This file is indexed.

/usr/share/perl5/Math/PlanePath/UlamWarburtonQuarter.pm is in libmath-planepath-perl 123-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
# Copyright 2011, 2012, 2013, 2014, 2015, 2016 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


package Math::PlanePath::UlamWarburtonQuarter;
use 5.004;
use strict;
use Carp 'croak';
use List::Util 'sum';

use vars '$VERSION', '@ISA';
$VERSION = 123;
use Math::PlanePath;
@ISA = ('Math::PlanePath');
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'bit_split_lowtohigh',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh';

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array =>
  [
   { name            => 'parts',
     share_key       => 'parts_ulamwarburton_quarter',
     display         => 'Parts',
     type            => 'enum',
     default         => '1',
     choices         => ['1','octant','octant_up' ],
     choices_display => ['1','Octant','Octant Up' ],
     description     => 'Which parts of the plane to fill.',
   },
   Math::PlanePath::Base::Generic::parameter_info_nstart1(),
  ];

use constant class_x_negative => 0;
use constant class_y_negative => 0;

sub diffxy_minimum {
  my ($self) = @_;
  return ($self->{'parts'} eq 'octant' ? 0 : undef);
}
sub diffxy_maximum {
  my ($self) = @_;
  return ($self->{'parts'} eq 'octant_up' ? 0 : undef);
}

# Minimum dir=0 at N=13 dX=2,dY=0.
# Maximum dir seems dX=13,dY=-9 at N=149 going top-left part to new bottom
# right diagonal.
my %dir_maximum_dxdy = (1         => [13,-9],
                        octant    => [1,-1],  # South-East
                        octant_up => [0,-1],  # South
                       );
sub dir_maximum_dxdy {
  my ($self) = @_;
  return @{$dir_maximum_dxdy{$self->{'parts'}}};
}

sub tree_num_children_list {
  my ($self) = @_;
  return ($self->{'parts'} =~ /octant/
          ? (0, 1, 2, 3)
          : (0, 1,    3));
}

#------------------------------------------------------------------------------
sub new {
  my $self = shift->SUPER::new(@_);
  if (! defined $self->{'n_start'}) {
    $self->{'n_start'} = $self->default_n_start;
  }
  my $parts = ($self->{'parts'} ||= '1');
  if (! exists $dir_maximum_dxdy{$parts}) {
    croak "Unrecognised parts option: ", $parts;
  }
  return $self;
}

# 7   7   7   7
#   6       6
# 7   5   5   7
#       4
# 3   3   5   7
#   2       6
# 1   3   7   7
#
# 1+1+3=5
# 5+1+3*5=21
# 1+3 = 4
# 1+3+3+9 = 16
#
#       0
# 1  0 +1
# 2  1 +1       <- 1
# 3  2 +3
# 4  5 +1       <- 1 + 4 = 5
# 5  6 +3
# 6  9 +3
# 7  12 +9
# 8  21         <- 1 + 4 + 16 = 21

# 1+3 = 4  power 2
# 1+3+3+9 = 16    power 3
# 1+3+3+9+3+9+9+27 = 64    power 4
#
# (1+4+16+...+4^(l-1)) = (4^l-1)/3
#    l=1 total=(4-1)/3 = 1
#    l=2 total=(16-1)/3 = 5
#    l=3 total=(64-1)/3=63/3 = 21
#
# n = 1 + (4^l-1)/3
# n-1 = (4^l-1)/3
# 3n-3 = (4^l-1)
# 3n-2 = 4^l
#
# 3^0+3^1+3^1+3^2 = 1+3+3+9=16
# x+3x+3x+9x = 16x = 256
#
#               22
# 20  19  18  17
#   12      11
# 21   9   8  16
#        6
#  5   4   7  15
#    2      10
#  1   3  13  14
#

sub n_to_xy {
  my ($self, $n) = @_;
  ### UlamWarburtonQuarter n_to_xy(): $n

  if ($n < $self->{'n_start'}) { return; }
  if (is_infinite($n)) { return ($n,$n); }

