This file is indexed.

/usr/include/dune/localfunctions/lagrange/q1/q1localbasis.hh is in libdune-localfunctions-dev 2.5.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_Q1_LOCALBASIS_HH
#define DUNE_Q1_LOCALBASIS_HH

#include <numeric>

#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>

namespace Dune
{
  /**@ingroup LocalBasisImplementation
         \brief Lagrange shape functions of order 1 on the reference cube.

         Also known as \f$Q^1\f$.

         \tparam D Type to represent the field in the domain.
         \tparam R Type to represent the field in the range.
     \tparam dim Dimension of the cube

         \nosubgrouping
   */
  template<class D, class R, int dim>
  class Q1LocalBasis
  {
  public:
    typedef LocalBasisTraits<D,dim,Dune::FieldVector<D,dim>,R,1,Dune::FieldVector<R,1>,
        Dune::FieldMatrix<R,1,dim> > Traits;

    //! \brief number of shape functions
    unsigned int size () const
    {
      return 1<<dim;
    }

    //! \brief Evaluate all shape functions
    inline void evaluateFunction (const typename Traits::DomainType& in,
                                  std::vector<typename Traits::RangeType>& out) const
    {
      out.resize(size());

      for (size_t i=0; i<size(); i++) {

        out[i] = 1;

        for (int j=0; j<dim; j++)
          // if j-th bit of i is set multiply with in[j], else with 1-in[j]
          out[i] *= (i & (1<<j)) ? in[j] :  1-in[j];

      }

    }

    //! \brief Evaluate Jacobian of all shape functions
    inline void
    evaluateJacobian (const typename Traits::DomainType& in,         // position
                      std::vector<typename Traits::JacobianType>& out) const      // return value
    {
      out.resize(size());

      // Loop over all shape functions
      for (size_t i=0; i<size(); i++) {

        // Loop over all coordinate directions
        for (int j=0; j<dim; j++) {

          // Initialize: the overall expression is a product
          // if j-th bit of i is set to -1, else 1
          out[i][0][j] = (i & (1<<j)) ? 1 : -1;

          for (int k=0; k<dim; k++) {

            if (j!=k)
              // if k-th bit of i is set multiply with in[j], else with 1-in[j]
              out[i][0][j] *= (i & (1<<k)) ? in[k] :  1-in[k];

          }

        }

      }

    }

    /** \brief Evaluate partial derivatives of any order of all shape functions
     * \param order Order of the partial derivatives, in the classic multi-index notation
     * \param in Position where to evaluate the derivatives
     * \param[out] out Return value: the desired partial derivatives
     */
    void partial(const std::array<unsigned int,dim>& order,
                 const typename Traits::DomainType& in,
                 std::vector<typename Traits::RangeType>& out) const
    {
      auto totalOrder = std::accumulate(order.begin(), order.end(), 0);

      if (totalOrder == 0) {
        evaluateFunction(in, out);
      }
      else if (totalOrder == 1) {
        out.resize(size());

        auto direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
        if (direction >= dim) {
          DUNE_THROW(RangeError, "Direction of partial derivative not found!");
        }

        // Loop over all shape functions
        for (std::size_t i = 0; i < size(); ++i) {

          // Initialize: the overall expression is a product
          // if j-th bit of i is set to -1, else 1
          out[i] = (i & (1<<direction)) ? 1 : -1;

          for (int k = 0; k < dim; ++k) {
            if (direction != k)
              // if k-th bit of i is set multiply with in[j], else with 1-in[j]
              out[i] *= (i & (1<<k)) ? in[k] :  1-in[k];
          }

        }
      }
      else
      {
        DUNE_THROW(NotImplemented, "To be implemented!");
      }
    }

    //! \brief Polynomial order of the shape functions
    unsigned int order () const
    {
      return 1;
    }
  };
}
#endif