This file is indexed.

/usr/share/doc/libghc-fingertree-doc/html/fingertree.txt is in libghc-fingertree-doc 0.1.1.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
-- Hoogle documentation, generated by Haddock
-- See Hoogle, http://www.haskell.org/hoogle/


-- | Generic finger-tree structure, with example instances
--   
--   A general sequence representation with arbitrary annotations, for use
--   as a base for implementations of various collection types, with
--   examples, as described in section 4 of
--   
--   <ul>
--   <li>Ralf Hinze and Ross Paterson, "Finger trees: a simple
--   general-purpose data structure", <i>Journal of Functional
--   Programming</i> 16:2 (2006) pp 197-217.
--   <a>http://staff.city.ac.uk/~ross/papers/FingerTree.html</a></li>
--   </ul>
--   
--   For a tuned sequence type, see <tt>Data.Sequence</tt> in the
--   <tt>containers</tt> package, which is a specialization of this
--   structure.
@package fingertree
@version 0.1.1.0


-- | A general sequence representation with arbitrary annotations, for use
--   as a base for implementations of various collection types, as
--   described in section 4 of
--   
--   <ul>
--   <li>Ralf Hinze and Ross Paterson, "Finger trees: a simple
--   general-purpose data structure", <i>Journal of Functional
--   Programming</i> 16:2 (2006) pp 197-217.
--   <a>http://staff.city.ac.uk/~ross/papers/FingerTree.html</a></li>
--   </ul>
--   
--   For a directly usable sequence type, see <tt>Data.Sequence</tt>, which
--   is a specialization of this structure.
--   
--   An amortized running time is given for each operation, with <i>n</i>
--   referring to the length of the sequence. These bounds hold even in a
--   persistent (shared) setting.
--   
--   <i>Note</i>: Many of these operations have the same names as similar
--   operations on lists in the <a>Prelude</a>. The ambiguity may be
--   resolved using either qualification or the <tt>hiding</tt> clause.
module Data.FingerTree

-- | A representation of a sequence of values of type <tt>a</tt>, allowing
--   access to the ends in constant time, and append and split in time
--   logarithmic in the size of the smaller piece.
--   
--   The collection is also parameterized by a measure type <tt>v</tt>,
--   which is used to specify a position in the sequence for the
--   <a>split</a> operation. The types of the operations enforce the
--   constraint <tt><a>Measured</a> v a</tt>, which also implies that the
--   type <tt>v</tt> is determined by <tt>a</tt>.
--   
--   A variety of abstract data types can be implemented by using different
--   element types and measurements.
data FingerTree v a

-- | Things that can be measured.
class (Monoid v) => Measured v a | a -> v
measure :: Measured v a => a -> v

-- | <i>O(1)</i>. The empty sequence.
empty :: Measured v a => FingerTree v a

-- | <i>O(1)</i>. A singleton sequence.
singleton :: Measured v a => a -> FingerTree v a

-- | <i>O(1)</i>. Add an element to the left end of a sequence. Mnemonic: a
--   triangle with the single element at the pointy end.
(<|) :: (Measured v a) => a -> FingerTree v a -> FingerTree v a
infixr 5 <|

-- | <i>O(1)</i>. Add an element to the right end of a sequence. Mnemonic:
--   a triangle with the single element at the pointy end.
(|>) :: (Measured v a) => FingerTree v a -> a -> FingerTree v a
infixl 5 |>

-- | <i>O(log(min(n1,n2)))</i>. Concatenate two sequences.
(><) :: (Measured v a) => FingerTree v a -> FingerTree v a -> FingerTree v a
infixr 5 ><

-- | <i>O(n)</i>. Create a sequence from a finite list of elements.
fromList :: (Measured v a) => [a] -> FingerTree v a

-- | <i>O(1)</i>. Is this the empty sequence?
null :: (Measured v a) => FingerTree v a -> Bool