  {
    my $int = int($n);
    ### $int
    ### $n
    if ($n != $int) {
      my ($x1,$y1) = $self->n_to_xy($int);
      my ($x2,$y2) = $self->n_to_xy($int+1);
      my $frac = $n - $int;  # inherit possible BigFloat
      my $dx = $x2-$x1;
      my $dy = $y2-$y1;
      return ($frac*$dx + $x1, $frac*$dy + $y1);
    }
    $n = $int;       # BigFloat int() gives BigInt, use that
  }

  $n = $n - $self->{'n_start'} + 1;  # N=1 basis
  if ($n == 1) { return (0,0); }

  my ($depthsum, $nrem, $rowwidth) = _n1_to_depthsum_rem_width($self,$n)
    or return ($n,$n); # N==nan or N==+inf

  ### assert: $nrem >= 0
  ### assert: $nrem < $width
  if ($self->{'parts'} eq 'octant_up') {
    $nrem += ($rowwidth-1)/2;
    ### assert: $nrem < $width
  }

  my @ndigits = digit_split_lowtohigh($nrem,3);
  my $dhigh = shift(@$depthsum) - 1;  # highest term
  my $x = 0;
  my $y = 0;
  foreach my $depthsum (reverse @$depthsum) { # depth terms low to high
    my $ndigit = shift @ndigits;              # N digits low to high
    ### $depthsum
    ### $ndigit

    $x += $depthsum;
    $y += $depthsum;
    ### depthsum to xy: "$x,$y"

    if ($ndigit) {
      if ($ndigit == 2) {
        ($x,$y) = (-$y,$x);   # rotate +90
      }
    } else {
      # digit==0 (or undef when run out of @ndigits)
      ($x,$y) = ($y,-$x);   # rotate -90
    }
    ### rotate to: "$x,$y"
  }

  ### final: "$x,$y"
  return ($dhigh + $x, $dhigh + $y);
}

sub xy_to_n {
  my ($self, $x, $y) = @_;
  ### UlamWarburtonQuarter xy_to_n(): "$x, $y"

  $x = round_nearest ($x);
  $y = round_nearest ($y);
  my $parts = $self->{'parts'};
  if ($y < 0
      || $x < ($parts eq 'octant' ? $y : 0)
      || ($parts eq 'octant_up' && $x > $y)) {
    return undef;
  }
  if ($x == 0 && $y == 0) {
    return $self->{'n_start'};
  }
  $x += 1;  # pushed away by 1 ...
  $y += 1;

  my ($len, $exp) = round_down_pow ($x + $y, 2);
  if (is_infinite($exp)) { return $exp; }

  my $depth
    = my $n
      = ($x * 0 * $y);  # inherit bignum 0
  my $rowwidth = $depth + 1;

  while ($exp-- >= 0) {
    ### at: "$x,$y  n=$n len=$len"

    # first quadrant square
    ### assert: $x >= 0
    ### assert: $y >= 0
    # ### assert: $x < 2*$len
    # ### assert: $y < 2*$len

    if ($x >= $len || $y >= $len) {
      # one of three quarters away from origin
      #     +---+---+
      #     | 2 | 1 |
      #     +---+---+
      #     |   | 0 |
      #     +---+---+

      $x -= $len;
      $y -= $len;
      ### shift to: "$x,$y"

      if ($x) {
        unless ($y) {
          return undef;  # x==0, y!=0, nothing
        }
      } else {
        if ($y) {
          return undef;  # x!=0, y-=0, nothing
        }
      }

      $depth += $len;
      if ($x || $y) {
        $rowwidth *= 3;
        $n *= 3;
        if ($y < 0) {
          ### bottom right, digit 0 ...
          ($x,$y) = (-$y,$x);  # rotate +90
        } elsif ($x >= 0) {
          ### top right, digit 1 ...
          $n += 1;
        } else {
          ### top left, digit 2 ...
          ($x,$y) = ($y,-$x);  # rotate -90
          $n += 2;
        }
      }
    }

