/usr/include/thrust/detail/complex/catrigf.h is in libthrust-dev 1.8.1-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 | /*
* Copyright 2008-2013 NVIDIA Corporation
* Copyright 2013 Filipe RNC Maia
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/*-
* Copyright (c) 2012 Stephen Montgomery-Smith <stephen@FreeBSD.ORG>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Adapted from FreeBSD by Filipe Maia <filipe.c.maia@gmail.com>:
* freebsd/lib/msun/src/catrig.c
*/
#pragma once
#include <thrust/complex.h>
#include <thrust/detail/complex/math_private.h>
#include <cfloat>
#include <cmath>
namespace thrust{
namespace detail{
namespace complex{
using thrust::complex;
__host__ __device__ inline
complex<float> clog_for_large_values(complex<float> z);
/*
* The algorithm is very close to that in "Implementing the complex arcsine
* and arccosine functions using exception handling" by T. E. Hull, Thomas F.
* Fairgrieve, and Ping Tak Peter Tang, published in ACM Transactions on
* Mathematical Software, Volume 23 Issue 3, 1997, Pages 299-335,
* http://dl.acm.org/citation.cfm?id=275324.
*
* See catrig.c for complete comments.
*
* XXX comments were removed automatically, and even short ones on the right
* of statements were removed (all of them), contrary to normal style. Only
* a few comments on the right of declarations remain.
*/
__host__ __device__
inline float
f(float a, float b, float hypot_a_b)
{
if (b < 0.0f)
return ((hypot_a_b - b) / 2.0f);
if (b == 0.0f)
return (a / 2.0f);
return (a * a / (hypot_a_b + b) / 2.0f);
}
/*
* All the hard work is contained in this function.
* x and y are assumed positive or zero, and less than RECIP_EPSILON.
* Upon return:
* rx = Re(casinh(z)) = -Im(cacos(y + I*x)).
* B_is_usable is set to 1 if the value of B is usable.
* If B_is_usable is set to 0, sqrt_A2my2 = sqrt(A*A - y*y), and new_y = y.
* If returning sqrt_A2my2 has potential to result in an underflow, it is
* rescaled, and new_y is similarly rescaled.
*/
__host__ __device__
inline void
do_hard_work(float x, float y, float *rx, int *B_is_usable, float *B,
float *sqrt_A2my2, float *new_y)
{
float R, S, A; /* A, B, R, and S are as in Hull et al. */
float Am1, Amy; /* A-1, A-y. */
const float A_crossover = 10; /* Hull et al suggest 1.5, but 10 works better */
const float FOUR_SQRT_MIN = 4.336808689942017736029811e-19f;; /* =0x1p-61; >= 4 * sqrt(FLT_MIN) */
const float B_crossover = 0.6417f; /* suggested by Hull et al */
R = hypotf(x, y + 1);
S = hypotf(x, y - 1);
A = (R + S) / 2;
if (A < 1)
A = 1;
if (A < A_crossover) {
if (y == 1 && x < FLT_EPSILON * FLT_EPSILON / 128) {
*rx = sqrtf(x);
} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
