This file is indexed.

/usr/include/dune/localfunctions/lagrange/pk1d/pk1dlocalbasis.hh is in libdune-localfunctions-dev 2.5.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_Pk1DLOCALBASIS_HH
#define DUNE_Pk1DLOCALBASIS_HH

#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>

namespace Dune
{
  /**@ingroup LocalBasisImplementation
     \brief Lagrange shape functions of arbitrary order on the 1D reference triangle.

     Lagrange shape functions of arbitrary order have the property that
     \f$\hat\phi^i(x_j) = \delta_{i,j}\f$ for certain points \f$x_j\f$.

     \tparam D Type to represent the field in the domain.
     \tparam R Type to represent the field in the range.
     \tparam k Polynomial order.

     \nosubgrouping
   */
  template<class D, class R, unsigned int k>
  class Pk1DLocalBasis
  {
  public:

    /** \brief Export the number of degrees of freedom */
    enum {N = k+1};

    /** \brief Export the element order */
    enum {O = k};

    typedef LocalBasisTraits<D,
        1,
        Dune::FieldVector<D,1>,
        R,
        1,
        Dune::FieldVector<R,1>,
        Dune::FieldMatrix<R,1,1>
        > Traits;

    //! \brief Standard constructor
    Pk1DLocalBasis ()
    {
      for (unsigned int i=0; i<=k; i++)
        pos[i] = (1.0*i)/std::max(k,(unsigned int)1);
    }

    //! \brief number of shape functions
    unsigned int size () const
    {
      return N;
    }

    //! \brief Evaluate all shape functions
    inline void evaluateFunction (const typename Traits::DomainType& x,
                                  std::vector<typename Traits::RangeType>& out) const
    {
      out.resize(N);

      for (unsigned int i=0; i<N; i++)
      {
        out[i] = 1.0;
        for (unsigned int alpha=0; alpha<i; alpha++)
          out[i] *= (x[0]-pos[alpha])/(pos[i]-pos[alpha]);
        for (unsigned int gamma=i+1; gamma<=k; gamma++)
          out[i] *= (x[0]-pos[gamma])/(pos[i]-pos[gamma]);
      }
    }

    //! \brief Evaluate Jacobian of all shape functions
    inline void
    evaluateJacobian (const typename Traits::DomainType& x,             // position
                      std::vector<typename Traits::JacobianType>& out) const          // return value
    {
      out.resize(N);

      for (unsigned int i=0; i<=k; i++) {

        // x_0 derivative
        out[i][0][0] = 0.0;
        R factor=1.0;
        for (unsigned int a=0; a<i; a++)
        {
          R product=factor;
          for (unsigned int alpha=0; alpha<i; alpha++)
            product *= (alpha==a) ? 1.0/(pos[i]-pos[alpha])
                       : (x[0]-pos[alpha])/(pos[i]-pos[alpha]);
          for (unsigned int gamma=i+1; gamma<=k; gamma++)
            product *= (pos[gamma]-x[0])/(pos[gamma]-pos[i]);
          out[i][0][0] += product;
        }
        for (unsigned int c=i+1; c<=k; c++)
        {
          R product=factor;
          for (unsigned int alpha=0; alpha<i; alpha++)
            product *= (x[0]-pos[alpha])/(pos[i]-pos[alpha]);
          for (unsigned int gamma=i+1; gamma<=k; gamma++)
            product *= (gamma==c) ? -1.0/(pos[gamma]-pos[i])
                       : (pos[gamma]-x[0])/(pos[gamma]-pos[i]);
          out[i][0][0] += product;
        }
      }

    }

    /** \brief Evaluate partial derivatives of any order of all shape functions
     * \param order Order of the partial derivatives, in the classic multi-index notation
     * \param in Position where to evaluate the derivatives
     * \param[out] out Return value: the desired partial derivatives
     */
    void partial(const std::array<unsigned int,1>& order,
                 const typename Traits::DomainType& in,
                 std::vector<typename Traits::RangeType>& out) const
    {
      switch (order[0])
      {
        case 0:
          evaluateFunction(in,out);
          break;
        default:
          DUNE_THROW(NotImplemented, "Desired derivative order is not implemented");
      }
    }
    //! \brief Polynomial order of the shape functions
    unsigned int order () const
    {
      return k;
    }

  private:
    R pos[k+1];     // positions on the interval
  };

}
#endif