This file is indexed.

/usr/include/thrust/detail/internal_functional.h is in libthrust-dev 1.8.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
/*
 *  Copyright 2008-2013 NVIDIA Corporation
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */


/*! \file internal_functional.inl
 *  \brief Non-public functionals used to implement algorithm internals.
 */

#pragma once

#include <thrust/tuple.h>
#include <thrust/iterator/iterator_traits.h>
#include <thrust/detail/type_traits.h>
#include <thrust/iterator/detail/tuple_of_iterator_references.h>
#include <thrust/detail/raw_reference_cast.h>
#include <memory> // for ::new

namespace thrust
{
namespace detail
{

// unary_negate does not need to know argument_type
template<typename Predicate>
struct unary_negate
{
  typedef bool result_type;
  
  Predicate pred;
  
  __host__ __device__
  explicit unary_negate(const Predicate& pred) : pred(pred) {}
  
  template <typename T>
  __host__ __device__
  bool operator()(const T& x)
  {
    return !bool(pred(x));
  }
};

// binary_negate does not need to know first_argument_type or second_argument_type
template<typename Predicate>
struct binary_negate
{
  typedef bool result_type;
  
  Predicate pred;
  
  __host__ __device__
  explicit binary_negate(const Predicate& pred) : pred(pred) {}
  
  template <typename T1, typename T2>
  __host__ __device__
  bool operator()(const T1& x, const T2& y)
  {
    return !bool(pred(x,y));
  }
};

template<typename Predicate>
__host__ __device__
thrust::detail::unary_negate<Predicate> not1(const Predicate &pred)
{
  return thrust::detail::unary_negate<Predicate>(pred);
}

template<typename Predicate>
__host__ __device__
thrust::detail::binary_negate<Predicate> not2(const Predicate &pred)
{
  return thrust::detail::binary_negate<Predicate>(pred);
}


// convert a predicate to a 0 or 1 integral value
template<typename Predicate, typename IntegralType>
struct predicate_to_integral
{
  Predicate pred;
  
  __host__ __device__
  explicit predicate_to_integral(const Predicate& pred) : pred(pred) {}
  
  template <typename T>
  __host__ __device__
  bool operator()(const T& x)
  {
    return pred(x) ? IntegralType(1) : IntegralType(0);
  }
};


// note that detail::equal_to does not force conversion from T2 -> T1 as equal_to does
template<typename T1>
struct equal_to
{
  typedef bool result_type;
  
  template <typename T2>
  __host__ __device__
  bool operator()(const T1& lhs, const T2& rhs) const
  {
    return lhs == rhs;
  }
};

// note that equal_to_value does not force conversion from T2 -> T1 as equal_to does
template<typename T2>
struct equal_to_value
{
  T2 rhs;
  
  __host__ __device__
  equal_to_value(const T2& rhs) : rhs(rhs) {}
  
  template <typename T1>
  __host__ __device__
  bool operator()(const T1& lhs) const
  {
    return lhs == rhs;
  }
};

template<typename Predicate>
struct tuple_binary_predicate
{
  typedef bool result_type;
  
  __host__ __device__
  tuple_binary_predicate(const Predicate& p) : pred(p) {}
  
  template<typename Tuple>
  __host__ __device__
  bool operator()(const Tuple& t) const
  { 
    return pred(thrust::get<0>(t), thrust::get<1>(t));
  }
  
  mutable Predicate pred;
};

template<typename Predicate>
struct tuple_not_binary_predicate
{
  typedef bool result_type;
  
  __host__ __device__
  tuple_not_binary_predicate(const Predicate& p) : pred(p) {}
  
  template<typename Tuple>
  __host__ __device__
  bool operator()(const Tuple& t) const
  { 
    return !pred(thrust::get<0>(t), thrust::get<1>(t));
  }
  
  mutable Predicate pred;
};

template<typename Generator>
  struct host_generate_functor
{
  typedef void result_type;

  __host__ __device__
  host_generate_functor(Generator g)
    : gen(g) {}

  // operator() does not take an lvalue reference because some iterators
  // produce temporary proxy references when dereferenced. for example,
  // consider the temporary tuple of references produced by zip_iterator.
  // such temporaries cannot bind to an lvalue reference.
  //
  // to WAR this, accept a const reference (which is bindable to a temporary),
  // and const_cast in the implementation.
  //
  // XXX change to an rvalue reference upon c++0x (which either a named variable
  //     or temporary can bind to)
  template<typename T>
  __host__
  void operator()(const T &x)
  {
    // we have to be naughty and const_cast this to get it to work
    T &lvalue = const_cast<T&>(x);