Am1 = f(x, 1 + y, R) + f(x, 1 - y, S);
*rx = log1pf(Am1 + sqrtf(Am1 * (A + 1)));
} else if (y < 1) {
*rx = x / sqrtf((1 - y) * (1 + y));
} else {
*rx = log1pf((y - 1) + sqrtf((y - 1) * (y + 1)));
}
} else {
*rx = logf(A + sqrtf(A * A - 1));
}
*new_y = y;
if (y < FOUR_SQRT_MIN) {
*B_is_usable = 0;
*sqrt_A2my2 = A * (2 / FLT_EPSILON);
*new_y = y * (2 / FLT_EPSILON);
return;
}
*B = y / A;
*B_is_usable = 1;
if (*B > B_crossover) {
*B_is_usable = 0;
if (y == 1 && x < FLT_EPSILON / 128) {
*sqrt_A2my2 = sqrtf(x) * sqrtf((A + y) / 2);
} else if (x >= FLT_EPSILON * fabsf(y - 1)) {
Amy = f(x, y + 1, R) + f(x, y - 1, S);
*sqrt_A2my2 = sqrtf(Amy * (A + y));
} else if (y > 1) {
*sqrt_A2my2 = x * (4 / FLT_EPSILON / FLT_EPSILON) * y /
sqrtf((y + 1) * (y - 1));
*new_y = y * (4 / FLT_EPSILON / FLT_EPSILON);
} else {
*sqrt_A2my2 = sqrtf((1 - y) * (1 + y));
}
}
}
__host__ __device__ inline
complex<float>
casinhf(complex<float> z)
{
float x, y, ax, ay, rx, ry, B, sqrt_A2my2, new_y;
int B_is_usable;
complex<float> w;
const float RECIP_EPSILON = 1.0 / FLT_EPSILON;
const float m_ln2 = 6.9314718055994531e-1f; /* 0x162e42fefa39ef.0p-53 */
x = z.real();
y = z.imag();
ax = fabsf(x);
ay = fabsf(y);
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (complex<float>(x, y + y));
if (isinf(y))
return (complex<float>(y, x + x));
if (y == 0)
return (complex<float>(x + x, y));
return (complex<float>(x + 0.0f + (y + 0), x + 0.0f + (y + 0)));
}
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
if (signbit(x) == 0)
w = clog_for_large_values(z) + m_ln2;
else
w = clog_for_large_values(-z) + m_ln2;
return (complex<float>(copysignf(w.real(), x),
copysignf(w.imag(), y)));
}
if (x == 0 && y == 0)
return (z);
raise_inexact();
const float SQRT_6_EPSILON = 8.4572793338e-4f; /* 0xddb3d7.0p-34 */
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
return (z);
do_hard_work(ax, ay, &rx, &B_is_usable, &B, &sqrt_A2my2, &new_y);
if (B_is_usable)
ry = asinf(B);
else
ry = atan2f(new_y, sqrt_A2my2);
return (complex<float>(copysignf(rx, x), copysignf(ry, y)));
}
__host__ __device__ inline
complex<float> casinf(complex<float> z)
{
complex<float> w = casinhf(complex<float>(z.imag(), z.real()));
return (complex<float>(w.imag(), w.real()));
}
__host__ __device__ inline
complex<float> cacosf(complex<float> z)
{
float x, y, ax, ay, rx, ry, B, sqrt_A2mx2, new_x;
int sx, sy;
int B_is_usable;
complex<float> w;
const float pio2_hi = 1.5707963267948966e0f; /* 0x1921fb54442d18.0p-52 */
const volatile float pio2_lo = 6.1232339957367659e-17f; /* 0x11a62633145c07.0p-106 */
const float m_ln2 = 6.9314718055994531e-1f; /* 0x162e42fefa39ef.0p-53 */
x = z.real();
y = z.imag();
sx = signbit(x);
sy = signbit(y);
ax = fabsf(x);
ay = fabsf(y);
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (complex<float>(y + y, -infinity<float>()));
if (isinf(y))
return (complex<float>(x + x, -y));
if (x == 0)
return (complex<float>(pio2_hi + pio2_lo, y + y));
return (complex<float>(x + 0.0f + (y + 0), x + 0.0f + (y + 0)));
}
const float RECIP_EPSILON = 1.0 / FLT_EPSILON;
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON) {
w = clog_for_large_values(z);
rx = fabsf(w.imag());
ry = w.real() + m_ln2;
if (sy == 0)
ry = -ry;
return (complex<float>(rx, ry));
}
if (x == 1 && y == 0)
return (complex<float>(0, -y));
raise_inexact();
const float SQRT_6_EPSILON = 8.4572793338e-4f; /* 0xddb3d7.0p-34 */
if (ax < SQRT_6_EPSILON / 4 && ay < SQRT_6_EPSILON / 4)
return (complex<float>(pio2_hi - (x - pio2_lo), -y));
do_hard_work(ay, ax, &ry, &B_is_usable, &B, &sqrt_A2mx2, &new_x);
if (B_is_usable) {
if (sx == 0)
rx = acosf(B);
else
rx = acosf(-B);
} else {
if (sx == 0)
rx = atan2f(sqrt_A2mx2, new_x);
else
rx = atan2f(sqrt_A2mx2, -new_x);
}
if (sy == 0)
ry = -ry;
return (complex<float>(rx, ry));
}
__host__ __device__ inline
complex<float> cacoshf(complex<float> z)
{
complex<float> w;
float rx, ry;
w = cacosf(z);
rx = w.real();
ry = w.imag();
/* cacosh(NaN + I*NaN) = NaN + I*NaN */
if (isnan(rx) && isnan(ry))
return (complex<float>(ry, rx));
/* cacosh(NaN + I*+-Inf) = +Inf + I*NaN */
/* cacosh(+-Inf + I*NaN) = +Inf + I*NaN */
if (isnan(rx))
return (complex<float>(fabsf(ry), rx));
/* cacosh(0 + I*NaN) = NaN + I*NaN */
if (isnan(ry))
return (complex<float>(ry, ry));
return (complex<float>(fabsf(ry), copysignf(rx, z.imag())));
}
/*
* Optimized version of clog() for |z| finite and larger than ~RECIP_EPSILON.
*/
__host__ __device__ inline
complex<float> clog_for_large_values(complex<float> z)
{
float x, y;
float ax, ay, t;
const float m_e = 2.7182818284590452e0f; /* 0x15bf0a8b145769.0p-51 */
x = z.real();
y = z.imag();
ax = fabsf(x);
ay = fabsf(y);
if (ax < ay) {
t = ax;
ax = ay;
ay = t;
}
if (ax > FLT_MAX / 2)
return (complex<float>(logf(hypotf(x / m_e, y / m_e)) + 1,
atan2f(y, x)));
const float QUARTER_SQRT_MAX = 2.3058430092136939520000000e+18f; /* = 0x1p61; <= sqrt(FLT_MAX) / 4 */
const float SQRT_MIN = 1.084202172485504434007453e-19f; /* 0x1p-63; >= sqrt(FLT_MIN) */
if (ax > QUARTER_SQRT_MAX || ay < SQRT_MIN)
return (complex<float>(logf(hypotf(x, y)), atan2f(y, x)));
return (complex<float>(logf(ax * ax + ay * ay) / 2, atan2f(y, x)));
}
/*
* =================
* | catanh, catan |
* =================
*/
/*
* sum_squares(x,y) = x*x + y*y (or just x*x if y*y would underflow).
* Assumes x*x and y*y will not overflow.
* Assumes x and y are finite.
* Assumes y is non-negative.
* Assumes fabsf(x) >= FLT_EPSILON.