-- | View of the left end of a sequence.
data ViewL s a

-- | empty sequence
EmptyL :: ViewL s a

-- | leftmost element and the rest of the sequence
(:<) :: a -> s a -> ViewL s a

-- | View of the right end of a sequence.
data ViewR s a

-- | empty sequence
EmptyR :: ViewR s a

-- | the sequence minus the rightmost element, and the rightmost element
(:>) :: s a -> a -> ViewR s a

-- | <i>O(1)</i>. Analyse the left end of a sequence.
viewl :: (Measured v a) => FingerTree v a -> ViewL (FingerTree v) a

-- | <i>O(1)</i>. Analyse the right end of a sequence.
viewr :: (Measured v a) => FingerTree v a -> ViewR (FingerTree v) a

-- | <i>O(log(min(i,n-i)))</i>. Split a sequence at a point where the
--   predicate on the accumulated measure changes from <a>False</a> to
--   <a>True</a>.
--   
--   For predictable results, one should ensure that there is only one such
--   point, i.e. that the predicate is <i>monotonic</i>.
split :: (Measured v a) => (v -> Bool) -> FingerTree v a -> (FingerTree v a, FingerTree v a)

-- | <i>O(log(min(i,n-i)))</i>. Given a monotonic predicate <tt>p</tt>,
--   <tt><a>takeUntil</a> p t</tt> is the largest prefix of <tt>t</tt>
--   whose measure does not satisfy <tt>p</tt>.
--   
--   <ul>
--   <li><pre><a>takeUntil</a> p t = <a>fst</a> (<a>split</a> p
--   t)</pre></li>
--   </ul>
takeUntil :: (Measured v a) => (v -> Bool) -> FingerTree v a -> FingerTree v a

-- | <i>O(log(min(i,n-i)))</i>. Given a monotonic predicate <tt>p</tt>,
--   <tt><a>dropUntil</a> p t</tt> is the rest of <tt>t</tt> after removing
--   the largest prefix whose measure does not satisfy <tt>p</tt>.
--   
--   <ul>
--   <li><pre><a>dropUntil</a> p t = <a>snd</a> (<a>split</a> p
--   t)</pre></li>
--   </ul>
dropUntil :: (Measured v a) => (v -> Bool) -> FingerTree v a -> FingerTree v a

-- | <i>O(n)</i>. The reverse of a sequence.
reverse :: (Measured v a) => FingerTree v a -> FingerTree v a

-- | Like <a>fmap</a>, but with a more constrained type.
fmap' :: (Measured v1 a1, Measured v2 a2) => (a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2

-- | Map all elements of the tree with a function that also takes the
--   measure of the prefix of the tree to the left of the element.
fmapWithPos :: (Measured v1 a1, Measured v2 a2) => (v1 -> a1 -> a2) -> FingerTree v1 a1 -> FingerTree v2 a2

-- | Like <a>fmap</a>, but safe only if the function preserves the measure.
unsafeFmap :: (a -> b) -> FingerTree v a -> FingerTree v b

-- | Like <a>traverse</a>, but with a more constrained type.
traverse' :: (Measured v1 a1, Measured v2 a2, Applicative f) => (a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)

-- | Traverse the tree with a function that also takes the measure of the
--   prefix of the tree to the left of the element.
traverseWithPos :: (Measured v1 a1, Measured v2 a2, Applicative f) => (v1 -> a1 -> f a2) -> FingerTree v1 a1 -> f (FingerTree v2 a2)