    $len /= 2;
  }

  ### $n
  ### $depth

  if ($self->{'parts'} eq 'octant_up') {
    $n -= ($rowwidth-1)/2;
  }

  return $n + $self->tree_depth_to_n($depth-1);
}

# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### UlamWarburtonQuarter rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest ($x1);
  $y1 = round_nearest ($y1);
  $x2 = round_nearest ($x2);
  $y2 = round_nearest ($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  if ($x2 < 0 || $y2 < 0) {
    return (1, 0);  # all outside first quadrant
  }

  if ($x1 < 0) { $x1 *= 0; }
  if ($y1 < 0) { $y1 *= 0; }

  # level numbers
  my $dlo = ($x1 > $y1 ? $x1 : $y1)+1;
  my $dhi = ($x2 > $y2 ? $x2 : $y2);
  ### $dlo
  ### $dhi

  # round down to level=2^k numbers
  if ($dlo) {
    ($dlo) = round_down_pow ($dlo,2);
  }
  ($dhi) = round_down_pow ($dhi,2);

  ### rounded to pow2: "$dlo  ".(2*$dhi)

  return ($self->tree_depth_to_n($dlo-1),
          $self->tree_depth_to_n(2*$dhi-1));
}

#------------------------------------------------------------------------------
use constant tree_num_roots => 1;

# ENHANCE-ME: step by the bits, not by X,Y
sub tree_n_children {
  my ($self, $n) = @_;
  if ($n < $self->{'n_start'}) {
    return;
  }
  my ($x,$y) = $self->n_to_xy($n);
  my @ret;
  my $dx = 1;
  my $dy = 1;
  foreach (1 .. 4) {
    if (defined (my $n_child = $self->xy_to_n($x+$dx,$y+$dy))) {
      if ($n_child > $n) {
        push @ret, $n_child;
      }
    }
    ($dx,$dy) = (-$dy,$dx); # rotate +90
  }
  return sort {$a<=>$b} @ret;
}
sub tree_n_parent {
  my ($self, $n) = @_;
  if ($n <= $self->{'n_start'}) {
    return undef;
  }
  my ($x,$y) = $self->n_to_xy($n);
  my $dx = 1;
  my $dy = 1;
  foreach (1 .. 4) {
    if (defined (my $n_parent = $self->xy_to_n($x+$dx,$y+$dy))) {
      if ($n_parent < $n) {
        return $n_parent;
      }
    }
    ($dx,$dy) = (-$dy,$dx); # rotate +90
  }
  return undef;
}

# level = depth+1 = 2^a + 2^b + 2^c + 2^d ...       a>b>c>d...
# Ndepth = 1 + (-1
#               +       4^a
#               +   3 * 4^b
#               + 3^2 * 4^c
#               + 3^3 * 4^d + ...) / 3
sub tree_depth_to_n {
  my ($self, $depth) = @_;
  ### tree_depth_to_n(): $depth
  if (is_infinite($depth)) {
    return $depth;
  }
  unless ($depth >= 0) {
    return undef;
  }
  my $n = $depth*0;        # inherit bignum 0
  my $pow3 = 1 + $n;       # inherit bignum 1
  foreach my $bit (reverse bit_split_lowtohigh($depth+1)) {  # high to low
    $n *= 4;
    if ($bit) {
      $n += $pow3;
      $pow3 *= 3;
    }
  }
  if ($self->{'parts'} =~ /octant/) {
    $n = ($n + (3*$depth-1))/6;
  } else {
    $n = ($n-1)/3;
  }
  return $n + $self->{'n_start'};
}

sub tree_n_to_depth {
  my ($self, $n) = @_;

  $n = int($n - $self->{'n_start'} + 1);  # N=1 basis
  if ($n < 1) {
    return undef;
  }
  (my $depthsum, $n) = _n1_to_depthsum_rem_width($self,$n)
    or return $n;  # N==nan or N==+infinity
  return sum(-1, @$depthsum);
}

