This file is indexed.

/usr/share/perl5/Math/PlanePath/AlternatePaper.pm is in libmath-planepath-perl 123-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
# Copyright 2011, 2012, 2013, 2014, 2015, 2016 Kevin Ryde

# This file is part of Math-PlanePath.
#
# Math-PlanePath is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 3, or (at your option) any later
# version.
#
# Math-PlanePath is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
# or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
# for more details.
#
# You should have received a copy of the GNU General Public License along
# with Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.


# ENHANCE-ME: Explanation for this bit ...
# 'arms=4' =>
# { dSum  => 'A020985', # GRS
#   # OEIS-Other: A020985 planepath=AlternatePaper,arms=4 delta_type=dSum
# },


package Math::PlanePath::AlternatePaper;
use 5.004;
use strict;
use List::Util 'min'; # 'max'
*max = \&Math::PlanePath::_max;

use vars '$VERSION', '@ISA';
$VERSION = 123;
use Math::PlanePath;
use Math::PlanePath::Base::NSEW;
@ISA = ('Math::PlanePath::Base::NSEW',
        'Math::PlanePath');

use Math::PlanePath::Base::Generic
  'is_infinite',
  'round_nearest';
use Math::PlanePath::Base::Digits
  'round_down_pow',
  'digit_split_lowtohigh',
  'digit_join_lowtohigh',
  'bit_split_lowtohigh';
*_divrem = \&Math::PlanePath::_divrem;
*_divrem_mutate = \&Math::PlanePath::_divrem_mutate;

# uncomment this to run the ### lines
# use Smart::Comments;


use constant parameter_info_array => [ { name      => 'arms',
                                         share_key => 'arms_8',
                                         display   => 'Arms',
                                         type      => 'integer',
                                         minimum   => 1,
                                         maximum   => 8,
                                         default   => 1,
                                         width     => 1,
                                         description => 'Arms',
                                       } ];

use constant n_start => 0;
sub x_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 3);
}
sub y_negative {
  my ($self) = @_;
  return ($self->{'arms'} >= 5);
}
{
  my @x_negative_at_n = (undef,
                         undef,undef,8,7,
                         4,4,4,4);
  sub x_negative_at_n {
    my ($self) = @_;
    return $x_negative_at_n[$self->{'arms'}];
  }
}
{
  my @y_negative_at_n = (undef,
                                        undef,undef,undef,undef,
                                        44,23,13,14);
  sub y_negative_at_n {
    my ($self) = @_;
    return $y_negative_at_n[$self->{'arms'}];
  }
}

sub sumxy_minimum {
  my ($self) = @_;
  return ($self->arms_count <= 3
          ? 0        # 1,2,3 arms above X=-Y diagonal
          : undef);
}
sub diffxy_minimum {
  my ($self) = @_;
  return ($self->arms_count == 1
          ? 0        # 1 arms right of X=Y diagonal
          : undef);
}

use constant turn_any_straight => 0; # never straight


#------------------------------------------------------------------------------

sub new {
  my $self = shift->SUPER::new(@_);
  $self->{'arms'} = max(1, min(8, $self->{'arms'} || 1));
  return $self;
}


# state=0  /|         +----+----+
#         / |         |\ 1||<--/
#        /2 |         |^\ || 0/
#       /-->|         || \v| /
#      +----+         ||3 \|/
#     /|\ 3||         +----+
#    / |^\ ||         |<--/   state=4
#   / 0|| \v|         | 2/
#  /-->||1 \|         | /
# +----+----+         |/
#
# |\  state=8         +----+----+  state=12
# |^\                  \ 1||<--/|
# || \                  \ || 0/ |
# ||3 \                  \v| /2 |
# +----+                  \|/-->|
# |<--/|\                  +----+
# | 2/ |^\                  \ 3||
# | /0 || \                  \ ||
# |/-->||1 \                  \v|
# +----+----+                  \|

my @next_state = (0,  8, 0, 12,   # forward
                  4, 12, 4,  8,   # forward NW
                  0,  8, 4,  8,   # reverse
                  4, 12, 0, 12,   # reverse NE
                 );
my @digit_to_x = (0,1,1,1,
                  1,0,0,0,
                  0,1,0,0,
                  1,0,1,1,
                 );
my @digit_to_y = (0,0,1,0,
                  1,1,0,1,
                  0,0,0,1,
                  1,1,1,0,
                 );

# state_to_dx[S] == state_to_x[S+3] - state_to_x[S+0]
my @state_to_dx = (1, undef,undef,undef,
                   -1, undef,undef,undef,
                   0, undef,undef,undef,
                   0, undef,undef,undef,
                  );
my @state_to_dy = (0, undef,undef,undef,
                   0, undef,undef,undef,
                   1, undef,undef,undef,
                   -1, undef,undef,undef,
                  );

sub n_to_xy {
  my ($self, $n) = @_;
  ### AlternatePaper n_to_xy(): $n

  if ($n < 0) { return; }
  if (is_infinite($n)) { return ($n, $n); }

  my $int = int($n);  # integer part
  $n -= $int;         # fraction part
  ### $int
  ### $n

  my $zero = ($int * 0);  # inherit bignum 0
  my $arm = _divrem_mutate ($int, $self->{'arms'});

  ### $arm
  ### $int

  my @digits = digit_split_lowtohigh($int,4);
  my $state = 0;
  my (@xbits,@ybits); # bits low to high (like @digits)

  foreach my $i (reverse 0 .. $#digits) {  # high to low
    $state += $digits[$i];
    $xbits[$i] = $digit_to_x[$state];
    $ybits[$i] = $digit_to_y[$state];
    $state = $next_state[$state];
  }
  my $x = digit_join_lowtohigh(\@xbits,2,$zero);
  my $y = digit_join_lowtohigh(\@ybits,2,$zero);

  # X+1,Y+1 for final state=4 or state=12
  $x += $digit_to_x[$state];
  $y += $digit_to_y[$state];

  ### final: "xy=$x,$y state=$state"

  # apply possible fraction part of $n in direction of $state
  $x = $n * $state_to_dx[$state] + $x;
  $y = $n * $state_to_dy[$state] + $y;

  # rotate,transpose for arm number
  if ($arm & 1) {
    ($x,$y) = ($y,$x);   # transpose
  }
  if ($arm & 2) {
    ($x,$y) = (-$y,$x+1);  # rotate +90 and shift origin to X=0,Y=1
  }
  if ($arm & 4) {
    $x = -1 - $x;      # rotate +180 and shift origin to X=-1,Y=1
    $y = 1 - $y;
  }

  ### rotated return: "$x,$y"
  return ($x,$y);
}

#                                                      8
#
#                                          42   43     7
#
#                                    40 41/45   44     6
#
#                              34 35/39 38/46   47     5
#
#                        32-33/53-36/52-37/49---48     4
#                        | \
#                  10 11/31 30/54 51/55 50/58   59     3
#                        |       \
#             8  9/13 12/28 25/29 24/56 57/61   60     2
#                        |             \
#       2   3/7  6/14 15/27 18/26 19/23 22/62   63     1
#                        |                   \
# 0     1     4     5    16    17    20    21 ==64     0
#
# 0     1     2     3     4     5     6     7    8

sub xy_to_n {
  return scalar((shift->xy_to_n_list(@_))[0]);
}
sub xy_to_n_list {
  my ($self, $x, $y) = @_;
  ### AlternatePaper xy_to_n(): "$x, $y"

  $x = round_nearest($x);
  $y = round_nearest($y);
  if (is_infinite($x)) { return $x; }
  if (is_infinite($y)) { return $y; }

  my $arms = $self->{'arms'};
  my $arm = 0;
  my @ret;
  foreach (1 .. 4) {
    push @ret, map {$_*$arms+$arm} _xy_to_n_list__onearm($self,$x,$y);
    last if ++$arm >= $arms;

    ($x,$y) = ($y,$x); # transpose
    push @ret, map {$_*$arms+$arm} _xy_to_n_list__onearm($self,$x,$y);
    last if ++$arm >= $arms;

    # X,Y -> Y,X
    #     -> Y,X-1     # Y-1 shift
    #     -> X-1,-Y    # rot -90
    # ie. mirror across X axis and shift
    ($x,$y) = ($x-1,-$y);
  }
  return sort {$a<=>$b} @ret;
}

sub _xy_to_n_list__onearm {
  my ($self, $x, $y) = @_;
  ### _xy_to_n_list__onearm(): "$x,$y"

  if ($y < 0 || $y > $x || $x < 0) {
    ### outside first octant ...
    return;
  }

  my ($len,$level) = round_down_pow($x, 2);
  ### $len
  ### $level
  if (is_infinite($level)) {
    return;
  }

  my $n = my $big_n = $x * 0 * $y;  # inherit bignum 0
  my $rev = 0;

  my $big_x = $x;
  my $big_y = $y;
  my $big_rev = 0;

  while ($level-- >= 0) {
    ### at: "$x,$y  len=$len  n=$n"

    # the smaller N
    {
      $n *= 4;
      if ($rev) {
        if ($x+$y < 2*$len) {
          ### rev 0 or 1 ...
          if ($x < $len) {
          } else {
            ### rev 1 ...
            $rev = 0;
            $n -= 2;
            ($x,$y) = ($len-$y, $x-$len);   # x-len,y-len then rotate +90
          }

        } else {
          ### rev 2 or 3 ...
          if ($y > $len || ($x==$len && $y==$len)) {
            ### rev 2 ...
            $n -= 2;
            $x -= $len;
            $y -= $len;
          } else {
            ### rev 3 ...
            $n -= 4;
            $rev = 0;
            ($x,$y) = ($y, 2*$len-$x);   # to origin then rotate -90
          }
        }
      } else {
        if ($x+$y <= 2*$len
            && !($x==$len && $y==$len)
            && !($x==2*$len && $y==0)) {
          ### 0 or 1 ...
          if ($x <= $len) {
          } else {
            ### 1 ...
            $n += 2;
            $rev = 1;
            ($x,$y) = ($len-$y, $x-$len);   # x-len,y-len then rotate +90
          }

        } else {
          ### 2 or 3 ...
          if ($y >= $len && !($x==2*$len && $y==$len)) {
            $n += 2;
            $x -= $len;
            $y -= $len;
          } else {
            $n += 4;
            $rev = 1;
            ($x,$y) = ($y, 2*$len-$x);   # to origin then rotate -90
          }
        }
      }
    }

    # the bigger N
    {
      $big_n *= 4;
      if ($big_rev) {
        if ($big_x+$big_y <= 2*$len
            && !($big_x==$len && $big_y==$len)
            && !($big_x==2*$len && $big_y==0)) {
          ### rev 0 or 1 ...
          if ($big_x <= $len) {
          } else {
            ### rev 1 ...
            $big_rev = 0;
            $big_n -= 2;
            ($big_x,$big_y) = ($len-$big_y, $big_x-$len);   # x-len,y-len then rotate +90
          }

        } else {
          ### rev 2 or 3 ...
          if ($big_y >= $len && !($big_x==2*$len && $big_y==$len)) {
            ### rev 2 ...
            $big_n -= 2;
            $big_x -= $len;
            $big_y -= $len;
          } else {
            ### rev 3 ...
            $big_n -= 4;
            $big_rev = 0;
            ($big_x,$big_y) = ($big_y, 2*$len-$big_x);   # to origin then rotate -90
          }
        }
      } else {
        if ($big_x+$big_y < 2*$len) {
          ### 0 or 1 ...
          if ($big_x < $len) {
          } else {
            ### 1 ...
            $big_n += 2;
            $big_rev = 1;
            ($big_x,$big_y) = ($len-$big_y, $big_x-$len);   # x-len,y-len then rotate +90
          }

        } else {
          ### 2 or 3 ...
          if ($big_y > $len || ($big_x==$len && $big_y==$len)) {
            $big_n += 2;
            $big_x -= $len;
            $big_y -= $len;
          } else {
            $big_n += 4;
            $big_rev = 1;
            ($big_x,$big_y) = ($big_y, 2*$len-$big_x);   # to origin then rotate -90
          }
        }
      }
    }
    $len /= 2;
  }

  if ($x) {
    $n += ($rev ? -1 : 1);
  }
  if ($big_x) {
    $big_n += ($big_rev ? -1 : 1);
  }

  ### final: "$x,$y  n=$n  rev=$rev"
  ### final: "$x,$y  big_n=$n  big_rev=$rev"

  return ($n,
          ($n == $big_n ? () : ($big_n)));
}


# not exact
sub rect_to_n_range {
  my ($self, $x1,$y1, $x2,$y2) = @_;
  ### AlternatePaper rect_to_n_range(): "$x1,$y1  $x2,$y2"

  $x1 = round_nearest($x1);
  $x2 = round_nearest($x2);
  $y1 = round_nearest($y1);
  $y2 = round_nearest($y2);

  ($x1,$x2) = ($x2,$x1) if $x1 > $x2;
  ($y1,$y2) = ($y2,$y1) if $y1 > $y2;

  ### rounded: "$x1,$y1  $x2,$y2"

  my $arms = $self->{'arms'};
  if (($arms == 1 && $y1 > $x2)       # x2,y1 bottom right corner
      || ($arms <= 2 && $x2 < 0)
      || ($arms <= 4 && $y2 < 0)) {
    ### outside ...
    return (1,0);
  }

  # arm start 0,1 at X=0,Y=0
  #           2,3 at X=0,Y=1
  #           4,5 at X=-1,Y=1
  #           6,7 at X=-1,Y=1
  # arms>=6 is arm=5 starting at Y=+1, so 1-$y1
  # arms>=8 starts at X=-1 so extra +1 for x2 to the right in that case
  my ($len, $level) =round_down_pow (max ($x2+($arms>=8),
                                          ($arms >= 2 ? $y2 : ()),
                                          ($arms >= 4 ? -$x1 : ()),
                                          ($arms >= 6 ? 1-$y1 : ())),
                                     2);
  return (0, 4*$arms*$len*$len-1);
}


my @dir4_to_dx = (1,0,-1,0);
my @dir4_to_dy = (0,1,0,-1);

sub n_to_dxdy {
  my ($self, $n) = @_;
  ### n_to_dxdy(): $n

  my $int = int($n);
  $n -= $int;  # $n fraction part
  ### $int
  ### $n

  my $arm = _divrem_mutate ($int, $self->{'arms'});
  ### $arm
  ### $int

  # $dir initial direction from the arm.
  # $inc +/-1 according to the bit position odd or even, but also odd
  # numbered arms are transposed so flip them.
  #
  my @bits = bit_split_lowtohigh($int);
  my $dir = ($arm+1) >> 1;
  my $inc = (($#bits ^ $arm) & 1 ? -1 : 1);
  my $prev = 0;

  ### @bits
  ### initial dir: $dir
  ### initial inc: $inc

  foreach my $bit (reverse @bits) {
    if ($bit != $prev) {
      $dir += $inc;
      $prev = $bit;
    }
    $inc = -$inc;   # opposite at each bit
  }
  $dir &= 3;
  my $dx = $dir4_to_dx[$dir];
  my $dy = $dir4_to_dy[$dir];
  ### $dx
  ### $dy

  if ($n) {
    ### apply fraction part: $n

    # maybe:
    # +/- $n as dx or dy
    # +/- (1-$n) as other dy or dx

    # strip any low 1-bits, and the 0-bit above them
    # $inc is +1 at an even bit position or -1 at an odd bit position
    $inc = my $inc = ($arm & 1 ? -1 : 1);
    while (shift @bits) {
      $inc = -$inc;
    }
    if ($bits[0]) { # bit above lowest 0-bit, 1=right,0=left
      $inc = -$inc;
    }
    $dir += $inc;   # apply turn to give $dir at $n+1
    $dir &= 3;
    $dx += $n*($dir4_to_dx[$dir] - $dx);
    $dy += $n*($dir4_to_dy[$dir] - $dy);
  }

  ### result: "$dx, $dy"
  return ($dx,$dy);
}

# {
#   sub print_table {
#     my ($name, $aref) = @_;
#     print "my \@$name = (";
#     my $entry_width = max (map {length($_//'')} @$aref);
#
#     foreach my $i (0 .. $#$aref) {
#       printf "%*s", $entry_width, $aref->[$i]//'undef';
#       if ($i == $#$aref) {
#         print ");\n";
#       } else {
#         print ",";
#         if (($i % 16) == 15
#             || ($entry_width >= 3 && ($i % 4) == 3)) {
#           print "\n        ".(" " x length($name));
#         } elsif (($i % 4) == 3) {
#           print " ";
#         }
#       }
#     }
#   }
#
#   my @next_state;
# my @state_to_dxdy;
#
# sub make_state {
#   my %values = @_;
#   #  if ($oddpos) { $rot = ($rot-1)&3; }
#   my $state = delete $values{'nextturn'};
#   $state <<= 2; $state |= delete $values{'rot'};
#   $state <<= 1; $state |= delete $values{'oddpos'};
#   $state <<= 1; $state |= delete $values{'lowerbit'};
#   $state <<= 1; $state |= delete $values{'bit'};
#   die if %values;
#   return $state;
# }
# sub state_string {
#   my ($state) = @_;
#   my $bit = $state & 1;  $state >>= 1;
#   my $lowerbit = $state & 1;  $state >>= 1;
#   my $oddpos = $state & 1;  $state >>= 1;
#   my $rot = $state & 3;  $state >>= 2;
#   my $nextturn = $state;
#   #  if ($oddpos) { $rot = ($rot+1)&3; }
#   return "rot=$rot,oddpos=$oddpos nextturn=$nextturn  lowerbit=$lowerbit (bit=$bit)";
# }
#
# foreach my $nextturn (0, 1, 2) {
#   foreach my $rot (0, 1, 2, 3) {
#     foreach my $oddpos (0, 1) {
#       foreach my $lowerbit (0, 1) {
#         foreach my $bit (0, 1) {
#           my $state = make_state (bit      => $bit,
#                                   lowerbit => $lowerbit,
#                                   rot      => $rot,
#                                   oddpos   => $oddpos,
#                                   nextturn => $nextturn);
#           ### $state
#
#           my $new_nextturn = $nextturn;
#           my $new_lowerbit = $bit;
#           my $new_rot = $rot;
#           my $new_oddpos = $oddpos ^ 1;
#
#           if ($bit != $lowerbit) {
#             if ($oddpos) {
#               $new_rot++;
#             } else {
#               $new_rot--;
#             }
#             $new_rot &= 3;
#           }
#           if ($lowerbit == 0 && ! $nextturn) {
#             $new_nextturn = ($bit ^ $oddpos ? 1 : 2);  # bit above lowest 0
#           }
#
#           my $dx = 1;
#           my $dy = 0;
#           if ($rot & 2) {
#             $dx = -$dx;
#             $dy = -$dy;
#           }
#           if ($rot & 1) {
#             ($dx,$dy) = (-$dy,$dx); # rotate +90
#           }
#           ### rot to: "$dx, $dy"
#
#           # if ($oddpos) {
#           #   ($dx,$dy) = (-$dy,$dx); # rotate +90
#           # } else {
#           #   ($dx,$dy) = ($dy,-$dx); # rotate -90
#           # }
#
#           my $next_dx = $dx;
#           my $next_dy = $dy;
#           if ($nextturn == 2) {
#             ($next_dx,$next_dy) = (-$next_dy,$next_dx); # left, rotate +90
#           } else {
#             ($next_dx,$next_dy) = ($next_dy,-$next_dx); # right, rotate -90
#           }
#           my $frac_dx = $next_dx - $dx;
#           my $frac_dy = $next_dy - $dy;
#
#           # mask to rot,oddpos only, ignore bit,lowerbit
#           my $masked_state = $state & ~3;
#           $state_to_dxdy[$masked_state]     = $dx;
#           $state_to_dxdy[$masked_state + 1] = $dy;
#           $state_to_dxdy[$masked_state + 2] = $frac_dx;
#           $state_to_dxdy[$masked_state + 3] = $frac_dy;
#
#           my $next_state =  make_state (bit      => 0,
#                                         lowerbit => $new_lowerbit,
#                                         rot      => $new_rot,
#                                         oddpos   => $new_oddpos,
#                                         nextturn => $new_nextturn);
#           $next_state[$state] = $next_state;
#         }
#       }
#     }
#   }
# }
#
# my @arm_to_state;
# foreach my $arm (0 .. 7) {
#   my $rot = $arm >> 1;
#   my $oddpos = 0;
#   if ($arm & 1) {
#     $rot++;
#     $oddpos ^= 1;
#   }
#   $arm_to_state[$arm] = make_state (bit => 0,
#                                     lowerbit => 0,
#                                     rot => $rot,
#                                     oddpos => $oddpos,
#                                     nextturn => 0);
# }
#
# ### @next_state
# ### @state_to_dxdy
# ### next_state length: 4*(4*2*2 + 4*2)
#
# print "# next_state length ", scalar(@next_state), "\n";
# print_table ("next_state", \@next_state);
# print_table ("state_to_dxdy", \@state_to_dxdy);
# print_table ("arm_to_state", \@arm_to_state);
# print "\n";
#
# foreach my $arm (0 .. 7) {
#   print "# arm=$arm  ",state_string($arm_to_state[$arm]),"\n";
# }
# print "\n";
#
#
#
#   use Smart::Comments;
#
#   sub n_to_dxdy {
#     my ($self, $n) = @_;
#     ### n_to_dxdy(): $n
#
#     my $int = int($n);
#     $n -= $int;  # $n fraction part
#     ### $int
#     ### $n
#
#     my $state = _divrem_mutate ($int, $self->{'arms'}) << 2;
#     ### arm as initial state: $state
#
#     foreach my $bit (bit_split_lowtohigh($int)) {
#       $state = $next_state[$state + $bit];
#     }
#     $state &= 0x1C;  # mask out "prevbit"
#
#     ### final state: $state
#     ### dx: $state_to_dxdy[$state]
#     ### dy: $state_to_dxdy[$state+1],
#     ### frac dx: $state_to_dxdy[$state+2],
#     ### frac dy: $state_to_dxdy[$state+3],
#
#     return ($state_to_dxdy[$state]   + $n * $state_to_dxdy[$state+2],
#             $state_to_dxdy[$state+1] + $n * $state_to_dxdy[$state+3]);
#   }
#
# }

#------------------------------------------------------------------------------
# levels

use Math::PlanePath::DragonCurve;
*level_to_n_range = \&Math::PlanePath::DragonCurve::level_to_n_range;
*n_to_level       = \&Math::PlanePath::DragonCurve::n_to_level;

#------------------------------------------------------------------------------

sub _UNDOCUMENTED_level_to_right_line_boundary {
  my ($self, $level) = @_;
  if ($level == 0) {
    return 1;
  }
  my ($h,$odd) = _divrem($level,2);
  return ($odd
          ? 6 * 2**$h - 4
          : 2 * 2**$h);
}
sub _UNDOCUMENTED_level_to_left_line_boundary {
  my ($self, $level) = @_;
  if ($level == 0) {
    return 1;
  }
  my ($h,$odd) = _divrem($level,2);
  return ($odd
          ? 2 * 2**$h
          : 4 * 2**$h - 4);
}
sub _UNDOCUMENTED_level_to_line_boundary {
  my ($self, $level) = @_;
  my ($h,$odd) = _divrem($level,2);
  return (($odd?8:6) * 2**$h - 4);
}

sub _UNDOCUMENTED_level_to_hull_area {
  my ($self, $level) = @_;
  return (2**$level - 1)/2;
}

sub _UNDOCUMENTED__n_is_x_positive {
  my ($self, $n) = @_;
  if (! ($n >= 0) || is_infinite($n)) { return 0; }

  $n = int($n);
  {
    my $arm = _divrem_mutate($n, $self->{'arms'});

    # arm 1 good only on N=1 which is remaining $n==0
    if ($arm == 1) {
      return ($n == 0);
    }

    # arm 0 good
    # arm 8 good for N>=15 which is remaining $n>=1
    unless ($arm == 0
            || ($arm == 7 && $n > 0)) {
      return 0;
    }
  }

  return _is_base4_01($n);
}

sub _UNDOCUMENTED__n_is_diagonal_NE {
  my ($self, $n) = @_;
  if (! ($n >= 0) || is_infinite($n)) { return 0; }

  $n = int($n);
  if ($self->{'arms'} >= 8 && $n == 15) { return 1; }
  if (_divrem_mutate($n, $self->{'arms'}) >= 2) { return 0; }
  return _is_base4_02($n);
}

# X axis N is base4 digits 0,1
# and -1 from even is 0,1 low 0333333
# and -2 from even is 0,1 low 0333332
# so $n+2 low digit any then 0,1s above
sub _UNDOCUMENTED__n_segment_is_right_boundary {
  my ($self, $n) = @_;
  if ($self->{'arms'} >= 8
      || ! ($n >= 0)
      || is_infinite($n)) {
    return 0;
  }
  $n = int($n);

  if (_divrem_mutate($n, $self->{'arms'}) >= 1) {
    return 0;
  }
  $n += 2;
  _divrem_mutate($n,4);
  return _is_base4_01($n);
}

# diagonal N is base4 digits 0,2,
# and -1 from there is 0,2 low 1
#                   or 0,2 low 13333
# so $n+1 low digit possible 1 or 3 then 0,2s above
# which means $n+1 low digit any and 0,2s above
#use Smart::Comments;

sub _UNDOCUMENTED__n_segment_is_left_boundary {
  my ($self, $n) = @_;
  ### _UNDOCUMENTED__n_segment_is_left_boundary(): $n

  my $arms = $self->{'arms'};
  if ($arms >= 8
      || ! ($n >= 0)
      || is_infinite($n)) {
    return 0;
  }
  $n = int($n);

  if (($n == 1 && $arms >= 4)
      || ($n == 3 && $arms >= 5)
      || ($n == 5 && $arms == 7)) {
    return 1;
  }
  if (_divrem_mutate($n, $arms) < $arms-1) {
    ### no, not last arm ...
    return 0;
  }

  if ($arms % 2) {
    ### odd arms, stair-step boundary ...
    $n += 1;
    _divrem_mutate($n,4);
    return _is_base4_02($n);
  } else {
    # even arms, notched like right boundary
    $n += 2;
    _divrem_mutate($n,4);
    return _is_base4_01($n);
  }
}

sub _is_base4_01 {
  my ($n) = @_;
  while ($n) {
    my $digit = _divrem_mutate($n,4);
    if ($digit >= 2) { return 0; }
  }
  return 1;
}
sub _is_base4_02 {
  my ($n) = @_;
  while ($n) {
    my $digit = _divrem_mutate($n,4);
    if ($digit == 1 || $digit == 3) { return 0; }
  }
  return 1;
}

1;
__END__

#------------------------------------------------------------------------------


# Old code with explicit rotation etc rather than state table.
#
# my @dir4_to_dx = (1,0,-1,0);
# my @dir4_to_dy = (0,1,0,-1);
#
# my @arm_to_x = (0,0, 0,0, -1,-1, -1,-1);
# my @arm_to_y = (0,0, 1,1,   1,1,  0,0);
#
# sub XXn_to_xy {
#   my ($self, $n) = @_;
#   ### AlternatePaper n_to_xy(): $n
#
#   if ($n < 0) { return; }
#   if (is_infinite($n)) { return ($n, $n); }
#
#   my $frac;
#   {
#     my $int = int($n);
#     $frac = $n - $int;  # inherit possible BigFloat
#     $n = $int;          # BigFloat int() gives BigInt, use that
#   }
#   ### $frac
#
#   my $zero = ($n * 0);  # inherit bignum 0
#
#   my $arm = _divrem_mutate ($n, $self->{'arms'});
#
#   my @bits = bit_split_lowtohigh($n);
#   if (scalar(@bits) & 1) {
#     push @bits, 0;  # extra high to make even
#   }
#
#   my @sx;
#   my @sy;
#   {
#     my $sy = $zero;   # inherit BigInt
#     my $sx = $sy + 1; # inherit BigInt
#     ### $sx
#     ### $sy
#
#     foreach (1 .. scalar(@bits)/2) {
#       push @sx, $sx;
#       push @sy, $sy;
#
#       # (sx,sy) + rot+90(sx,sy)
#       ($sx,$sy) = ($sx - $sy,
#                    $sy + $sx);
#
#       push @sx, $sx;
#       push @sy, $sy;
#
#       # (sx,sy) + rot-90(sx,sy)
#       ($sx,$sy) = ($sx + $sy,
#                    $sy - $sx);
#     }
#   }
#
#   ### @bits
#   ### @sx
#   ### @sy
#   ### assert: scalar(@sx) == scalar(@bits)
#
#   my $rot = int($arm/2);  # arm to initial rotation
#   my $rev = 0;
#   my $x = $zero;
#   my $y = $zero;
#   while (@bits) {
#     {
#       my $bit = pop @bits;   # high to low
#       my $sx = pop @sx;
#       my $sy = pop @sy;
#       ### at: "$x,$y  $bit   side $sx,$sy"
#       ### $rot
#
#       if ($rot & 2) {
#         ($sx,$sy) = (-$sx,-$sy);
#       }
#       if ($rot & 1) {
#         ($sx,$sy) = (-$sy,$sx);
#       }
#
#       if ($rev) {
#         if ($bit) {
#           $x -= $sy;
#           $y += $sx;
#           ### rev add to: "$x,$y next is still rev"
#         } else {
#           $rot ++;
#           $rev = 0;
#         }
#       } else {
#         if ($bit) {
#           $rot ++;
#           $x += $sx;
#           $y += $sy;
#           $rev = 1;
#           ### add to: "$x,$y next is rev"
#         }
#       }
#     }
#
#     @bits || last;
#
#     {
#       my $bit = pop @bits;
#       my $sx = pop @sx;
#       my $sy = pop @sy;
#       ### at: "$x,$y  $bit   side $sx,$sy"
#       ### $rot
#
#       if ($rot & 2) {
#         ($sx,$sy) = (-$sx,-$sy);
#       }
#       if ($rot & 1) {
#         ($sx,$sy) = (-$sy,$sx);
#       }
#
#       if ($rev) {
#         if ($bit) {
#           $x += $sy;
#           $y -= $sx;
#           ### rev add to: "$x,$y next is still rev"
#         } else {
#           $rot --;
#           $rev = 0;
#         }
#       } else {
#         if ($bit) {
#           $rot --;
#           $x += $sx;
#           $y += $sy;
#           $rev = 1;
#           ### add to: "$x,$y next is rev"
#         }
#       }
#     }
#   }
#
#   ### $rot
#   ### $rev
#
#   if ($rev) {
#     $rot += 2;
#     ### rev change rot to: $rot
#   }
#
#   if ($arm & 1) {
#     ($x,$y) = ($y,$x);  # odd arms transpose
#   }
#
#   $rot &= 3;
#   $x = $frac * $dir4_to_dx[$rot] + $x + $arm_to_x[$arm];
#   $y = $frac * $dir4_to_dy[$rot] + $y + $arm_to_y[$arm];
#
#   ### final: "$x,$y"
#   return ($x,$y);
# }



=for :stopwords eg Ryde Math-PlanePath Nlevel et al vertices doublings OEIS Online DragonCurve ZOrderCurve 0xAA..AA Golay-Rudin-Shapiro Rudin-Shapiro dX dY dX,dY GRS dSum undoubled MendE<232>s Tenenbaum des Courbes Papiers de ie ceil

=head1 NAME

Math::PlanePath::AlternatePaper -- alternate paper folding curve

=head1 SYNOPSIS

 use Math::PlanePath::AlternatePaper;
 my $path = Math::PlanePath::AlternatePaper->new;
 my ($x, $y) = $path->n_to_xy (123);

=head1 DESCRIPTION

This is an integer version of the alternate paper folding curve (a variation
on the DragonCurve paper folding).

=cut

# math-image --path=AlternatePaper --expression='i<=128?i:0' --output=numbers --size=60

=pod

      8 |                                                      128
        |                                                       |
      7 |                                                42---43/127
        |                                                |      |
      6 |                                         40---41/45--44/124
        |                                         |      |      |
      5 |                                  34---35/39--38/46--47/123
        |                                  |      |      |      |
      4 |                           32---33/53--36/52--37/49--48/112
        |                           |      |      |      |      |
      3 |                    10---11/31--30/54--51/55--50/58--59/111
        |                    |      |      |      |      |      |
      2 |              8----9/13--12/28--29/25--24/56--57/61--60/108
        |              |     |      |      |      |      |      |
      1 |        2----3/7---6/14--15/27--26/18--19/23---22/62--63/107
        |        |     |     |      |      |      |      |      |
    Y=0 |  0-----1     4-----5     16-----17     20-----21     64---..
        |
        +------------------------------------------------------------
          X=0    1     2     3      4      5      6      7      8

The curve visits the X axis points and the X=Y diagonal points once each and
visits "inside" points between there twice each.  The first doubled point is
X=2,Y=1 which is N=3 and also N=7.  The segments N=2,3,4 and N=6,7,8 have
touched, but the curve doesn't cross over itself.  The doubled vertices are
all like this, touching but not crossing, and no edges repeat.

The first step N=1 is to the right along the X axis and the path fills the
eighth of the plane up to the X=Y diagonal inclusive.

The X axis N=0,1,4,5,16,17,etc is the integers which have only digits 0,1 in
base 4, or equivalently those which have a 0 bit at each odd numbered bit
position.

The X=Y diagonal N=0,2,8,10,32,etc is the integers which have only digits
0,2 in base 4, or equivalently those which have a 0 bit at each even
numbered bit position.

The X axis values are the same as on the ZOrderCurve X axis, and the X=Y
diagonal is the same as the ZOrderCurve Y axis, but in between the two are
different.  (See L<Math::PlanePath::ZOrderCurve>.)

=head2 Paper Folding

The curve arises from thinking of a strip of paper folded in half
alternately one way and the other, and then unfolded so each crease is a 90
degree angle.  The effect is that the curve repeats in successive doublings
turned 90 degrees and reversed.

The first segment N=0 to N=1 unfolds clockwise, pivoting at the endpoint
"1",

                                    2
                               ->   |
                 unfold       /     |
                  ===>       |      |
                                    |
    0------1                0-------1

Then that "L" shape unfolds again, pivoting at the end "2", but
anti-clockwise, on the opposite side to the first unfold,

                                    2-------3
           2                        |       |
           |     unfold             |   ^   |
           |      ===>              | _/    |
           |                        |       |
    0------1                0-------1       4

In general after each unfold the shape is a triangle as follows.  "N" marks
the N=2^k endpoint in the shape, either bottom right or top centre.

    after even number          after odd number
       of unfolds,                of unfolds,
     N=0 to N=2^even            N=0 to N=2^odd

               .                       N
              /|                      / \
             / |                     /   \
            /  |                    /     \
           /   |                   /       \
          /    |                  /         \
         /_____N                 /___________\
        0,0                     0,0

For an even number of unfolds the triangle consists of 4 sub-parts numbered
by the high digit of N in base 4.  Those sub-parts are self-similar in the
direction "E<gt>", "^" etc as follows, and with a reversal for parts 1
and 3.

              +
             /|
            / |
           /  |
          / 2>|
         +----+
        /|\  3|
       / | \ v|
      /  |^ \ |
     / 0>| 1 \|
    +----+----+

=head2 Arms

The C<arms> parameter can choose 1 to 8 curve arms successively advancing.
Each fills an eighth of the plane.  The second arm is mirrored across the
X=Y leading diagonal, so

=cut

# math-image --path=AlternatePaper,arms=2 --expression='i<=128?i:0' --output=numbers --size=60

=pod

      arms => 2

        |   |     |       |       |       |
      4 |  33---31/55---25/57---23/63---64/65--
        |         |       |       |       |
      3 |  11---13/29---19/27---20/21---22/62--
        |   |     |       |       |       |
      2 |   9----7/15---16/17---18/26---24/56--
        |         |       |       |       |
      1 |   3----4/5-----6/14---12/28---30/54--
        |   |     |       |       |       |
    Y=0 |  0/1----2       8------10      32---
        |
        +------------- -------------------------
          X=0     1       2       3       4

Here the even N=0,2,4,6,etc is the plain curve below the X=Y diagonals and
odd N=1,3,5,7,9,etc is the mirrored copy.

Arms 3 and 4 are the same but rotated +90 degrees and starting from X=0,Y=1.
That start point ensures each edge between integer points is traversed just
once.

=cut

# math-image --path=AlternatePaper,arms=4 --expression='i<=256?i:0' --output=numbers --size=60

=pod

    arms => 4

        |       |       |      |        |
    --34/35---14/30---18/21--25/57----37/53--        3
        |       |       |      |        |
    --15/31---10/11----6/17--13/29----32/33--        2
        |       |       |      |        |
     --19       7-----2/3/5---8/9-----12/28--        1
                        |      |        |
                       0/1-----4        16--     <- Y=0

    -----------------------------------------
       -1      -2      X=0     1        2

Points N=0,4,8,12,etc is the plain curve, N=1,5,9,13,etc the second mirrored
arm, N=2,6,10,14,etc is arm 3 which is the plain curve rotated +90, and
N=3,7,11,15,etc the rotated and mirrored.

Arms 5 and 6 start at X=-1,Y=1, and arms 7 and 8 start at X=-1,Y=0 so they
too traverse each edge once.  With a full 8 arms each point is visited twice
except for the four start points which are three times.

=cut

# math-image --path=AlternatePaper,arms=8 --expression='i<=256?i:0' --output=numbers --size=60

=pod

    arms => 8

        |       |       |       |       |       |
    --75/107--66/67---26/58---34/41---49/113--73/105--        3
        |       |       |       |       |       |
    --51/115---27/59---18/19--10/33---25/57---64/65--         2
        |       |       |       |       |       |
    --36/43---12/35---4/5/11---2/3/9--16/17---24/56--         1
        |       |       |       |       |       |
    --28/60---20/21---6/7/13--0/1/15---8/39---32/47--     <- Y=0
        |       |       |       |       |       |
    --68/69---29/61----14/37---22/23--31/63---55/119--       -1
        |       |       |       |       |       |
    --77/109--53/117---38/45---30/62--70/71---79/111--       -2
        |       |       |       |       |       |

                                ^
       -3      -2      -1      X=0     1        2

=head1 FUNCTIONS

See L<Math::PlanePath/FUNCTIONS> for behaviour common to all path classes.

=over 4

=item C<$path = Math::PlanePath::AlternatePaper-E<gt>new ()>

=item C<$path = Math::PlanePath::AlternatePaper-E<gt>new (arms =E<gt> $integer)>

Create and return a new path object.

=item C<($x,$y) = $path-E<gt>n_to_xy ($n)>

Return the X,Y coordinates of point number C<$n> on the path.  Points begin
at 0 and if C<$n E<lt> 0> then the return is an empty list.

Fractional positions give an X,Y position along a straight line between the
integer points.

=item C<@n_list = $path-E<gt>xy_to_n_list ($x,$y)>

Return a list of N point numbers for coordinates C<$x,$y>.

For arms=1 there may be none, one or two N's for a given C<$x,$y>.  For
multiple arms the origin points X=0 or 1 and Y=0 or -1 have up to 3 Ns,
being the starting points of the arms.  For arms=8 those 4 points have 3 N
and every other C<$x,$y> has exactly two Ns.

=item C<$n = $path-E<gt>n_start()>

Return 0, the first N in the path.

=back

=head2 Level Methods

=over

=item C<($n_lo, $n_hi) = $path-E<gt>level_to_n_range($level)>

Return C<(0, 2**$level)>, or for multiple arms return C<(0, $arms *
2**$level + ($arms-1))>.

This is the same as L<Math::PlanePath::DragonCurve/Level Methods>.  Each
level is an unfold (on alternate sides left or right).

=back

=head1 FORMULAS

=head2 Turn

At each point N the curve always turns either left or right, it never goes
straight ahead.  The turn is given by the bit above the lowest 1 bit in N
and whether that position is odd or even.

    N = 0b...z100..00   (including possibly no trailing 0s)
             ^
             pos, counting from 0 for least significant bit

    (z bit) XOR (pos&1)   Turn
    -------------------   ----
             0            right
             1            left

For example N=10 binary 0b1010 has lowest 1 bit at 0b__1_ and the bit above
that is a 0 at even number pos=2, so turn to the right.

=head2 Next Turn

The bits also give the turn after next by looking at the bit above the
lowest 0.

    N = 0b...w011..11    (including possibly no trailing 1s)
             ^
             pos, counting from 0 for least significant bit

    (w bit) XOR (pos&1)    Next Turn
    -------------------    ---------
             0             right
             1             left

For example at N=10 binary 0b1010 the lowest 0 is the least significant bit,
and above that is a 1 at odd pos=1, so at N=10+1=11 turn right.  This works
simply because w011..11 when incremented becomes w100..00 which is the "z"
form above.

The inversion at odd bit positions can be applied with an xor 0b1010..1010.
If that's done then the turn calculation is the same as the DragonCurve (see
L<Math::PlanePath::DragonCurve/Turn>).

=head2 Total Turn

The total turn can be calculated from the segment replacements resulting
from the bits of N.

    each bit of N from high to low

      when plain state
       0 -> no change
       1 -> turn left if even bit pos or turn right if odd bit pos
              and go to reversed state

      when reversed state
       1 -> no change
       0 -> turn left if even bit pos or turn right if odd bit pos
              and go to plain state

    (bit positions numbered from 0 for the least significant bit)

This is similar to the DragonCurve (see L<Math::PlanePath::DragonCurve/Total
Turn>) except the turn is either left or right according to an odd or even
bit position of the transition, instead of always left for the DragonCurve.

=head2 dX,dY

Since there's always a turn either left or right, never straight ahead, the
X coordinate changes, then Y coordinate changes, alternately.

        N=0
    dX   1  0  1  0  1  0 -1  0  1  0  1  0 -1  0  1  0  ...
    dY   0  1  0 -1  0  1  0  1  0  1  0 -1  0 -1  0 -1  ...

X changes when N is even, Y changes when N is odd.  Each change is either +1
or -1.  Which it is follows the Golay-Rudin-Shapiro sequence which is parity
odd or even of the count of adjacent 11 bit pairs.

In the total turn above it can be seen that if the 0-E<gt>1 transition is at
an odd position and 1-E<gt>0 transition at an even position then there's a
turn to the left followed by a turn to the right for no net change.
Likewise an even and an odd.  This means runs of 1 bits with an odd length
have no effect on the direction.  Runs of even length on the other hand are
a left followed by a left, or a right followed by a right, for 180 degrees,
which negates the dX change.  Thus

    if N even then dX = (-1)^(count even length runs of 1 bits in N)
    if N odd  then dX = 0

This (-1)^count is related to the Golay-Rudin-Shapiro sequence,

    GRS = (-1) ^ (count of adjacent 11 bit pairs in N)
        = (-1) ^ count_1_bits(N & (N>>1))
        = /  +1 if (N & (N>>1)) even parity
          \  -1 if (N & (N>>1)) odd parity

The GRS is +1 on an odd length run of 1 bits, for example a run 111 has two
11 bit pairs.  The GRS is -1 on an even length run, for example 1111 has
three 11 bit pairs.  So modulo 2 the power in the GRS is the same as the
count of even length runs and therefore

    dX = /  GRS(N)  if N even
         \  0       if N odd

For dY the total turn and odd/even runs of 1s is the same 180 degree
changes, except N is odd for a Y change so the least significant bit is 1
and there's no return to "plain" state.  If this lowest run of 1s starts on
an even position (an odd number of 1s) then it's a turn left for +1.
Conversely if the run started at an odd position (an even number of 1s) then
a turn right for -1.  The result for this last run is the same "negate if
even length" as the rest of the GRS, just for a slightly different reason.

    dY = /  0       if N even
         \  GRS(N)  if N odd

=head2 dX,dY Pair

At a consecutive pair of points N=2k and N=2k+1 the dX and dY can be
expressed together in terms of GRS(k) as

    dX = GRS(2k)
       = GRS(k)

    dY = GRS(2k+1)
       = GRS(k) * (-1)^k
       = /  GRS(k) if k even
         \  -GRS(k) if k odd

For dY reducing 2k+1 to k drops a 1 bit from the low end.  If the second
lowest bit is also a 1 then they were a "11" bit pair which is lost from
GRS(k).  The factor (-1)^k adjusts for that, being +1 if k even or -1 if k
odd.

=head2 dSum

From the dX and dY formulas above it can be seen that their sum is simply
GRS(N),

    dSum = dX + dY = GRS(N)

The sum X+Y is a numbering of anti-diagonal lines,

   | \ \ \
   |\ \ \ \
   | \ \ \ \
   |\ \ \ \ \
   | \ \ \ \ \
   |\ \ \ \ \ \
   +------------
     0 1 2 3 4 5

The curve steps each time either up to the next or back to the previous
according to dSum=GRS(N).

The way the curve visits outside edge X,Y points once each and inner X,Y
points twice each means an anti-diagonal s=X+Y is visited a total of s many
times.  The diagonal has floor(s/2)+1 many points.  When s is odd the first
is visited once and the rest visited twice.  When s is even the X=Y point is
only visited once.  In each case the total is s many visits.

The way the coordinate sum s=X+Y occurs s many times is a geometric
interpretation to the way the cumulative GRS sequence has each value k
occurring k many times.  (See L<Math::NumSeq::GolayRudinShapiroCumulative>.)

=head2 Area

The area enclosed by the curve for points N=0 to N=2^k inclusive is

    A[k] = (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)
         = / (2^k - 3*2^h + 2) / 2   if k odd 
           \ (2^k - 4*2^h + 2) / 2   if k even
           where h=floor(k/2)
    = 1/2*0, 0*0, 0*1, 1*1, 1*3, 3*3, 3*7, 7*7, 7*15, 15*15, ...
    = 0, 0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, ... (A027556/2)

=for GP-DEFINE  AsamplesP = [0, 0, 0, 1*1, 1*3, 3*3, 3*7, 7*7, 7*15, 15*15, 15*31, 31*31, 31*63, 63*63, 63*127, 127*127, 127*255]

=for GP-DEFINE  Asamples = [0, 0, 0, 1, 3, 9, 21, 49, 105, 225, 465, 961, 1953, 3969, 8001, 16129, 32385]

=for GP-DEFINE  A(k) = (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)

=for GP-DEFINE  A2(k)= local(h); h=floor(k/2); if(k%2, (2^k - 4*2^h + 2)/2, (2^k - 3*2^h + 2)/2)

=for GP-DEFINE  A3(k)= local(h); h=floor(k/2); (2^h-1)*(2^if(k%2,h,h-1) - 1)

=for GP-Test vector(length(Asamples), k, A(k-1)) == Asamples

=for GP-Test vector(length(Asamples), k, A2(k-1)) == Asamples

=for GP-Test vector(length(Asamples), k, A3(k-1)) == Asamples

=for GP-Test Asamples == AsamplesP

=cut

# Pari: for(k=0,16,print1(A(k),", "))

# K = H^2
# (H-1)*(H-1 + 1)/2 - (H-2)/2 - (H-2)/2 - 1
# = 1/2*H^2 - 3/2*H + 1
# = (H^2 - 3*H + 2)/2
# = (H-1)(H-2)/2

=pod

When k is even the curve is a triangular stack with every second block along
the bottom and right sides unfilled.

                         *--*    Y=2^h-1
                         |  |      where h=k/2
                      *--*--*
                      |  |
                   *--*--*--*
                   |  |  |  |
                *--*--*--*--*
                |  |  |  |
             *--*--*--*--*--*
             |  |  |  |  |  |
          *--*--*--*--*--*--*
          |  |  |  |  |  |
       *--*--*--*--*--*--*--*
       |  |  |  |  |  |  |  |
    *--*  *--*  *--*  *--*  *   Y=0
      X=1                  X=2^h

The area formula can be found by moving the alternating blocks in the right
column to fill the gaps in the bottom row, and moving the top half of the
triangle down to complete a rectangle

    *--------*--*--*--*--*
    |        |  |  |  |  |    height = 2^(h-1) - 1
    |     *--*--*--*--*--*           = 2^floor((k-1)/2) - 1
    |     |  |  |  |  |  |
    |  *--*--*--*--*--*--*    width = 2^h - 1
    |  |  |  |  |  |  |  |          = 2^ceil((k-1)/2) - 1
    *--*__*--*__*--*__*--*

When k is odd the curve is a pyramid stack with every second block along the
bottom unfilled.


                            *          Y=2^h
                            |
                         *--*--*       Y=2^h-1
                         |  |  |         where h=floor(k/2)
                      *--*--*--*--*
                      |  |  |  |  |
                   *--*--*--*--*--*--*
                   |  |  |  |  |  |  |
                *--*--*--*--*--*--*--*--*
                |  |  |  |  |  |  |  |  |
             *--*--*--*--*--*--*--*--*--*--*
             |  |  |  |  |  |  |  |  |  |  |
          *--*--*--*--*--*--*--*--*--*--*--*--*
          |  |  |  |  |  |  |  |  |  |  |  |  |
       *--*--*--*--*--*--*--*--*--*--*--*--*--*--*
       |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
    *--*  *--*  *--*  *--*  *--*  *--*  *--*  *--*
      X=1                  X=2^h                X=2^(2h)-1

This too can be rearranged, this time to make a square.  The right hand half
of the bottom row fills the gaps in the left.  The remaining right hand
triangle then goes above the left triangle.

                            *    Y=2^h
                            |
       *-----------------*--*    Y=2^h - 1
       |                 |  |
       |              *--*--*
       |              |  |  |
       |           *--*--*--*    height = 2^h - 1
       |           |  |  |  |           = 2^floor((k-1)/2)
       |        *--*--*--*--*
       |        |  |  |  |  |    width = 2^h - 1
       |     *--*--*--*--*--*          = 2^ceil((k-1)/2)
       |     |  |  |  |  |  |
       |  *--*--*--*--*--*--*    floor((k-1)/2) = ceil((k-1)/2)
       |  |  |  |  |  |  |  |    since (k-1)/2 is an integer
       *--*--*--*--*--*--*--*    when k is odd
       |  |  |  |  |  |  |  |
    *--*__*--*__*--*__*--*__*
      X=1                  X=2^h

For k=0 through k=2 there are no areas to copy this way but 2^0-1=0 in the
formula gives the desired A[0]=A[1]=A[2]=0.

=head2 Area Increment

The new area added between N=2^k and N=2^(k+1) is

    dA[k] = A[k+1] - A[k]
          = (2^floor(k/2) - 1) * 2^ceil(k/2) / 2
          = (2^k - 2^ceil(k/2)) / 2
    = 0, 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, ... (A122746)

=for GP-DEFINE dAsamples = [0, 0, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640]

=for GP-DEFINE dA(k) = (2^floor(k/2) - 1) * 2^ceil(k/2) / 2

=for GP-DEFINE dA2(k) = (2^k - 2^ceil(k/2)) / 2

=for GP-Test vector(length(dAsamples), k, dA(k-1)) == dAsamples

=for GP-Test vector(length(dAsamples), k, dA2(k-1)) == dAsamples

=for GP-Test vector(20, k, dA(k-1)) == vector(20, k, A(k+1 -1) - A(k -1))

=cut

# dA[k] = A[k+1]-A[k]
#  = (2^floor(k/2) - 1) * (2^ceil(k/2) - 1)
#    - (2^floor((k-1)/2) - 1) * (2^ceil((k-1)/2) - 1)
# if k even  h=floor(k/2)  k/2 integer
#  = (2^h - 1) * (2^h - 1) - (2^h/2 - 1) * (2^h - 1)
#  = (2^h - 1 - (2^h/2 - 1)) * (2^h - 1)
#  = (2^h - 1 - 2^h/2 + 1) * (2^h - 1)
#  = 2^h * (2^h - 1) / 2
#  = 2^k/2 - 2^h/2
# if k odd  h=floor(k/2)   k/2 not integer
#  = (2^h - 1) * (2*2^h - 1) - (2^h - 1) * (2^h - 1)
#  = (2^h - 1) * (2*2^h - 1 - (2^h - 1))
#  = (2^h - 1) * (2*2^h - 1 - 2^h + 1)
#  = (2^h - 1) * 2^h
#  = 2^k/2 - 2^h
# dA[k] = (2^floor(k/2) - 1) * 2^ceil(k/2) / 2

=pod

=head2 Convex Hull Area

A convex hull is the smallest convex polygon which contains a given set of
points.  For the alternate paper the area of the convex hull for points N=0
to N=2^k inclusive is

    HA[k] = (2^k - 1)/2

The hull is a triangle of area 2^k/2 except for an end triangle of area 1/2
at the top for even level or right for odd level.

=head2 Right Boundary

The boundary length of the curve from N=0 to N=2^k on its right side is

    R[k] = /  1           if k=0
           |  2*2^h       if k even >= 2
           \  6*2^h - 4   if k odd  >= 1
           where h=floor(k/2)
    = 1, 2, 4, 8, 8, 20, 16, 44, 32, 92, 64, 188, 128, 380, 256, ...

=for GP-DEFINE  Rsamples = [1, 2, 4, 8, 8, 20, 16, 44, 32, 92, 64, 188, 128, 380, 256, 764, 512]

=for GP-DEFINE  R(k) = local(h); h=floor(k/2); if(k==0, 1, if(k%2, 6*2^h-4, 2*2^h))

=for GP-Test vector(length(Rsamples), k, R(k-1)) == Rsamples

For k even the right boundary is along the X axis

      2^h        X axis horizontals
      2^h        X axis indentations, if k >= 2
    -----
    2*2^h

For k odd the right boundary is along the X axis and then up the right side
to the top,

    2*2^h - 1    X axis horizontals
    2*2^h - 2    X axis indentations
      2^h        right slope verticals
      2^h - 1    right slope horizontals
    -------
    6*2^h - 4

=head2 Left Boundary

The boundary length of the curve from N=0 to N=2^k on its left side is

    L[k] = /  1           if k=0
           |  4*2^h - 4   if k even >= 2
           \  2*2^h       if k odd  >= 1
           where h=floor(k/2)
    = 1, 2, 4, 4, 12, 8, 28, 16, 60, 32, 124, 64, 252, 128, 508, ...

=for GP-DEFINE  Lsamples = [1, 2, 4, 4, 12, 8, 28, 16, 60, 32, 124, 64, 252, 128, 508, 256, 1020]

=for GP-DEFINE  L(k) = local(h); h=floor(k/2); if(k==0, 1, if(k%2, 2*2^h, 4*2^h-4))

=for GP-Test vector(length(Lsamples), k, L(k-1)) == Lsamples

For k even the left boundary is up the left slope then down the vertical

      2^h        left slope horizontals
      2^h - 1    left slope verticals
      2^h - 1    right edge verticals
      2^h - 2    right edge indentations
    -----
    4*2^h - 4

For k odd the left boundary is the left slope, and this time it includes a
final vertical line segment

      2^h        left slope horizontals
      2^h        left slope verticals
    -------
    2*2^h

=cut

#      *---*    k=2
#      |   |    right=4
#  O---*   E    left=4
#
#          E       k=3
#          |       right=8
#      *---*---*   left=4
#      |   |   |
#  O---*   *---*
#                  E
#                  |
#              *---*---*
#              |   |   |
#          *---*---*---*---*       k=5
#          |   |   |   |   |       right=20
#      *---*---*---*---*---*---*   left=8
#      |   |   |   |   |   |   |
#  O---*   *---*   *---*   *---*
#

=pod

=head2 Boundary

The total boundary length of the curve from N=0 to N=2^k is

    B[k] = L[k] + R[k] = /  6*2^h - 4   if k even
                         \  8*2^h - 4   if k odd
                         where h=floor(k/2)
    = 2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, 252, 380, ... (2*A027383)

=for GP-DEFINE  Bsamples = [2, 4, 8, 12, 20, 28, 44, 60, 92, 124, 188, 252, 380, 508, 764, 1020, 1532]

=for GP-DEFINE  B(k) = local(h); h=floor(k/2); if(k%2, 8*2^h-4, 6*2^h-4)

=for GP-Test vector(length(Bsamples), k, B(k-1)) == Bsamples

=for GP-Test vector(20, k, B(k-1)) == vector(20, k, R(k-1)+L(k-1))

=for GP-Test vector(20, k, 4*A(k-1)+B(k-1)) == vector(20, k, 2*2^(k-1))

=for GP-Test 4*(p/2 - 1)*(p-1) + 6*p-4 == 2*p^2

=for GP-Test 4*(p-1)*(p-1) + 8*p-4 == 4*p^2

The special case for k=0 is eliminated since the k even 6*2^h-4 is the
desired 2 when k=0, h=0.

Every enclosed unit square has all four sides traversed so by counting
inside and outside sides of the segments have 2*N = 4*A + B.  This can be
verified for A[k] and B[k]

    4*A[k] + B[k] = 4* / (2^h/2 - 1) * (2^h - 1)  if k even
                       \ (2^h - 1) * (2^h - 1)  if k odd
                    + /  6*2^h - 4   if k even
                      \  8*2^h - 4   if k odd
                  = / 2 * 2^h * 2^h  if k even
                    \ 4 * 2^h * 2^h  if k odd
                  = 2*2^k

This relation also gives a formula for B[k] using the floor and ceil pair
from A[k]

    B[k] = 2*2^k - 4*A[k]
         = 2*2^k - (2^floor((k+1)/2) - 2) * (2^ceil((k+1)/2) - 2)

=for GP-DEFINE  BfromA(k) = 2*2^k - (2^floor((k+1)/2) - 2) * (2^ceil((k+1)/2) - 2)

=for GP-Test vector(length(Bsamples), k, BfromA(k-1)) == Bsamples

=head2 Single Points

The number of single-visited points for N=0 to N=2^k inclusive is

    S[k] = /  3*2^h - 1   if k even
           \  4*2^h - 1   if k odd
    = 2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, ...   (A052955)

=for GP-DEFINE  Ssamples = [2, 3, 5, 7, 11, 15, 23, 31, 47, 63, 95, 127, 191, 255, 383, 511, 767]

=for GP-DEFINE  S(k) = local(h); h=floor(k/2); if(k%2, 4*2^h-1, 3*2^h-1)

=for GP-Test vector(length(Ssamples), k, S(k-1)) == Ssamples

=cut

# Pari: for(k=0,16,print1(S(k),", "))

=pod

The single points are all on the outer edges and those sides can be counted
easily.

The singles can also be obtained from the boundary.  Each new line segment
which increases the area also increases the double points, so area=doubles.
Such a segment decreases the singles by -1 and the boundary by -2.  A new
line segment which doesn't enclose new area increases the singles by +1 and
the boundary by +2.  Starting from singles=1 boundary=0 means

    S[N] = B[N]/2 + 1

=for GP-Test vector(20, k, S(k-1)) == vector(20, k, B(k-1)/2+1)

Or with singles and doubles adding up to N+1 points the doubles=area can
give the singles from the area.

    S + 2*D = N+1          N=number of segments, N+1=number of points

=for GP-Test vector(20, k, S(k-1)) == vector(20, k, 2^(k-1)+1 - 2*A(k-1))

=head1 OEIS

The alternate paper folding curve is in Sloane's Online Encyclopedia of
Integer Sequences as

=over

L<http://oeis.org/A106665> (etc)

=back

    A106665   next turn 1=left,0=right, a(0) is turn at N=1
    A209615   turn 1=left,-1=right
    A020985   Golay/Rudin/Shapiro sequence +1,-1
                dX and dY alternately
                dSum, change in X+Y
    A020986   Golay/Rudin/Shapiro cumulative
                X coordinate (undoubled)
                X+Y coordinate sum
    A020990   Golay/Rudin/Shapiro * (-1)^n cumulative
                Y coordinate (undoubled)
                X-Y diff, starting from N=1
    A020987   GRS with values 0,1 instead of +1,-1

Since the X and Y coordinates each change alternately, each coordinate
appears twice, for instance X=0,1,1,2,2,3,3,2,2,etc.  A020986 and A020990
are "undoubled" X and Y in the sense of just one copy of each of those
paired values.

    A077957   Y at N=2^k, being alternately 0 and 2^(k/2)

    A000695   N on X axis,   base 4 digits 0,1 only
    A062880   N on diagonal, base 4 digits 0,2 only

    A022155   N positions of left or down segment,
                being GRS < 0,
                ie. dSum < 0 so move to previous anti-diagonal
    A203463   N positions of up or right segment,
                being GRS > 0,
                ie. dSum > 0 so move to next anti-diagonal

    A020991   N-1 of first time on X+Y=k anti-diagonal
    A212591   N-1 of last time on X+Y=k anti-diagonal
    A093573   N-1 of points on the anti-diagonals d=X+Y,
                by ascending N-1 value within each diagonal

A020991 etc have values N-1, ie. the numbering differs by 1 from the N here,
since they're based on the A020986 cumulative GRS starting at n=0 for value
GRS(0).  This matches the turn sequence A106665 starting at n=0 for the
first turn, whereas for the path here that's N=1.

    A027556   area*2 to N=2^k
    A134057   area to N=4^k
    A060867   area to N=2*4^k
    A122746   area increment N=2^k to N=2^(k+1)

    A000225   convex hull area*2, being 2^k-1

    A027383   boundary/2 to N=2^k
               also boundary verticals or horizontals
               (boundary is half verticals half horizontals)
    A131128   boundary to N=4^k
    A028399   boundary to N=2*4^k

    A052955   single-visited points to N=2^k
    A052940   single-visited points to N=4^k, being 3*2^n-1

    arms=2
      A062880   N on X axis, base 4 digits 0,2 only

    arms=3
      A001196   N on X axis, base 4 digits 0,3 only

=head1 SEE ALSO

L<Math::PlanePath>,
L<Math::PlanePath::AlternatePaperMidpoint>

L<Math::PlanePath::DragonCurve>,
L<Math::PlanePath::CCurve>,
L<Math::PlanePath::HIndexing>,
L<Math::PlanePath::ZOrderCurve>

L<Math::NumSeq::GolayRudinShapiro>,
L<Math::NumSeq::GolayRudinShapiroCumulative>

Michel MendE<232>s France and G. Tenenbaum, "Dimension des Courbes Planes,
Papiers Plies et Suites de Rudin-Shapiro", Bulletin de la S.M.F., volume
109, 1981, pages 207-215.
L<http://www.numdam.org/item?id=BSMF_1981__109__207_0>

=head1 HOME PAGE

L<http://user42.tuxfamily.org/math-planepath/index.html>

=head1 LICENSE

Copyright 2011, 2012, 2013, 2014, 2015, 2016 Kevin Ryde

This file is part of Math-PlanePath.

Math-PlanePath is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public License as published by the Free
Software Foundation; either version 3, or (at your option) any later
version.

Math-PlanePath is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
more details.

You should have received a copy of the GNU General Public License along with
Math-PlanePath.  If not, see <http://www.gnu.org/licenses/>.

=cut