-- | Like <a>traverse</a>, but safe only if the function preserves the
--   measure.
unsafeTraverse :: (Applicative f) => (a -> f b) -> FingerTree v a -> f (FingerTree v b)
instance (GHC.Show.Show v, GHC.Show.Show a) => GHC.Show.Show (Data.FingerTree.Node v a)
instance GHC.Show.Show a => GHC.Show.Show (Data.FingerTree.Digit a)
instance (GHC.Read.Read a, GHC.Read.Read (s a)) => GHC.Read.Read (Data.FingerTree.ViewR s a)
instance (GHC.Show.Show a, GHC.Show.Show (s a)) => GHC.Show.Show (Data.FingerTree.ViewR s a)
instance (GHC.Classes.Ord a, GHC.Classes.Ord (s a)) => GHC.Classes.Ord (Data.FingerTree.ViewR s a)
instance (GHC.Classes.Eq a, GHC.Classes.Eq (s a)) => GHC.Classes.Eq (Data.FingerTree.ViewR s a)
instance (GHC.Read.Read a, GHC.Read.Read (s a)) => GHC.Read.Read (Data.FingerTree.ViewL s a)
instance (GHC.Show.Show a, GHC.Show.Show (s a)) => GHC.Show.Show (Data.FingerTree.ViewL s a)
instance (GHC.Classes.Ord a, GHC.Classes.Ord (s a)) => GHC.Classes.Ord (Data.FingerTree.ViewL s a)
instance (GHC.Classes.Eq a, GHC.Classes.Eq (s a)) => GHC.Classes.Eq (Data.FingerTree.ViewL s a)
instance GHC.Base.Functor s => GHC.Base.Functor (Data.FingerTree.ViewL s)
instance GHC.Base.Functor s => GHC.Base.Functor (Data.FingerTree.ViewR s)
instance Data.FingerTree.Measured v a => GHC.Base.Monoid (Data.FingerTree.FingerTree v a)
instance Data.Foldable.Foldable Data.FingerTree.Digit
instance Data.FingerTree.Measured v a => Data.FingerTree.Measured v (Data.FingerTree.Digit a)
instance Data.Foldable.Foldable (Data.FingerTree.Node v)
instance GHC.Base.Monoid v => Data.FingerTree.Measured v (Data.FingerTree.Node v a)
instance Data.FingerTree.Measured v a => Data.FingerTree.Measured v (Data.FingerTree.FingerTree v a)
instance Data.Foldable.Foldable (Data.FingerTree.FingerTree v)
instance GHC.Classes.Eq a => GHC.Classes.Eq (Data.FingerTree.FingerTree v a)
instance GHC.Classes.Ord a => GHC.Classes.Ord (Data.FingerTree.FingerTree v a)
instance GHC.Show.Show a => GHC.Show.Show (Data.FingerTree.FingerTree v a)


-- | Interval maps implemented using the <a>FingerTree</a> type, following
--   section 4.8 of
--   
--   <ul>
--   <li>Ralf Hinze and Ross Paterson, "Finger trees: a simple
--   general-purpose data structure", <i>Journal of Functional
--   Programming</i> 16:2 (2006) pp 197-217.
--   <a>http://staff.city.ac.uk/~ross/papers/FingerTree.html</a></li>
--   </ul>
--   
--   An amortized running time is given for each operation, with <i>n</i>
--   referring to the size of the priority queue. These bounds hold even in
--   a persistent (shared) setting.
--   
--   <i>Note</i>: Many of these operations have the same names as similar
--   operations on lists in the <a>Prelude</a>. The ambiguity may be
--   resolved using either qualification or the <tt>hiding</tt> clause.
module Data.IntervalMap.FingerTree

-- | A closed interval. The lower bound should be less than or equal to the
--   higher bound.
data Interval v
Interval :: v -> v -> Interval v
[low] :: Interval v -> v
[high] :: Interval v -> v

-- | An interval in which the lower and upper bounds are equal.
point :: v -> Interval v

-- | Map of closed intervals, possibly with duplicates. The <a>Foldable</a>
--   and <a>Traversable</a> instances process the intervals in
--   lexicographical order.
data IntervalMap v a

-- | <i>O(1)</i>. The empty interval map.
empty :: (Ord v) => IntervalMap v a

-- | <i>O(1)</i>. Interval map with a single entry.
singleton :: (Ord v) => Interval v -> a -> IntervalMap v a

-- | <i>O(log n)</i>. Insert an interval into a map. The map may contain
--   duplicate intervals; the new entry will be inserted before any
--   existing entries for the same interval.
insert :: (Ord v) => Interval v -> a -> IntervalMap v a -> IntervalMap v a

-- | <i>O(m log (n</i>/<i>m))</i>. Merge two interval maps. The map may
--   contain duplicate intervals; entries with equal intervals are kept in
--   the original order.
union :: (Ord v) => IntervalMap v a -> IntervalMap v a -> IntervalMap v a