# Return ($aref, $remaining_n).
# sum(@$aref) = depth starting depth=1
#
# depth+1 = 2^k
# Ndepth(depth) = (4^k+2)/3
#   3N-2 = 4^k
# NdepthOct(depth) = ((4^k+2)/3 + 2^k)/2
#   6N-2 = 4^k + 3*2^k
#
sub _n1_to_depthsum_rem_width {
  my ($self, $n) = @_;
  ### _n1_to_depthsum_rem_width(): $n

  my $octant = ($self->{'parts'} =~ /octant/);
  my ($power, $exp) = round_down_pow (($octant ? 6 : 3)*$n - 2, 4);
  if (is_infinite($exp)) {
    return;
  }

  ### $power
  ### $exp
  ### pow base: ($power - 1)/3 + 1

  {
    my $sub = ($power + 2)/3;  # (power-1)/3 + 1
    if ($octant) {
      $sub = ($sub + 2**$exp) / 2;
      ### prospective sub: $sub
      ### assert: $sub == ($power + 3 * 2 ** $exp + 2)/6

      if ($sub > $n) {
        $exp -= 1;
        $power /= 4;
        $sub = ($power + 3*2**$exp + 2)/6;
      }
    }
    ### assert: $sub <= $n
    $n -= $sub;
  }
  ### n less pow base: $n

  my @depthsum = (2**$exp);

  # find the cumulative levelpoints total <= $n, being the start of the
  # level containing $n
  #
  my $factor = 1;
  while (--$exp >= 0) {
    $power /= 4;
    my $sub = $power * $factor;
    if ($octant) {
      $sub = ($sub + 2**$exp)/2;
    }
    ### $sub
    my $rem = $n - $sub;

    ### $n
    ### $power
    ### $factor
    ### consider subtract: $sub
    ### $rem

    if ($rem >= 0) {
      $n = $rem;
      push @depthsum, 2**$exp;
      $factor *= 3;
    }
  }

  ### _n1_to_depthsum_rem_width() result ...
  ### @depthsum
  ### remaining n: $n
  ### assert: $n >= 0
  ### assert: $n < $factor

  return (\@depthsum, $n, $factor);
}


# at 0,2 turn and new height limit
# at 1 keep existing depth limit
# N=30 rem=1 = 0,1 depth=11=8+2+1=1011 width=9
#
sub tree_n_to_subheight {
  my ($self, $n) = @_;
  ### tree_n_to_subheight(): $n

  $n = int($n - $self->{'n_start'} + 1);  # N=1 basis
  if ($n < 1) {
    return undef;
  }
  my ($depthsum, $nrem, $rowwidth) = _n1_to_depthsum_rem_width($self,$n)
    or return $n;  # N==nan or N==+infinity
  ### $depthsum
  ### $nrem

  if ($self->{'parts'} eq 'octant_up') {
    $nrem += ($rowwidth-1)/2;
  }

  my $sub = pop @$depthsum;
  while (@$depthsum && _divrem_mutate($nrem,3) == 1) {
    $sub += pop @$depthsum;
  }
  if (@$depthsum) {
    return $depthsum->[-1] - 1 - $sub;
  } else {
    return undef; # $nrem all 1-digits
  }
}

#------------------------------------------------------------------------------
# levels

sub level_to_n_range {
  my ($self, $level) = @_;
  return ($self->{'n_start'},
          $self->tree_depth_to_n_end(2**($level+1) - 2));
}
sub n_to_level {
  my ($self, $n) = @_;
  my $depth = $self->tree_n_to_depth($n);
  if (! defined $depth) { return undef; }
  my ($pow, $exp) = round_down_pow ($depth+1, 2);
  return $exp;
}