    // this assigns correctly whether x is a true reference or proxy
    lvalue = gen();
  }

  Generator gen;
};

template<typename Generator>
  struct device_generate_functor
{
  typedef void result_type;

  __host__ __device__
  device_generate_functor(Generator g)
    : gen(g) {}

  // operator() does not take an lvalue reference because some iterators
  // produce temporary proxy references when dereferenced. for example,
  // consider the temporary tuple of references produced by zip_iterator.
  // such temporaries cannot bind to an lvalue reference.
  //
  // to WAR this, accept a const reference (which is bindable to a temporary),
  // and const_cast in the implementation.
  //
  // XXX change to an rvalue reference upon c++0x (which either a named variable
  //     or temporary can bind to)
  template<typename T>
  __host__ __device__
  void operator()(const T &x)
  {
    // we have to be naughty and const_cast this to get it to work
    T &lvalue = const_cast<T&>(x);

    // this assigns correctly whether x is a true reference or proxy
    lvalue = gen();
  }

  Generator gen;
};

template<typename System, typename Generator>
  struct generate_functor
    : thrust::detail::eval_if<
        thrust::detail::is_convertible<System, thrust::host_system_tag>::value,
        thrust::detail::identity_<host_generate_functor<Generator> >,
        thrust::detail::identity_<device_generate_functor<Generator> >
      >
{};


template<typename ResultType, typename BinaryFunction>
  struct zipped_binary_op
{
  typedef ResultType result_type;

  __host__ __device__
  zipped_binary_op(BinaryFunction binary_op)
    : m_binary_op(binary_op) {}

  template<typename Tuple>
  __host__ __device__
  inline result_type operator()(Tuple t)
  {
    return m_binary_op(thrust::get<0>(t), thrust::get<1>(t));
  }

  BinaryFunction m_binary_op;
};


template<typename T>
  struct is_non_const_reference
    : thrust::detail::and_<
        thrust::detail::not_<thrust::detail::is_const<T> >,
        thrust::detail::is_reference<T>
      >
{};

template<typename T> struct is_tuple_of_iterator_references : thrust::detail::false_type {};

template<typename T1, typename T2, typename T3,
         typename T4, typename T5, typename T6,
         typename T7, typename T8, typename T9,
         typename T10>
  struct is_tuple_of_iterator_references<
    thrust::detail::tuple_of_iterator_references<
      T1,T2,T3,T4,T5,T6,T7,T8,T9,T10
    >
  >
    : thrust::detail::true_type
{};

// use this enable_if to avoid assigning to temporaries in the transform functors below
// XXX revisit this problem with c++11 perfect forwarding
template<typename T>
  struct enable_if_non_const_reference_or_tuple_of_iterator_references
    : thrust::detail::enable_if<
        is_non_const_reference<T>::value || is_tuple_of_iterator_references<T>::value
      >
{};


template<typename UnaryFunction>
  struct unary_transform_functor
{
  typedef void result_type;

  UnaryFunction f;

  __host__ __device__
  unary_transform_functor(UnaryFunction f)
    : f(f)
  {}

  __thrust_hd_warning_disable__
  template<typename Tuple>
  inline __host__ __device__
  typename enable_if_non_const_reference_or_tuple_of_iterator_references<
    typename thrust::tuple_element<1,Tuple>::type
  >::type
    operator()(Tuple t)
  {
    thrust::get<1>(t) = f(thrust::get<0>(t));
  }
};


template<typename BinaryFunction>
  struct binary_transform_functor
{
  BinaryFunction f;

  __host__ __device__
  binary_transform_functor(BinaryFunction f)
    : f(f)
  {}

  __thrust_hd_warning_disable__
  template<typename Tuple>
  inline __host__ __device__
  typename enable_if_non_const_reference_or_tuple_of_iterator_references<
    typename thrust::tuple_element<2,Tuple>::type
  >::type
    operator()(Tuple t)
  {
    thrust::get<2>(t) = f(thrust::get<0>(t), thrust::get<1>(t));
  }
};


template<typename UnaryFunction, typename Predicate>
struct unary_transform_if_functor
{
  UnaryFunction unary_op;
  Predicate pred;

  __host__ __device__
  unary_transform_if_functor(UnaryFunction unary_op, Predicate pred)
    : unary_op(unary_op), pred(pred)
  {}

  __thrust_hd_warning_disable__
  template<typename Tuple>
  inline __host__ __device__
  typename enable_if_non_const_reference_or_tuple_of_iterator_references<
    typename thrust::tuple_element<1,Tuple>::type
  >::type
    operator()(Tuple t)
  {
    if(pred(thrust::get<0>(t)))
    {
      thrust::get<1>(t) = unary_op(thrust::get<0>(t));
    }
  }
}; // end unary_transform_if_functor


template<typename UnaryFunction, typename Predicate>
struct unary_transform_if_with_stencil_functor
{
  UnaryFunction unary_op;
  Predicate pred;

  __host__ __device__
  unary_transform_if_with_stencil_functor(UnaryFunction unary_op, Predicate pred)
    : unary_op(unary_op), pred(pred)
  {}

  __thrust_hd_warning_disable__
  template<typename Tuple>
  inline __host__ __device__
  typename enable_if_non_const_reference_or_tuple_of_iterator_references<
    typename thrust::tuple_element<2,Tuple>::type
  >::type
    operator()(Tuple t)
  {
    if(pred(thrust::get<1>(t)))
      thrust::get<2>(t) = unary_op(thrust::get<0>(t));
  }
}; // end unary_transform_if_with_stencil_functor


template<typename BinaryFunction, typename Predicate>
struct binary_transform_if_functor
{
  BinaryFunction binary_op;
  Predicate pred;

  __host__ __device__
  binary_transform_if_functor(BinaryFunction binary_op, Predicate pred)
    : binary_op(binary_op), pred(pred) {} 

  __thrust_hd_warning_disable__
  template<typename Tuple>
  inline __host__ __device__
  typename enable_if_non_const_reference_or_tuple_of_iterator_references<
    typename thrust::tuple_element<3,Tuple>::type
  >::type
    operator()(Tuple t)
  {
    if(pred(thrust::get<2>(t)))
      thrust::get<3>(t) = binary_op(thrust::get<0>(t), thrust::get<1>(t));
  }
}; // end binary_transform_if_functor


template<typename T>
  struct host_destroy_functor
{
  __host__
  void operator()(T &x) const
  {
    x.~T();
  } // end operator()()
}; // end host_destroy_functor


template<typename T>
  struct device_destroy_functor
{
  // add __host__ to allow the omp backend to compile with nvcc
  __host__ __device__
  void operator()(T &x) const
  {
    x.~T();
  } // end operator()()
}; // end device_destroy_functor


template<typename System, typename T>
  struct destroy_functor
    : thrust::detail::eval_if<
        thrust::detail::is_convertible<System, thrust::host_system_tag>::value,
        thrust::detail::identity_<host_destroy_functor<T> >,
        thrust::detail::identity_<device_destroy_functor<T> >
      >
{};


template <typename T>
struct fill_functor
{
  T exemplar;

  __host__ __device__
  fill_functor(const T& _exemplar) 
    : exemplar(_exemplar) {}

  __host__ __device__
  T operator()(void) const
  { 
    return exemplar;
  }
};


template<typename T>
  struct uninitialized_fill_functor
{
  T exemplar;

  __host__ __device__
  uninitialized_fill_functor(T x):exemplar(x){}

  __host__ __device__
  void operator()(T &x)
  {
    ::new(static_cast<void*>(&x)) T(exemplar);
  } // end operator()()
}; // end uninitialized_fill_functor


// this predicate tests two two-element tuples
// we first use a Compare for the first element
// if the first elements are equivalent, we use
// < for the second elements
template<typename Compare>
  struct compare_first_less_second
{
  compare_first_less_second(Compare c)
    : comp(c) {}

  template<typename T1, typename T2>
  __host__ __device__
  bool operator()(T1 lhs, T2 rhs)
  {
    return comp(thrust::get<0>(lhs), thrust::get<0>(rhs)) || (!comp(thrust::get<0>(rhs), thrust::get<0>(lhs)) && thrust::get<1>(lhs) < thrust::get<1>(rhs));
  }

  Compare comp;
}; // end compare_first_less_second


template<typename Compare>
  struct compare_first
{
  Compare comp;

  __host__ __device__
  compare_first(Compare comp)
    : comp(comp)
  {}

  template<typename Tuple1, typename Tuple2>
  __host__ __device__
  bool operator()(const Tuple1 &x, const Tuple2 &y)
  {
    return comp(thrust::raw_reference_cast(thrust::get<0>(x)), thrust::raw_reference_cast(thrust::get<0>(y)));
  }
}; // end compare_first


} // end namespace detail
} // end namespace thrust