-- | <i>O(k log (n</i>/<i>k))</i>. All intervals that contain the given
--   point, in lexicographical order.
search :: (Ord v) => v -> IntervalMap v a -> [(Interval v, a)]

-- | <i>O(k log (n</i>/<i>k))</i>. All intervals that intersect with the
--   given interval, in lexicographical order.
intersections :: (Ord v) => Interval v -> IntervalMap v a -> [(Interval v, a)]

-- | <i>O(k log (n</i>/<i>k))</i>. All intervals that contain the given
--   interval, in lexicographical order.
dominators :: (Ord v) => Interval v -> IntervalMap v a -> [(Interval v, a)]
instance GHC.Show.Show v => GHC.Show.Show (Data.IntervalMap.FingerTree.Interval v)
instance GHC.Classes.Ord v => GHC.Classes.Ord (Data.IntervalMap.FingerTree.Interval v)
instance GHC.Classes.Eq v => GHC.Classes.Eq (Data.IntervalMap.FingerTree.Interval v)
instance GHC.Base.Functor (Data.IntervalMap.FingerTree.Node v)
instance Data.Foldable.Foldable (Data.IntervalMap.FingerTree.Node v)
instance Data.Traversable.Traversable (Data.IntervalMap.FingerTree.Node v)
instance GHC.Classes.Ord v => GHC.Base.Monoid (Data.IntervalMap.FingerTree.IntInterval v)
instance GHC.Classes.Ord v => Data.FingerTree.Measured (Data.IntervalMap.FingerTree.IntInterval v) (Data.IntervalMap.FingerTree.Node v a)
instance GHC.Base.Functor (Data.IntervalMap.FingerTree.IntervalMap v)
instance Data.Foldable.Foldable (Data.IntervalMap.FingerTree.IntervalMap v)
instance Data.Traversable.Traversable (Data.IntervalMap.FingerTree.IntervalMap v)
instance GHC.Classes.Ord v => GHC.Base.Monoid (Data.IntervalMap.FingerTree.IntervalMap v a)


-- | Min-priority queues implemented using the <a>FingerTree</a> type,
--   following section 4.6 of
--   
--   <ul>
--   <li>Ralf Hinze and Ross Paterson, "Finger trees: a simple
--   general-purpose data structure", <i>Journal of Functional
--   Programming</i> 16:2 (2006) pp 197-217.
--   <a>http://staff.city.ac.uk/~ross/papers/FingerTree.html</a></li>
--   </ul>
--   
--   These have the same big-O complexity as skew heap implementations, but
--   are approximately an order of magnitude slower. On the other hand,
--   they are stable, so they can be used for fair queueing. They are also
--   shallower, so that <a>fmap</a> consumes less space.
--   
--   An amortized running time is given for each operation, with <i>n</i>
--   referring to the size of the priority queue. These bounds hold even in
--   a persistent (shared) setting.
--   
--   <i>Note</i>: Many of these operations have the same names as similar
--   operations on lists in the <a>Prelude</a>. The ambiguity may be
--   resolved using either qualification or the <tt>hiding</tt> clause.
module Data.PriorityQueue.FingerTree

-- | Priority queues.
data PQueue k v

-- | <i>O(1)</i>. The empty priority queue.
empty :: Ord k => PQueue k v

-- | <i>O(1)</i>. A singleton priority queue.
singleton :: Ord k => k -> v -> PQueue k v

-- | <i>O(log(min(n1,n2)))</i>. Concatenate two priority queues.
--   <a>union</a> is associative, with identity <a>empty</a>.
--   
--   If there are entries with the same priority in both arguments,
--   <a>minView</a> of <tt><a>union</a> xs ys</tt> will return those from
--   <tt>xs</tt> before those from <tt>ys</tt>.
union :: Ord k => PQueue k v -> PQueue k v -> PQueue k v