#------------------------------------------------------------------------------
1;
__END__

# Octant                    depth  0  1  1
#                 15               1  2  2
#              14                  2  3  3,4
#            9                     3  4  5
#          7   13                  4  5  6,7
#        5                         5  6  8,9
#      4   6   12                  6  7  10,11,12,13,14
#    2       8                     7  8  15
#  1   3  10   11
#
# Ndepth 2*oct-depth = quad
#        oct = (quad+depth)/2



=for stopwords eg Ryde Math-PlanePath Ulam Warburton Ndepth Nend ie OEIS Octant octant

=head1 NAME

Math::PlanePath::UlamWarburtonQuarter -- growth of a 2-D cellular automaton

=head1 SYNOPSIS

 use Math::PlanePath::UlamWarburtonQuarter;
 my $path = Math::PlanePath::UlamWarburtonQuarter->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

X<Ulam, Stanislaw>X<Warburton>This is the pattern of a cellular automaton
studied by Ulam and Warburton, confined to a quarter of the plane and
oriented diagonally.  Cells are numbered by growth tree row and
anti-clockwise within the row.

=cut

# math-image --path=UlamWarburtonQuarter --all --output=numbers --size=70x15

=pod

    14 |  81    80    79    78    75    74    73    72
    13 |     57          56          55          54
    12 |  82    48    47    77    76    46    45    71
    11 |           40                      39
    10 |  83    49    36    35    34    33    44    70
     9 |     58          28          27          53
     8 |  84    85    37    25    24    32    68    69
     7 |                       22
     6 |  20    19    18    17    23    31    67    66
     5 |     12          11          26          52
     4 |  21     9     8    16    29    30    43    65
     3 |            6                      38
     2 |   5     4     7    15    59    41    42    64
     1 |      2          10          50          51
    Y=0|   1     3    13    14    60    61    62    63
       +----------------------------------------------
         X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14

The growth rule is a given cell grows diagonally NE, NW, SE and SW, but only
if the new cell has no neighbours and is within the first quadrant.  So the
initial cell "a" is N=1,


    |
    | a                    initial cell, depth=0
    +----

It's confined to the first quadrant so can only grow NE as "b",

    |   b
    | a                    "b" depth=1
    +------

Then the next row "c" cells can go in three directions SE, NE, NW.  These
cells are numbered anti-clockwise around from the SE as N=3,N=4,N=5.

    | c   c
    |   b
    | a   c                "c" depth=2
    +---------

The "d" cell is then only a single on the leading diagonal, since the other
diagonals all already have neighbours (the existing "c" cells).

    |       d
    | c   c                depth=3
    |   b
    | a   c
    +---------

    |     e   e
    |       d
    | c   c   e            depth=4
    |   b
    | a   c
    +-----------

    |   f       f
    |     e   e
    |       d
    | c   c   e            depth=5
    |   b       f
    | a   c
    +-------------

    | g   g   g   g
    |   f       f
    | g   e   e   g
    |       d
    | c   c   e   g        depth=6
    |   b       f
    | a   c   g   g
    +-------------

In general the pattern always always grows by 1 along the X=Y leading
diagonal.  The point on that diagonal is the middle of row depth=X.  The
pattern expands into the sides with a self-similar diamond shaped pattern
filling 6 of 16 cells in any 4x4 square block.

=head2 Tree Row Ranges

Counting depth=0 as the N=1 at the origin, depth=1 as the next N=2, etc, the
number of new cells added in the tree row is

    rowwidth(depth) = 3^(count_1_bits(depth+1) - 1)

=for GP-DEFINE  rowwidth(depth) = 3^(hammingweight(depth+1) - 1)

=for GP-Test  rowwidth(0) == 1   /* a */

=for GP-Test  rowwidth(1) == 1   /* b */

=for GP-Test  rowwidth(2) == 3   /* c */

=for GP-Test  rowwidth(3) == 1   /* d */

So depth=0 has 3^(1-1)=1 cells, as does depth=1 which is N=2.  Then depth=2
has 3^(2-1)=3 cells N=3,N=4,N=5 because depth+1=3=0b11 has two 1 bits in
binary.  The N row start and end is the cumulative total of those before it,

    Ndepth(depth) = 1 + rowwidth(0) + ... + rowwidth(depth-1)

    Nend(depth) = rowwidth(0) + ... + rowwidth(depth)

For example depth=2 ends at N=(1+1+3)=5.