*/
__host__ __device__
inline float sum_squares(float x, float y)
{
const float SQRT_MIN = 1.084202172485504434007453e-19f; /* 0x1p-63; >= sqrt(FLT_MIN) */
/* Avoid underflow when y is small. */
if (y < SQRT_MIN)
return (x * x);
return (x * x + y * y);
}
__host__ __device__
inline float real_part_reciprocal(float x, float y)
{
float scale;
uint32_t hx, hy;
int32_t ix, iy;
get_float_word(hx, x);
ix = hx & 0x7f800000;
get_float_word(hy, y);
iy = hy & 0x7f800000;
//#define BIAS (FLT_MAX_EXP - 1)
const int BIAS = FLT_MAX_EXP - 1;
//#define CUTOFF (FLT_MANT_DIG / 2 + 1)
const int CUTOFF = (FLT_MANT_DIG / 2 + 1);
if (ix - iy >= CUTOFF << 23 || isinf(x))
return (1 / x);
if (iy - ix >= CUTOFF << 23)
return (x / y / y);
if (ix <= (BIAS + FLT_MAX_EXP / 2 - CUTOFF) << 23)
return (x / (x * x + y * y));
set_float_word(scale, 0x7f800000 - ix);
x *= scale;
y *= scale;
return (x / (x * x + y * y) * scale);
}
#if __cplusplus >= 201103L || !defined _MSC_VER
__host__ __device__ inline
complex<float> catanhf(complex<float> z)
{
float x, y, ax, ay, rx, ry;
const volatile float pio2_lo = 6.1232339957367659e-17; /* 0x11a62633145c07.0p-106 */
const float pio2_hi = 1.5707963267948966e0;/* 0x1921fb54442d18.0p-52 */
x = z.real();
y = z.imag();
ax = fabsf(x);
ay = fabsf(y);
if (y == 0 && ax <= 1)
return (complex<float>(atanhf(x), y));
if (x == 0)
return (complex<float>(x, atanf(y)));
if (isnan(x) || isnan(y)) {
if (isinf(x))
return (complex<float>(copysignf(0, x), y + y));
if (isinf(y))
return (complex<float>(copysignf(0, x),
copysignf(pio2_hi + pio2_lo, y)));
return (complex<float>(x + 0.0f + (y + 0.0f), x + 0.0f + (y + 0.0f)));
}
const float RECIP_EPSILON = 1.0f / FLT_EPSILON;
if (ax > RECIP_EPSILON || ay > RECIP_EPSILON)
return (complex<float>(real_part_reciprocal(x, y),
copysignf(pio2_hi + pio2_lo, y)));
const float SQRT_3_EPSILON = 5.9801995673e-4; /* 0x9cc471.0p-34 */
if (ax < SQRT_3_EPSILON / 2 && ay < SQRT_3_EPSILON / 2) {
raise_inexact();
return (z);
}
const float m_ln2 = 6.9314718056e-1f; /* 0xb17218.0p-24 */
if (ax == 1 && ay < FLT_EPSILON)
rx = (m_ln2 - logf(ay)) / 2;
else
rx = log1pf(4 * ax / sum_squares(ax - 1, ay)) / 4;
if (ax == 1)
ry = atan2f(2, -ay) / 2;
else if (ay < FLT_EPSILON)
ry = atan2f(2 * ay, (1 - ax) * (1 + ax)) / 2;
else
ry = atan2f(2 * ay, (1 - ax) * (1 + ax) - ay * ay) / 2;
return (complex<float>(copysignf(rx, x), copysignf(ry, y)));
}
__host__ __device__ inline
complex<float>catanf(complex<float> z){
complex<float> w = catanhf(complex<float>(z.imag(), z.real()));
return (complex<float>(w.imag(), w.real()));
}
#endif
} // namespace complex
} // namespace detail
template <>
__host__ __device__
inline complex<float> acos(const complex<float>& z){
return detail::complex::cacosf(z);
}
template <>
__host__ __device__
inline complex<float> asin(const complex<float>& z){
return detail::complex::casinf(z);
}
#if __cplusplus >= 201103L || !defined _MSC_VER
template <>
__host__ __device__
inline complex<float> atan(const complex<float>& z){
return detail::complex::catanf(z);
}
#endif
template <>
__host__ __device__
inline complex<float> acosh(const complex<float>& z){
return detail::complex::cacoshf(z);
}
template <>
__host__ __device__
inline complex<float> asinh(const complex<float>& z){
return detail::complex::casinhf(z);
}
#if __cplusplus >= 201103L || !defined _MSC_VER
template <>
__host__ __device__
inline complex<float> atanh(const complex<float>& z){
return detail::complex::catanhf(z);
}
#endif
} // namespace thrust
|