(gpu_matrix.nnz());

    viennacl::backend::memory_read(gpu_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
    viennacl::backend::memory_read(gpu_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
    viennacl::backend::memory_read(gpu_matrix.handle(),  0, sizeof(NumericT)* gpu_matrix.nnz(),        &(elements[0]));

    eigen_matrix.setZero();
    vcl_size_t data_index = 0;
    for (vcl_size_t row = 1; row <= gpu_matrix.size1(); ++row)
    {
      while (data_index < row_buffer[row])
      {
        assert(col_buffer[data_index] < gpu_matrix.size2() && bool("ViennaCL encountered invalid data at col_buffer"));
        if (elements[data_index] != static_cast<NumericT>(0.0))
          eigen_matrix.insert(row-1, col_buffer[data_index]) = elements[data_index];
        ++data_index;
      }
    }
  }
}
#endif



#ifdef VIENNACL_WITH_MTL4
/** @brief Convenience routine for copying a ViennaCL sparse matrix back to a sparse MTL4 matrix */
template<typename NumericT, unsigned int AlignmentV>
void copy(compressed_matrix<NumericT, AlignmentV> & gpu_matrix,
          mtl::compressed2D<NumericT> & mtl4_matrix)
{
  assert( (static_cast<vcl_size_t>(mtl4_matrix.num_rows()) == gpu_matrix.size1()) && bool("Size mismatch") );
  assert( (static_cast<vcl_size_t>(mtl4_matrix.num_cols()) == gpu_matrix.size2()) && bool("Size mismatch") );

  if ( gpu_matrix.size1() > 0 && gpu_matrix.size2() > 0 )
  {

    //get raw data from memory:
    viennacl::backend::typesafe_host_array<unsigned int> row_buffer(gpu_matrix.handle1(), gpu_matrix.size1() + 1);
    viennacl::backend::typesafe_host_array<unsigned int> col_buffer(gpu_matrix.handle2(), gpu_matrix.nnz());
    std::vector<NumericT> elements(gpu_matrix.nnz());

    viennacl::backend::memory_read(gpu_matrix.handle1(), 0, row_buffer.raw_size(), row_buffer.get());
    viennacl::backend::memory_read(gpu_matrix.handle2(), 0, col_buffer.raw_size(), col_buffer.get());
    viennacl::backend::memory_read(gpu_matrix.handle(),  0, sizeof(NumericT)* gpu_matrix.nnz(), &(elements[0]));

    //set_to_zero(mtl4_matrix);
    //mtl4_matrix.change_dim(gpu_matrix.size1(), gpu_matrix.size2());

    mtl::matrix::inserter< mtl::compressed2D<NumericT> >  ins(mtl4_matrix);
    vcl_size_t data_index = 0;
    for (vcl_size_t row = 1; row <= gpu_matrix.size1(); ++row)
    {
      while (data_index < row_buffer[row])
      {
        assert(col_buffer[data_index] < gpu_matrix.size2() && bool("ViennaCL encountered invalid data at col_buffer"));
        if (elements[data_index] != static_cast<NumericT>(0.0))
          ins(row-1, col_buffer[data_index]) << typename mtl::Collection< mtl::compressed2D<NumericT> >::value_type(elements[data_index]);
        ++data_index;
      }
    }
  }
}
#endif





//////////////////////// compressed_matrix //////////////////////////
/** @brief A sparse square matrix in compressed sparse rows format.
  *
  * @tparam NumericT    The floating point type (either float or double, checked at compile time)
  * @tparam AlignmentV     The internal memory size for the entries in each row is given by (size()/AlignmentV + 1) * AlignmentV. AlignmentV must be a power of two. Best values or usually 4, 8 or 16, higher values are usually a waste of memory.
  */
template<class NumericT, unsigned int AlignmentV /* see VCLForwards.h */>
class compressed_matrix
{
public:
  typedef viennacl::backend::mem_handle                                                              handle_type;
  typedef scalar<typename viennacl::tools::CHECK_SCALAR_TEMPLATE_ARGUMENT<NumericT>::ResultType>   value_type;
  typedef vcl_size_t                                                                                 size_type;