=for GP-DEFINE  Ndepth(depth) = 1 + sum(i=0,depth-1, rowwidth(i))

=for GP-DEFINE  Nend(depth) = sum(i=0,depth, rowwidth(i))

=for GP-Test  Nend(2) == 5

    depth    Ndepth    rowwidth      Nend
      0          1         1           1
      1          2         1           2
      2          3         3           5
      3          6         1           6
      4          7         3           9
      5         10         3          12
      6         13         9          21
      7         22         1          22
      8         23         3          25

=for GP-Test  vector(9,depth,my(depth=depth-1); Ndepth(depth)) == [1,2,3,6,7,10,13,22,23]

=for GP-Test  vector(9,depth,my(depth=depth-1); rowwidth(depth)) == [1,1,3,1,3,3,9,1,3]

=for GP-Test  vector(9,depth,my(depth=depth-1); Nend(depth)) == [1,2,5,6,9,12,21,22,25]

At row depth+1 = power-of-2 the Ndepth sum is

    Ndepth(depth) = 1 + (4^a-1)/3       for depth+1 = 2^a

For example depth=3 is depth+1=2^2 starts at N=1+(4^2-1)/3=6, or depth=7 is
depth+1=2^3 starts N=1+(4^3-1)/3=22.

=for GP-Test  Ndepth(3) == 6

=for GP-Test  Ndepth(7) == 22

Further bits in the depth+1 contribute powers-of-4 with a tripling for each
bit above it.  So if depth+1 has bits a,b,c,d,etc from high to low then

    depth+1 = 2^a + 2^b + 2^c + 2^d ...       a>b>c>d...
    Ndepth = 1 + (-1
                  +       4^a
                  +   3 * 4^b
                  + 3^2 * 4^c
                  + 3^3 * 4^d + ...) / 3

For example depth=5 is depth+1=6 = 2^2+2^1 is Ndepth = 1+(4^2-1)/3 + 4^1 =
10.  Or depth=6 is depth+1=7 = 2^2+2^1+2^0 is Ndepth = 1+(4^2-1)/3 + 4^1 +
3*4^0 = 13.

=head2 Self-Similar Replication

The square shape growth to depth=2^level-2 repeats the pattern to the
preceding depth=2^(level-1)-2 three times.  For example,

    |  d   d   c   c             depth=6 = 2^3-2
    |    d       c               triplicates
    |  d   d   c   c             depth=2 = 2^2-2
    |        *
    |  a   a   b   b
    |    a       b
    |  a   a   b   b
    +--------------------

The 3x3 square "a" repeats, pointing SE, NE and NW as "b", "c" and "d".
This resulting 7x7 square then likewise repeats.  The points in the path
here are numbered by tree rows rather than by this sort of replication, but
the replication helps to see the structure of the pattern.

=head2 Octant

Option C<parts =E<gt> 'octant'> confines the pattern to the first eighth of
the plane 0E<lt>=YE<lt>=X.

=cut

# math-image --path=UlamWarburtonQuarter,parts=octant --all --output=numbers --size=75x15

=pod

    parts => "octant"

     14 |                                           50
     13 |                                        36
     12 |                                     31    49
     11 |                                  26
     10 |                               24    30    48
      9 |                            19          35
      8 |                         17    23    46    47
      7 |                      15
      6 |                   14    16    22    45    44
      5 |                 9          18          34
      4 |              7    13    20    21    29    43
      3 |           5                      25
      2 |        4     6    12    37    27    28    42
      1 |     2           8          32          33
    Y=0 |  1     3    10    11    38    39    40    41
        +-------------------------------------------------
         X=0  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15

In this arrangement N=1,2,4,5,7,etc on the leading diagonal is the last N of
each row (C<tree_depth_to_n_end()>).