-- | <i>O(log n)</i>. Add a (priority, value) pair to the front of a
--   priority queue.
--   
--   <ul>
--   <li><pre><a>insert</a> k v q = <a>union</a> (<a>singleton</a> k v)
--   q</pre></li>
--   </ul>
--   
--   If <tt>q</tt> contains entries with the same priority <tt>k</tt>,
--   <a>minView</a> of <tt><a>insert</a> k v q</tt> will return them after
--   this one.
insert :: Ord k => k -> v -> PQueue k v -> PQueue k v

-- | <i>O(log n)</i>. Add a (priority, value) pair to the back of a
--   priority queue.
--   
--   <ul>
--   <li><pre><a>add</a> k v q = <a>union</a> q (<a>singleton</a> k
--   v)</pre></li>
--   </ul>
--   
--   If <tt>q</tt> contains entries with the same priority <tt>k</tt>,
--   <a>minView</a> of <tt><a>add</a> k v q</tt> will return them before
--   this one.
add :: Ord k => k -> v -> PQueue k v -> PQueue k v

-- | <i>O(n)</i>. Create a priority queue from a finite list of priorities
--   and values.
fromList :: Ord k => [(k, v)] -> PQueue k v

-- | <i>O(1)</i>. Is this the empty priority queue?
null :: Ord k => PQueue k v -> Bool

-- | <i>O(1)</i> for the element, <i>O(log(n))</i> for the reduced queue.
--   Returns <a>Nothing</a> for an empty map, or the value associated with
--   the minimal priority together with the rest of the priority queue.
--   
--   <ul>
--   <li><pre><a>minView</a> <a>empty</a> = <a>Nothing</a></pre></li>
--   <li><pre><a>minView</a> (<a>singleton</a> k v) = <a>Just</a> (v,
--   <a>empty</a>)</pre></li>
--   </ul>
minView :: Ord k => PQueue k v -> Maybe (v, PQueue k v)

-- | <i>O(1)</i> for the element, <i>O(log(n))</i> for the reduced queue.
--   Returns <a>Nothing</a> for an empty map, or the minimal (priority,
--   value) pair together with the rest of the priority queue.
--   
--   <ul>
--   <li><pre><a>minViewWithKey</a> <a>empty</a> =
--   <a>Nothing</a></pre></li>
--   <li><pre><a>minViewWithKey</a> (<a>singleton</a> k v) = <a>Just</a>
--   ((k, v), <a>empty</a>)</pre></li>
--   <li>If <tt><a>minViewWithKey</a> qi = <a>Just</a> ((ki, vi), qi')</tt>
--   and <tt>k1 &lt;= k2</tt>, then <tt><a>minViewWithKey</a> (<a>union</a>
--   q1 q2) = <a>Just</a> ((k1, v1), <a>union</a> q1' q2)</tt></li>
--   <li>If <tt><a>minViewWithKey</a> qi = <a>Just</a> ((ki, vi), qi')</tt>
--   and <tt>k2 &lt; k1</tt>, then <tt><a>minViewWithKey</a> (<a>union</a>
--   q1 q2) = <a>Just</a> ((k2, v2), <a>union</a> q1 q2')</tt></li>
--   </ul>
minViewWithKey :: Ord k => PQueue k v -> Maybe ((k, v), PQueue k v)
instance GHC.Base.Functor (Data.PriorityQueue.FingerTree.Entry k)
instance Data.Foldable.Foldable (Data.PriorityQueue.FingerTree.Entry k)
instance GHC.Classes.Ord k => GHC.Base.Monoid (Data.PriorityQueue.FingerTree.Prio k v)
instance GHC.Classes.Ord k => Data.FingerTree.Measured (Data.PriorityQueue.FingerTree.Prio k v) (Data.PriorityQueue.FingerTree.Entry k v)
instance GHC.Classes.Ord k => GHC.Base.Functor (Data.PriorityQueue.FingerTree.PQueue k)
instance GHC.Classes.Ord k => Data.Foldable.Foldable (Data.PriorityQueue.FingerTree.PQueue k)
instance GHC.Classes.Ord k => GHC.Base.Monoid (Data.PriorityQueue.FingerTree.PQueue k v)