This file is indexed.

/usr/share/perl5/Math/Bezier.pm is in libmath-bezier-perl 0.01-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
#========================================================================
# Math::Bezier
#
# Module for the solution of Bezier curves based on the algorithm 
# presented by Robert D. Miller in Graphics Gems V, "Quick and Simple
# Bezier Curve Drawing".
#
# Andy Wardley <abw@kfs.org>
#
# Copyright (C) 2000 Andy Wardley.  All Rights Reserved.
#
# This module is free software; you can redistribute it and/or
# modify it under the same terms as Perl itself.
#
#========================================================================

package Math::Bezier;

use strict;
use vars qw( $VERSION );

$VERSION = '0.01';

use constant X  => 0;
use constant Y  => 1;
use constant CX => 2;
use constant CY => 3;


#------------------------------------------------------------------------
# new($x1, $y1, $x2, $y2, ..., $xn, $yn)
#
# Constructor method to create a new Bezier curve form.
#------------------------------------------------------------------------

sub new {
    my $class = shift;
    my @points = ref $_[0] eq 'ARRAY' ? @{$_[0]} : @_;
    my $size = scalar @points;
    my @ctrl;

    die "invalid control points, expects (x1, y1, x2, y2, ..., xn, yn)\n"
	if $size % 2;

    while (@points) {
	push(@ctrl, [ splice(@points, 0, 2) ]);
    }
    $size = scalar @ctrl;

    my $n = $size - 1;
    my $choose;

    for (my $k = 0; $k <= $n; $k++) {
	if ($k == 0) {
	    $choose = 1;
	}
	elsif ($k == 1) {
	    $choose = $n;
	}
	else {
	    $choose *= ($n - $k + 1) / $k;
	}
	$ctrl[$k]->[CX] = $ctrl[$k]->[X] * $choose;
	$ctrl[$k]->[CY] = $ctrl[$k]->[Y] * $choose;
    }

    bless \@ctrl, $class;
}


#------------------------------------------------------------------------
# point($theta)
#
# Calculate (x, y) point on curve at position $theta (in the range 0 - 1)
# along the curve.  Returns a list ($x, $y) or reference to a list 
# [$x, $y] when called in list or scalar context respectively.
#------------------------------------------------------------------------

sub point {
    my ($self, $t) = @_;
    my $size = scalar @$self;
    my (@points, $point);

    my $n = $size - 1;
    my $u = $t;

    push(@points, [ $self->[0]->[CX], $self->[0]->[CY] ]);

    for (my $k = 1; $k <= $n; $k++) {
	push(@points, [ $self->[$k]->[CX] * $u, $self->[$k]->[CY] * $u ]);
	$u *= $t;
    }

    $point = [ @{ $points[$n] } ];
    my $t1 = 1 - $t;
    my $tt = $t1;

    for (my $k = $n - 1; $k >= 0; $k--) {
	$point->[X] += $points[$k]->[X] * $tt;
	$point->[Y] += $points[$k]->[Y] * $tt;
	$tt = $tt * $t1;
    }

    return wantarray ? (@$point) : $point;
}    


#------------------------------------------------------------------------
# curve($npoints)
#
# Sample curve at $npoints points.  Returns a list or reference to a list 
# of (x, y) points along the curve, when called in list or scalar context
# respectively.
#------------------------------------------------------------------------

sub curve {
    my ($self, $npoints) = @_;
    $npoints = 20 unless defined $npoints;
    my @points;
    $npoints--;
    foreach (my $t = 0; $t <= $npoints; $t++) {
	push(@points, ($self->point($t / $npoints)));
    }
    return wantarray ? (@points) : \@points;
}

1;

__END__

=head1 NAME

Math::Bezier - solution of Bezier Curves

=head1 SYNOPSIS

    use Math::Bezier;

    # create curve passing list of (x, y) control points
    my $bezier = Math::Bezier->new($x1, $y1, $x2, $y2, ..., $xn, $yn);

    # or pass reference to list of control points
    my $bezier = Math::Bezier->new([ $x1, $y1, $x2, $y2, ..., $xn, $yn]);

    # determine (x, y) at point along curve, range 0 -> 1
    my ($x, $y) = $bezier->point(0.5);

    # returns list ref in scalar context
    my $xy = $bezier->point(0.5);

    # return list of 20 (x, y) points along curve
    my @curve = $bezier->curve(20);

    # returns list ref in scalar context
    my $curve = $bezier->curve(20);

=head1 DESCRIPTION

This module implements the algorithm for the solution of Bezier curves
as presented by Robert D. Miller in Graphics Gems V, "Quick and Simple
Bezier Curve Drawing".

A new Bezier curve is created using the new() constructor, passing a list
of (x, y) control points.

    use Math::Bezier;

    my @control = ( 0, 0, 10, 20, 30, -20, 40, 0 );
    my $bezier  = Math::Bezier->new(@control);

Alternately, a reference to a list of control points may be passed.

    my $bezier  = Math::Bezier->new(\@control);

The point($theta) method can then be called on the object, passing a
value in the range 0 to 1 which represents the distance along the
curve.  When called in list context, the method returns the x and y
coordinates of that point on the Bezier curve.

    my ($x, $y) = $bezier->point(0.5);
    print "x: $x  y: $y\n

When called in scalar context, it returns a reference to a list containing
the x and y coordinates.

    my $point = $bezier->point(0.5);
    print "x: $point->[0]  y: $point->[1]\n";

The curve($n) method can be used to return a set of points sampled
along the length of the curve (i.e. in the range 0 <= $theta <= 1).
The parameter indicates the number of sample points required,
defaulting to 20 if undefined.  The method returns a list of ($x1,
$y1, $x2, $y2, ..., $xn, $yn) points when called in list context, or 
a reference to such an array when called in scalar context.

    my @points = $bezier->curve(10);

    while (@points) {
	my ($x, $y) = splice(@points, 0, 2);
	print "x: $x  y: $y\n";
    }

    my $points = $bezier->curve(10);

    while (@$points) {
	my ($x, $y) = splice(@$points, 0, 2);
	print "x: $x  y: $y\n";
    }

=head1 AUTHOR

Andy Wardley E<lt>abw@kfs.orgE<gt>

=head1 SEE ALSO

Graphics Gems 5, edited by Alan W. Paeth, Academic Press, 1995,
ISBN 0-12-543455-3.  Section IV.8, 'Quick and Simple Bezier Curve
Drawing' by Robert D. Miller, pages 206-209.

=cut