=head2 Upper Octant

Option C<parts =E<gt> 'octant_up'> confines the pattern to the upper octant
0E<lt>=XE<lt>=Y of the first quadrant.

=cut

# math-image --path=UlamWarburtonQuarter,parts=octant_up --all --output=numbers --size=75x15

=pod

    parts => "octant_up"

     14 | 46    45    44    43    40    39    38    37
     13 |    35          34          33          32
     12 | 47    30    29    42    41    28    27
     11 |          26                      25
     10 | 48    31    23    22    21    20
      9 |    36          19          18
      8 | 49    50    24    17    16
      7 |                      15
      6 | 13    12    11    10
      5 |     9           8
      4 | 14     7     6
      3 |           5
      2 |  4     3
      1 |     2
    Y=0 |  1
        +----------------------------------------------
          X=0 1  2  3  4  5  6  7  8  9 10 11 12 13 14

In this arrangement N=1,2,3,5,6,etc on the leading diagonal is the first N
of each row (C<tree_depth_to_n()>).

=head2 N Start

The default is to number points starting N=1 as shown above.  An optional
C<n_start> can give a different start, in the same pattern.  For example to
start at 0,

=cut

# math-image --path=UlamWarburtonQuarter,n_start=0 --expression='i<22?i:0' --output=numbers

=pod

    n_start => 0

     7 |                      21
     6 | 19    18    17    16
     5 |    11          10
     4 | 20     8     7    15
     3 |           5
     2 |  4     3     6    14
     1 |     1           9
    Y=0|  0     2    12    13
       +-------------------------
        X=0  1  2  3  4  5  6  7

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::UlamWarburtonQuarter-E<gt>new ()>

=item C<$path = Math::PlanePath::UlamWarburtonQuarter-E<gt>new (parts =E<gt> $str, n_start =E<gt> $n)>

Create and return a new path object.  C<parts> can be

    1              first quadrant, the default
    "octant"       first eighth
    "octant_up"    upper eighth

=back

=head2 Tree Methods

=over

=item C<@n_children = $path-E<gt>tree_n_children($n)>

Return the children of C<$n>, or an empty list if C<$n> has no children
(including when C<$n E<lt> 1>, ie. before the start of the path).

The children are the cells turned on adjacent to C<$n> at the next row.  The
way points are numbered means that when there's multiple children they're
consecutive N values, for example at N=12 the children 19,20,21.

=item C<$n_parent = $path-E<gt>tree_n_parent($n)>

Return the parent node of C<$n>, or C<undef> if C<$n E<lt>= 1> (the start of
the path).

=back

=head2 Tree Descriptive Methods

=over

=item C<@nums = $path-E<gt>tree_num_children_list()>

Return a list of the possible number of children at the nodes of C<$path>.
This is the set of possible return values from C<tree_n_num_children()>.

    parts        tree_num_children_list()
    -----        ------------------------
      1              0, 1,    3
    octant           0, 1, 2, 3
    octant_up        0, 1, 2, 3

The octant forms have 2 children when branching from the leading diagonal,
otherwise 0,1,3.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<($n_start, tree_depth_to_n_end(2**($level+1) - 2))>.

=back

=head1 OEIS

Entries in Sloane's Online Encyclopedia of Integer Sequences related to this
path includes

=over

L<http://oeis.org/A151920> (etc)

=back

    parts=1  (the default)
      A147610   num cells in row, tree_depth_to_width()
      A151920   total cells to depth, tree_depth_to_n_end()

    parts=octant,octant_up
      A079318   num cells in row, tree_depth_to_width()

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::UlamWarburton>,
L<Math::PlanePath::LCornerTree>,
L<Math::PlanePath::CellularRule>

L<Math::PlanePath::SierpinskiTriangle> (a similar binary ones-count related
calculation)

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015, 2016 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut