This file is indexed.

/usr/include/thrust/detail/complex/ctanh.h is in libthrust-dev 1.8.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
/*
 *  Copyright 2008-2013 NVIDIA Corporation
 *  Copyright 2013 Filipe RNC Maia
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 */

/*-
 * Copyright (c) 2011 David Schultz
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice unmodified, this list of conditions, and the following
 *    disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Adapted from FreeBSD by Filipe Maia <filipe.c.maia@gmail.com>:
 *    freebsd/lib/msun/src/s_ctanh.c
 */

/*
 * Hyperbolic tangent of a complex argument z = x + i y.
 *
 * The algorithm is from:
 *
 *   W. Kahan.  Branch Cuts for Complex Elementary Functions or Much
 *   Ado About Nothing's Sign Bit.  In The State of the Art in
 *   Numerical Analysis, pp. 165 ff.  Iserles and Powell, eds., 1987.
 *
 * Method:
 *
 *   Let t    = tan(x)
 *       beta = 1/cos^2(y)
 *       s    = sinh(x)
 *       rho  = cosh(x)
 *
 *   We have:
 *
 *   tanh(z) = sinh(z) / cosh(z)
 *
 *             sinh(x) cos(y) + i cosh(x) sin(y)
 *           = ---------------------------------
 *             cosh(x) cos(y) + i sinh(x) sin(y)
 *
 *             cosh(x) sinh(x) / cos^2(y) + i tan(y)
 *           = -------------------------------------
 *                    1 + sinh^2(x) / cos^2(y)
 *
 *             beta rho s + i t
 *           = ----------------
 *               1 + beta s^2
 *
 * Modifications:
 *
 *   I omitted the original algorithm's handling of overflow in tan(x) after
 *   verifying with nearpi.c that this can't happen in IEEE single or double
 *   precision.  I also handle large x differently.
 */

#pragma once

#include <thrust/complex.h>
#include <thrust/detail/complex/math_private.h>
#include <cmath>

namespace thrust{
namespace detail{
namespace complex{		      	

using thrust::complex;

__host__ __device__ inline
complex<double> ctanh(const complex<double>& z){
  double x, y;
  double t, beta, s, rho, denom;
  uint32_t hx, ix, lx;

  x = z.real();
  y = z.imag();

  extract_words(hx, lx, x);
  ix = hx & 0x7fffffff;

  /*
   * ctanh(NaN + i 0) = NaN + i 0
   *
   * ctanh(NaN + i y) = NaN + i NaN		for y != 0
   *
   * The imaginary part has the sign of x*sin(2*y), but there's no
   * special effort to get this right.
   *
   * ctanh(+-Inf +- i Inf) = +-1 +- 0
   *
   * ctanh(+-Inf + i y) = +-1 + 0 sin(2y)		for y finite
   *
   * The imaginary part of the sign is unspecified.  This special
   * case is only needed to avoid a spurious invalid exception when
   * y is infinite.
   */
  if (ix >= 0x7ff00000) {
    if ((ix & 0xfffff) | lx)	/* x is NaN */
      return (complex<double>(x, (y == 0 ? y : x * y)));
    set_high_word(x, hx - 0x40000000);	/* x = copysign(1, x) */
    return (complex<double>(x, copysign(0.0, isinf(y) ? y : sin(y) * cos(y))));
  }

  /*
   * ctanh(x + i NAN) = NaN + i NaN
   * ctanh(x +- i Inf) = NaN + i NaN
   */
  if (!isfinite(y))
    return (complex<double>(y - y, y - y));

  /*
   * ctanh(+-huge + i +-y) ~= +-1 +- i 2sin(2y)/exp(2x), using the
   * approximation sinh^2(huge) ~= exp(2*huge) / 4.
   * We use a modified formula to avoid spurious overflow.
   */
  if (ix >= 0x40360000) {	/* x >= 22 */
    double exp_mx = exp(-fabs(x));
    return (complex<double>(copysign(1.0, x),
			    4.0 * sin(y) * cos(y) * exp_mx * exp_mx));
  }

  /* Kahan's algorithm */
  t = tan(y);
  beta = 1.0 + t * t;	/* = 1 / cos^2(y) */
  s = sinh(x);
  rho = sqrt(1.0 + s * s);	/* = cosh(x) */
  denom = 1.0 + beta * s * s;
  return (complex<double>((beta * rho * s) / denom, t / denom));
}

__host__ __device__ inline
complex<double> ctan(complex<double> z){
  /* ctan(z) = -I * ctanh(I * z) */
  z = ctanh(complex<double>(-z.imag(), z.real()));
  return (complex<double>(z.imag(), -z.real()));
}

} // namespace complex

} // namespace detail


template <typename ValueType>
__host__ __device__
inline complex<ValueType> tan(const complex<ValueType>& z){
  return sin(z)/cos(z);
}

template <typename ValueType>
__host__ __device__
inline complex<ValueType> tanh(const complex<ValueType>& z){
  // This implementation seems better than the simple sin/cos
  return (thrust::exp(ValueType(2)*z)-ValueType(1))/
    (thrust::exp(ValueType(2)*z)+ValueType(1));
}

template <>
__host__ __device__
inline complex<double> tan(const complex<double>& z){
  return detail::complex::ctan(z);
}
  
template <>
__host__ __device__
inline complex<double> tanh(const complex<double>& z){
  return detail::complex::ctanh(z);
}
  
} // namespace thrust