This file is indexed.

/usr/include/dune/localfunctions/lagrange/pyramidp1/pyramidp1localbasis.hh is in libdune-localfunctions-dev 2.5.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_PYRAMID_P1_LOCALBASIS_HH
#define DUNE_PYRAMID_P1_LOCALBASIS_HH

#include <numeric>

#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>


namespace Dune
{
  /**@ingroup LocalBasisImplementation
         \brief Linear Lagrange shape functions on the pyramid.

         Defines the linear shape functions on pyramid.

         \tparam D Type to represent the field in the domain.
         \tparam R Type to represent the field in the range.

         \nosubgrouping
   */
  template<class D, class R>
  class PyramidP1LocalBasis
  {
  public:
    //! \brief export type traits for function signature
    typedef LocalBasisTraits<D,3,Dune::FieldVector<D,3>,R,1,Dune::FieldVector<R,1>,
        Dune::FieldMatrix<R,1,3> > Traits;

    //! \brief number of shape functions
    unsigned int size () const
    {
      return 5;
    }

    //! \brief Evaluate all shape functions
    inline void evaluateFunction (const typename Traits::DomainType& in,      // position
                                  std::vector<typename Traits::RangeType>& out) const     // return value
    {
      out.resize(5);

      if(in[0] > in[1])
      {
        out[0] = (1-in[0])*(1-in[1])-in[2]*(1-in[1]);
        out[1] = in[0]*(1-in[1])-in[2]*in[1];
        out[2] = (1-in[0])*in[1]-in[2]*in[1];
        out[3] = in[0]*in[1]+in[2]*in[1];
      }
      else
      {
        out[0] = (1-in[0])*(1-in[1])-in[2]*(1-in[0]);
        out[1] = in[0]*(1-in[1])-in[2]*in[0];
        out[2] = (1-in[0])*in[1]-in[2]*in[0];
        out[3] = in[0]*in[1]+in[2]*in[0];
      }


      out[4] = in[2];


    }

    //! \brief Evaluate Jacobian of all shape functions
    inline void
    evaluateJacobian (const typename Traits::DomainType& in,         // position
                      std::vector<typename Traits::JacobianType>& out) const      // return value
    {
      out.resize(5);

      if(in[0] > in[1])
      {
        out[0][0][0] = -1 + in[1];  out[0][0][1] = -1 + in[0] + in[2]; out[0][0][2] = -1 + in[1];
        out[1][0][0] = 1  - in[1];  out[1][0][1] = -in[0] - in[2];     out[1][0][2] = -in[1];
        out[2][0][0] = -in[1];          out[2][0][1] = 1 - in[0] - in[2];  out[2][0][2] = -in[1];
        out[3][0][0] = in[1];       out[3][0][1] = in[0]+in[2];        out[3][0][2] = in[1];
      }
      else
      {
        out[0][0][0] = -1 + in[1] + in[2]; out[0][0][1] = -1 + in[0];  out[0][0][2] = -1 + in[0];
        out[1][0][0] = 1 - in[1] - in[2];  out[1][0][1] = -in[0];      out[1][0][2] = -in[0];
        out[2][0][0] = -in[1] - in[2];     out[2][0][1] = 1 - in[0];   out[2][0][2] = -in[0];
        out[3][0][0] = in[1] + in[2];      out[3][0][1] = in[0];       out[3][0][2] = in[0];

      }

      out[4][0][0] = 0;   out[4][0][1] = 0;       out[4][0][2] = 1;
    }

    //! \brief Evaluate partial derivatives of all shape functions
    void partial (const std::array<unsigned int, 3>& order,
                  const typename Traits::DomainType& in,         // position
                  std::vector<typename Traits::RangeType>& out) const      // return value
    {
      auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
      if (totalOrder == 0) {
        evaluateFunction(in, out);
      } else if (totalOrder == 1) {
        out.resize(size());

        auto const direction = std::distance(order.begin(), std::find(order.begin(), order.end(), 1));
        if (in[0] > in[1])
        {
          switch (direction) {
            case 0:
              out[0] = -1 + in[1];
              out[1] = 1  - in[1];
              out[2] = -in[1];
              out[3] = in[1];
              out[4] = 0;
              break;
            case 1:
              out[0] = -1 + in[0] + in[2];
              out[1] = -in[0] - in[2];
              out[2] = 1 - in[0] - in[2];
              out[3] = in[0]+in[2];
              out[4] = 0;
              break;
            case 2:
              out[0] = -1 + in[1];
              out[1] = -in[1];
              out[2] = -in[1];
              out[3] = in[1];
              out[4] = 1;
              break;
            default:
              DUNE_THROW(RangeError, "Component out of range.");
          }
        }
        else /* (in[0] <= in[1]) */
        {
          switch (direction) {
            case 0:
              out[0] = -1 + in[1] + in[2];
              out[1] = 1 - in[1] - in[2];
              out[2] = -in[1] - in[2];
              out[3] = in[1] + in[2];
              out[4] = 0;
              break;
            case 1:
              out[0] = -1 + in[0];
              out[1] = -in[0];
              out[2] = 1 - in[0];
              out[3] = in[0];
              out[4] = 0;
              break;
            case 2:
              out[0] = -1 + in[0];
              out[1] = -in[0];
              out[2] = -in[0];
              out[3] = in[0];
              out[4] = 1;
              break;
            default:
              DUNE_THROW(RangeError, "Component out of range.");
          }
        }
      } else if (totalOrder == 2) {
        out.resize(size());

        if ((order[0] == 1 && order[1] == 1) ||
            (order[1] == 1 && order[2] == 1 && in[0] > in[1]) ||
            (order[0] == 1 && order[2] == 1 && in[0] <=in[1])) {
          out[0] = 1;
          out[1] =-1;
          out[2] =-1;
          out[3] = 1;
          out[4] = 0;
        } else {
          for (std::size_t i = 0; i < size(); ++i)
            out[i] = 0;
        }

      } else {
        out.resize(size());
        for (std::size_t i = 0; i < size(); ++i)
          out[i] = 0;
      }
    }

    //! \brief Polynomial order of the shape functions
    unsigned int order () const
    {
      return 1;
    }
  };
}
#endif