  /** @brief Default construction of a compressed matrix. No memory is allocated */
  compressed_matrix() : rows_(0), cols_(0), nonzeros_(0), row_block_num_(0) {}

  /** @brief Construction of a compressed matrix with the supplied number of rows and columns. If the number of nonzeros is positive, memory is allocated
      *
      * @param rows     Number of rows
      * @param cols     Number of columns
      * @param nonzeros Optional number of nonzeros for memory preallocation
      * @param ctx      Optional context in which the matrix is created (one out of multiple OpenCL contexts, CUDA, host)
      */
  explicit compressed_matrix(vcl_size_t rows, vcl_size_t cols, vcl_size_t nonzeros = 0, viennacl::context ctx = viennacl::context())
    : rows_(rows), cols_(cols), nonzeros_(nonzeros), row_block_num_(0)
  {
    row_buffer_.switch_active_handle_id(ctx.memory_type());
    col_buffer_.switch_active_handle_id(ctx.memory_type());
    elements_.switch_active_handle_id(ctx.memory_type());
    row_blocks_.switch_active_handle_id(ctx.memory_type());

#ifdef VIENNACL_WITH_OPENCL
    if (ctx.memory_type() == OPENCL_MEMORY)
    {
      row_buffer_.opencl_handle().context(ctx.opencl_context());
      col_buffer_.opencl_handle().context(ctx.opencl_context());
      elements_.opencl_handle().context(ctx.opencl_context());
      row_blocks_.opencl_handle().context(ctx.opencl_context());
    }
#endif
    if (rows > 0)
    {
      viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * (rows + 1), ctx);
      viennacl::vector_base<unsigned int> init_temporary(row_buffer_, size_type(rows+1), 0, 1);
      init_temporary = viennacl::zero_vector<unsigned int>(size_type(rows+1), ctx);
    }
    if (nonzeros > 0)
    {
      viennacl::backend::memory_create(col_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * nonzeros, ctx);
      viennacl::backend::memory_create(elements_, sizeof(NumericT) * nonzeros, ctx);
    }
  }

  /** @brief Construction of a compressed matrix with the supplied number of rows and columns. If the number of nonzeros is positive, memory is allocated
      *
      * @param rows     Number of rows
      * @param cols     Number of columns
      * @param ctx      Context in which to create the matrix
      */
  explicit compressed_matrix(vcl_size_t rows, vcl_size_t cols, viennacl::context ctx)
    : rows_(rows), cols_(cols), nonzeros_(0), row_block_num_(0)
  {
    row_buffer_.switch_active_handle_id(ctx.memory_type());
    col_buffer_.switch_active_handle_id(ctx.memory_type());
    elements_.switch_active_handle_id(ctx.memory_type());
    row_blocks_.switch_active_handle_id(ctx.memory_type());

#ifdef VIENNACL_WITH_OPENCL
    if (ctx.memory_type() == OPENCL_MEMORY)
    {
      row_buffer_.opencl_handle().context(ctx.opencl_context());
      col_buffer_.opencl_handle().context(ctx.opencl_context());
      elements_.opencl_handle().context(ctx.opencl_context());
      row_blocks_.opencl_handle().context(ctx.opencl_context());
    }
#endif
    if (rows > 0)
    {
      viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * (rows + 1), ctx);
      viennacl::vector_base<unsigned int> init_temporary(row_buffer_, size_type(rows+1), 0, 1);
      init_temporary = viennacl::zero_vector<unsigned int>(size_type(rows+1), ctx);
    }
  }

  /** @brief Creates an empty compressed_matrix, but sets the respective context information.
    *
    * This is useful if you want to want to populate e.g. a viennacl::compressed_matrix<> on the host with copy(), but the default backend is OpenCL.
    */
  explicit compressed_matrix(viennacl::context ctx) : rows_(0), cols_(0), nonzeros_(0), row_block_num_(0)
  {
    row_buffer_.switch_active_handle_id(ctx.memory_type());
    col_buffer_.switch_active_handle_id(ctx.memory_type());
    elements_.switch_active_handle_id(ctx.memory_type());
    row_blocks_.switch_active_handle_id(ctx.memory_type());

#ifdef VIENNACL_WITH_OPENCL
    if (ctx.memory_type() == OPENCL_MEMORY)
    {
      row_buffer_.opencl_handle().context(ctx.opencl_context());
      col_buffer_.opencl_handle().context(ctx.opencl_context());
      elements_.opencl_handle().context(ctx.opencl_context());
      row_blocks_.opencl_handle().context(ctx.opencl_context());
    }
#endif
  }


#ifdef VIENNACL_WITH_OPENCL
  /** @brief Wraps existing OpenCL buffers holding the compressed sparse row information.
    *
    * @param mem_row_buffer   A buffer consisting of unsigned integers (cl_uint) holding the entry points for each row (0-based indexing). (rows+1) elements, the last element being 'nonzeros'.
    * @param mem_col_buffer   A buffer consisting of unsigned integers (cl_uint) holding the column index for each nonzero entry as stored in 'mem_elements'.
    * @param mem_elements     A buffer holding the floating point numbers for nonzeros. OpenCL type of elements must match the template 'NumericT'.
    * @param rows             Number of rows in the matrix to be wrapped.
    * @param cols             Number of columns to be wrapped.
    * @param nonzeros         Number of nonzero entries in the matrix.
    */
  explicit compressed_matrix(cl_mem mem_row_buffer, cl_mem mem_col_buffer, cl_mem mem_elements,
                             vcl_size_t rows, vcl_size_t cols, vcl_size_t nonzeros) :
    rows_(rows), cols_(cols), nonzeros_(nonzeros), row_block_num_(0)
  {
    row_buffer_.switch_active_handle_id(viennacl::OPENCL_MEMORY);
    row_buffer_.opencl_handle() = mem_row_buffer;
    row_buffer_.opencl_handle().inc();             //prevents that the user-provided memory is deleted once the matrix object is destroyed.
    row_buffer_.raw_size(sizeof(cl_uint) * (rows + 1));

    col_buffer_.switch_active_handle_id(viennacl::OPENCL_MEMORY);
    col_buffer_.opencl_handle() = mem_col_buffer;
    col_buffer_.opencl_handle().inc();             //prevents that the user-provided memory is deleted once the matrix object is destroyed.
    col_buffer_.raw_size(sizeof(cl_uint) * nonzeros);

    elements_.switch_active_handle_id(viennacl::OPENCL_MEMORY);
    elements_.opencl_handle() = mem_elements;
    elements_.opencl_handle().inc();               //prevents that the user-provided memory is deleted once the matrix object is destroyed.
    elements_.raw_size(sizeof(NumericT) * nonzeros);

    //generate block information for CSR-adaptive:
    generate_row_block_information();
  }
#endif

  /** @brief Assignment a compressed matrix from the product of two compressed_matrix objects (C = A * B). */
  compressed_matrix(matrix_expression<const compressed_matrix, const compressed_matrix, op_prod> const & proxy)
    : rows_(0), cols_(0), nonzeros_(0), row_block_num_(0)
  {
    viennacl::context ctx = viennacl::traits::context(proxy.lhs());

    row_buffer_.switch_active_handle_id(ctx.memory_type());
    col_buffer_.switch_active_handle_id(ctx.memory_type());
    elements_.switch_active_handle_id(ctx.memory_type());
    row_blocks_.switch_active_handle_id(ctx.memory_type());

#ifdef VIENNACL_WITH_OPENCL
    if (ctx.memory_type() == OPENCL_MEMORY)
    {
      row_buffer_.opencl_handle().context(ctx.opencl_context());
      col_buffer_.opencl_handle().context(ctx.opencl_context());
      elements_.opencl_handle().context(ctx.opencl_context());
      row_blocks_.opencl_handle().context(ctx.opencl_context());
    }
#endif

    viennacl::linalg::prod_impl(proxy.lhs(), proxy.rhs(), *this);
    generate_row_block_information();
  }

  /** @brief Assignment a compressed matrix from possibly another memory domain. */
  compressed_matrix & operator=(compressed_matrix const & other)
  {
    assert( (rows_ == 0 || rows_ == other.size1()) && bool("Size mismatch") );
    assert( (cols_ == 0 || cols_ == other.size2()) && bool("Size mismatch") );

    rows_ = other.size1();
    cols_ = other.size2();
    nonzeros_ = other.nnz();
    row_block_num_ = other.row_block_num_;

    viennacl::backend::typesafe_memory_copy<unsigned int>(other.row_buffer_, row_buffer_);
    viennacl::backend::typesafe_memory_copy<unsigned int>(other.col_buffer_, col_buffer_);
    viennacl::backend::typesafe_memory_copy<unsigned int>(other.row_blocks_, row_blocks_);
    viennacl::backend::typesafe_memory_copy<NumericT>(other.elements_, elements_);

    return *this;
  }

  /** @brief Assignment a compressed matrix from the product of two compressed_matrix objects (C = A * B). */
  compressed_matrix & operator=(matrix_expression<const compressed_matrix, const compressed_matrix, op_prod> const & proxy)
  {
    assert( (rows_ == 0 || rows_ == proxy.lhs().size1()) && bool("Size mismatch") );
    assert( (cols_ == 0 || cols_ == proxy.rhs().size2()) && bool("Size mismatch") );

    viennacl::linalg::prod_impl(proxy.lhs(), proxy.rhs(), *this);
    generate_row_block_information();

    return *this;
  }


  /** @brief Sets the row, column and value arrays of the compressed matrix
    *
    * Type of row_jumper and col_buffer is 'unsigned int' for CUDA and OpenMP (host) backend, but *must* be cl_uint for OpenCL.
    * The reason is that 'unsigned int' might have a different bit representation on the host than 'unsigned int' on the OpenCL device.
    * cl_uint is guaranteed to have the correct bit representation for OpenCL devices.
    *
    * @param row_jumper     Pointer to an array holding the indices of the first element of each row (starting with zero). E.g. row_jumper[10] returns the index of the first entry of the 11th row. The array length is 'cols + 1'
    * @param col_buffer     Pointer to an array holding the column index of each entry. The array length is 'nonzeros'
    * @param elements       Pointer to an array holding the entries of the sparse matrix. The array length is 'elements'
    * @param rows           Number of rows of the sparse matrix
    * @param cols           Number of columns of the sparse matrix
    * @param nonzeros       Number of nonzeros
    */
  void set(const void * row_jumper,
           const void * col_buffer,
           const NumericT * elements,
           vcl_size_t rows,
           vcl_size_t cols,
           vcl_size_t nonzeros)
  {
    assert( (rows > 0)     && bool("Error in compressed_matrix::set(): Number of rows must be larger than zero!"));
    assert( (cols > 0)     && bool("Error in compressed_matrix::set(): Number of columns must be larger than zero!"));
    assert( (nonzeros > 0) && bool("Error in compressed_matrix::set(): Number of nonzeros must be larger than zero!"));
    //std::cout << "Setting memory: " << cols + 1 << ", " << nonzeros << std::endl;

    //row_buffer_.switch_active_handle_id(viennacl::backend::OPENCL_MEMORY);
    viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>(row_buffer_).element_size() * (rows + 1), viennacl::traits::context(row_buffer_), row_jumper);

    //col_buffer_.switch_active_handle_id(viennacl::backend::OPENCL_MEMORY);
    viennacl::backend::memory_create(col_buffer_, viennacl::backend::typesafe_host_array<unsigned int>(col_buffer_).element_size() * nonzeros, viennacl::traits::context(col_buffer_), col_buffer);

    //elements_.switch_active_handle_id(viennacl::backend::OPENCL_MEMORY);
    viennacl::backend::memory_create(elements_, sizeof(NumericT) * nonzeros, viennacl::traits::context(elements_), elements);

    nonzeros_ = nonzeros;
    rows_ = rows;
    cols_ = cols;

    //generate block information for CSR-adaptive:
    generate_row_block_information();
  }

  /** @brief Allocate memory for the supplied number of nonzeros in the matrix. Old values are preserved. */
  void reserve(vcl_size_t new_nonzeros, bool preserve = true)
  {
    if (new_nonzeros > nonzeros_)
    {
      if (preserve)
      {
        handle_type col_buffer_old;
        handle_type elements_old;
        viennacl::backend::memory_shallow_copy(col_buffer_, col_buffer_old);
        viennacl::backend::memory_shallow_copy(elements_,   elements_old);

        viennacl::backend::typesafe_host_array<unsigned int> size_deducer(col_buffer_);
        viennacl::backend::memory_create(col_buffer_, size_deducer.element_size() * new_nonzeros, viennacl::traits::context(col_buffer_));
        viennacl::backend::memory_create(elements_,   sizeof(NumericT) * new_nonzeros,          viennacl::traits::context(elements_));

        viennacl::backend::memory_copy(col_buffer_old, col_buffer_, 0, 0, size_deducer.element_size() * nonzeros_);
        viennacl::backend::memory_copy(elements_old,   elements_,   0, 0, sizeof(NumericT)* nonzeros_);
      }
      else
      {
        viennacl::backend::typesafe_host_array<unsigned int> size_deducer(col_buffer_);
        viennacl::backend::memory_create(col_buffer_, size_deducer.element_size() * new_nonzeros, viennacl::traits::context(col_buffer_));
        viennacl::backend::memory_create(elements_,   sizeof(NumericT)            * new_nonzeros, viennacl::traits::context(elements_));
      }

      nonzeros_ = new_nonzeros;
    }
  }

  /** @brief Resize the matrix.
      *
      * @param new_size1    New number of rows
      * @param new_size2    New number of columns
      * @param preserve     If true, the old values are preserved. At present, old values are always discarded.
      */
  void resize(vcl_size_t new_size1, vcl_size_t new_size2, bool preserve = true)
  {
    assert(new_size1 > 0 && new_size2 > 0 && bool("Cannot resize to zero size!"));

    if (new_size1 != rows_ || new_size2 != cols_)
    {
      if (!preserve)
      {
        viennacl::backend::typesafe_host_array<unsigned int> host_row_buffer(row_buffer_, new_size1 + 1);
        viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * (new_size1 + 1), viennacl::traits::context(row_buffer_), host_row_buffer.get());
        // faster version without initializing memory:
        //viennacl::backend::memory_create(row_buffer_, viennacl::backend::typesafe_host_array<unsigned int>().element_size() * (new_size1 + 1), viennacl::traits::context(row_buffer_));
        nonzeros_ = 0;
      }
      else
      {
        std::vector<std::map<unsigned int, NumericT> > stl_sparse_matrix;
        if (rows_ > 0)
        {
          stl_sparse_matrix.resize(rows_);
          viennacl::copy(*this, stl_sparse_matrix);
        } else {
          stl_sparse_matrix.resize(new_size1);
          stl_sparse_matrix[0][0] = 0;      //enforces nonzero array sizes if matrix was initially empty
        }

        stl_sparse_matrix.resize(new_size1);

        //discard entries with column index larger than new_size2
        if (new_size2 < cols_ && rows_ > 0)
        {
          for (vcl_size_t i=0; i<stl_sparse_matrix.size(); ++i)
          {
            std::list<unsigned int> to_delete;
            for (typename std::map<unsigned int, NumericT>::iterator it = stl_sparse_matrix[i].begin();
                 it != stl_sparse_matrix[i].end();
                 ++it)
            {
              if (it->first >= new_size2)
                to_delete.push_back(it->first);
            }

            for (std::list<unsigned int>::iterator it = to_delete.begin(); it != to_delete.end(); ++it)
              stl_sparse_matrix[i].erase(*it);
          }
        }

        viennacl::tools::sparse_matrix_adapter<NumericT> adapted_matrix(stl_sparse_matrix, new_size1, new_size2);
        rows_ = new_size1;
        cols_ = new_size2;
        viennacl::copy(adapted_matrix, *this);
      }

      rows_ = new_size1;
      cols_ = new_size2;
    }
  }

  /** @brief Resets all entries in the matrix back to zero without changing the matrix size. Resets the sparsity pattern. */
  void clear()
  {
    viennacl::backend::typesafe_host_array<unsigned int> host_row_buffer(row_buffer_, rows_ + 1);
    viennacl::backend::typesafe_host_array<unsigned int> host_col_buffer(col_buffer_, 1);
    std::vector<NumericT> host_elements(1);

    viennacl::backend::memory_create(row_buffer_, host_row_buffer.element_size() * (rows_ + 1), viennacl::traits::context(row_buffer_), host_row_buffer.get());
    viennacl::backend::memory_create(col_buffer_, host_col_buffer.element_size() * 1,           viennacl::traits::context(col_buffer_), host_col_buffer.get());
    viennacl::backend::memory_create(elements_,   sizeof(NumericT) * 1,                         viennacl::traits::context(elements_), &(host_elements[0]));

    nonzeros_ = 0;
  }

  /** @brief Returns a reference to the (i,j)-th entry of the sparse matrix. If (i,j) does not exist (zero), it is inserted (slow!) */
  entry_proxy<NumericT> operator()(vcl_size_t i, vcl_size_t j)
  {
    assert( (i < rows_) && (j < cols_) && bool("compressed_matrix access out of bounds!"));

    vcl_size_t index = element_index(i, j);

    // check for element in sparsity pattern
    if (index < nonzeros_)
      return entry_proxy<NumericT>(index, elements_);

    // Element not found. Copying required. Very slow, but direct entry manipulation is painful anyway...
    std::vector< std::map<unsigned int, NumericT> > cpu_backup(rows_);
    tools::sparse_matrix_adapter<NumericT> adapted_cpu_backup(cpu_backup, rows_, cols_);
    viennacl::copy(*this, adapted_cpu_backup);
    cpu_backup[i][static_cast<unsigned int>(j)] = 0.0;
    viennacl::copy(adapted_cpu_backup, *this);

    index = element_index(i, j);

    assert(index < nonzeros_);

    return entry_proxy<NumericT>(index, elements_);
  }

  /** @brief  Returns the number of rows */
  const vcl_size_t & size1() const { return rows_; }
  /** @brief  Returns the number of columns */
  const vcl_size_t & size2() const { return cols_; }
  /** @brief  Returns the number of nonzero entries */
  const vcl_size_t & nnz() const { return nonzeros_; }
  /** @brief  Returns the internal number of row blocks for an adaptive SpMV */
  const vcl_size_t & blocks1() const { return row_block_num_; }

  /** @brief  Returns the OpenCL handle to the row index array */
  const handle_type & handle1() const { return row_buffer_; }
  /** @brief  Returns the OpenCL handle to the column index array */
  const handle_type & handle2() const { return col_buffer_; }
  /** @brief  Returns the OpenCL handle to the row block array */
  const handle_type & handle3() const { return row_blocks_; }
  /** @brief  Returns the OpenCL handle to the matrix entry array */
  const handle_type & handle() const { return elements_; }

  /** @brief  Returns the OpenCL handle to the row index array */
  handle_type & handle1() { return row_buffer_; }
  /** @brief  Returns the OpenCL handle to the column index array */
  handle_type & handle2() { return col_buffer_; }
  /** @brief  Returns the OpenCL handle to the row block array */
  handle_type & handle3() { return row_blocks_; }
  /** @brief  Returns the OpenCL handle to the matrix entry array */
  handle_type & handle() { return elements_; }

  /** @brief Switches the memory context of the matrix.
    *
    * Allows for e.g. an migration of the full matrix from OpenCL memory to host memory for e.g. computing a preconditioner.
    */
  void switch_memory_context(viennacl::context new_ctx)
  {
    viennacl::backend::switch_memory_context<unsigned int>(row_buffer_, new_ctx);
    viennacl::backend::switch_memory_context<unsigned int>(col_buffer_, new_ctx);
    viennacl::backend::switch_memory_context<unsigned int>(row_blocks_, new_ctx);
    viennacl::backend::switch_memory_context<NumericT>(elements_, new_ctx);
  }

  /** @brief Returns the current memory context to determine whether the matrix is set up for OpenMP, OpenCL, or CUDA. */
  viennacl::memory_types memory_context() const
  {
    return row_buffer_.get_active_handle_id();
  }

private:

  /** @brief Helper function for accessing the element (i,j) of the matrix. */
  vcl_size_t element_index(vcl_size_t i, vcl_size_t j)
  {
    //read row indices
    viennacl::backend::typesafe_host_array<unsigned int> row_indices(row_buffer_, 2);
    viennacl::backend::memory_read(row_buffer_, row_indices.element_size()*i, row_indices.element_size()*2, row_indices.get());

    //get column indices for row i:
    viennacl::backend::typesafe_host_array<unsigned int> col_indices(col_buffer_, row_indices[1] - row_indices[0]);
    viennacl::backend::memory_read(col_buffer_, col_indices.element_size()*row_indices[0], row_indices.element_size()*col_indices.size(), col_indices.get());

    for (vcl_size_t k=0; k<col_indices.size(); ++k)
    {
      if (col_indices[k] == j)
        return row_indices[0] + k;
    }

    // if not found, return index past the end of the matrix (cf. matrix.end() in the spirit of the STL)
    return nonzeros_;
  }

public:
  /** @brief Builds the row block information needed for fast sparse matrix-vector multiplications.
   *
   *  Required when manually populating the memory buffers with values. Not necessary when using viennacl::copy() or .set()
   */
  void generate_row_block_information()
  {
    viennacl::backend::typesafe_host_array<unsigned int> row_buffer(row_buffer_, rows_ + 1);
    viennacl::backend::memory_read(row_buffer_, 0, row_buffer.raw_size(), row_buffer.get());

    viennacl::backend::typesafe_host_array<unsigned int> row_blocks(row_buffer_, rows_ + 1);

    vcl_size_t num_entries_in_current_batch = 0;

    const vcl_size_t shared_mem_size = 1024; // number of column indices loaded to shared memory, number of floating point values loaded to shared memory

    row_block_num_ = 0;
    row_blocks.set(0, 0);
    for (vcl_size_t i=0; i<rows_; ++i)
    {
      vcl_size_t entries_in_row = vcl_size_t(row_buffer[i+1]) - vcl_size_t(row_buffer[i]);
      num_entries_in_current_batch += entries_in_row;

      if (num_entries_in_current_batch > shared_mem_size)
      {
        vcl_size_t rows_in_batch = i - row_blocks[row_block_num_];
        if (rows_in_batch > 0) // at least one full row is in the batch. Use current row in next batch.
          row_blocks.set(++row_block_num_, i--);
        else // row is larger than buffer in shared memory
          row_blocks.set(++row_block_num_, i+1);
        num_entries_in_current_batch = 0;
      }
    }
    if (num_entries_in_current_batch > 0)
      row_blocks.set(++row_block_num_, rows_);

    if (row_block_num_ > 0) //matrix might be empty...
      viennacl::backend::memory_create(row_blocks_,
                                       row_blocks.element_size() * (row_block_num_ + 1),
                                       viennacl::traits::context(row_buffer_), row_blocks.get());

  }

private:
  // /** @brief Copy constructor is by now not available. */
  //compressed_matrix(compressed_matrix const &);

private:

  vcl_size_t rows_;
  vcl_size_t cols_;
  vcl_size_t nonzeros_;
  vcl_size_t row_block_num_;
  handle_type row_buffer_;
  handle_type row_blocks_;
  handle_type col_buffer_;
  handle_type elements_;
};

/** @brief Output stream support for compressed_matrix. Output format is same as MATLAB, Octave, or SciPy
  *
  * @param os   STL output stream
  * @param A    The compressed matrix to be printed.
*/
template<typename NumericT, unsigned int AlignmentV>
std::ostream & operator<<(std::ostream & os, compressed_matrix<NumericT, AlignmentV> const & A)
{
  std::vector<std::map<unsigned int, NumericT> > tmp(A.size1());
  viennacl::copy(A, tmp);
  os << "compressed_matrix of size (" << A.size1() << ", " << A.size2() << ") with " << A.nnz() << " nonzeros:" << std::endl;

  for (vcl_size_t i=0; i<A.size1(); ++i)
  {
    for (typename std::map<unsigned int, NumericT>::const_iterator it = tmp[i].begin(); it != tmp[i].end(); ++it)
      os << "  (" << i << ", " << it->first << ")\t" << it->second << std::endl;
  }
  return os;
}

//
// Specify available operations:
//

/** \cond */

namespace linalg
{
namespace detail
{
  // x = A * y
  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_assign, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      // check for the special case x = A * x
      if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
      {
        viennacl::vector<T> temp(lhs);
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
        lhs = temp;
      }
      else
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(0));
    }
  };

  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      // check for the special case x += A * x
      if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
      {
        viennacl::vector<T> temp(lhs);
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
        lhs += temp;
      }
      else
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), lhs, T(1));
    }
  };

  template<typename T, unsigned int A>
  struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_base<T>, op_prod> const & rhs)
    {
      // check for the special case x -= A * x
      if (viennacl::traits::handle(lhs) == viennacl::traits::handle(rhs.rhs()))
      {
        viennacl::vector<T> temp(lhs);
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(1), temp, T(0));
        lhs -= temp;
      }
      else
        viennacl::linalg::prod_impl(rhs.lhs(), rhs.rhs(), T(-1), lhs, T(1));
    }
  };


  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_assign, vector_expression<const compressed_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
      viennacl::linalg::prod_impl(rhs.lhs(), temp, lhs);
    }
  };

  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_inplace_add, vector_expression<const compressed_matrix<T, A>, vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
      viennacl::vector<T> temp_result(lhs);
      viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
      lhs += temp_result;
    }
  };

  // x = A * vec_op
  template<typename T, unsigned int A, typename LHS, typename RHS, typename OP>
  struct op_executor<vector_base<T>, op_inplace_sub, vector_expression<const compressed_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> >
  {
    static void apply(vector_base<T> & lhs, vector_expression<const compressed_matrix<T, A>, const vector_expression<const LHS, const RHS, OP>, op_prod> const & rhs)
    {
      viennacl::vector<T> temp(rhs.rhs(), viennacl::traits::context(rhs));
      viennacl::vector<T> temp_result(lhs);
      viennacl::linalg::prod_impl(rhs.lhs(), temp, temp_result);
      lhs -= temp_result;
    }
  };

} // namespace detail
} // namespace linalg
  /** \endcond */
}

#endif