This file is indexed.

/usr/include/dune/localfunctions/lagrange/p1/p1localbasis.hh is in libdune-localfunctions-dev 2.5.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_P1_LOCALBASIS_HH
#define DUNE_P1_LOCALBASIS_HH

#include <array>
#include <numeric>

#include <dune/common/deprecated.hh>
#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>

namespace Dune
{
  /**@ingroup LocalBasisImplementation
         \brief Linear Lagrange shape functions on the simplex.

         Defines the linear shape functions on the simplex.

         \tparam D Type to represent the field in the domain.
         \tparam R Type to represent the field in the range.
     \tparam dim The dimension of the simplex

         \nosubgrouping
   */
  template<class D, class R, int dim>
  class P1LocalBasis
  {
  public:
    //! \brief export type traits for function signature
    typedef LocalBasisTraits<D,dim,Dune::FieldVector<D,dim>,R,1,Dune::FieldVector<R,1>,
        Dune::FieldMatrix<R,1,dim>, 2> Traits;

    //! \brief number of shape functions
    unsigned int size () const
    {
      return dim+1;
    }

    //! \brief Evaluate all shape functions
    inline void evaluateFunction (const typename Traits::DomainType& in,
                                  std::vector<typename Traits::RangeType>& out) const
    {
      out.resize(size());
      out[0] = 1.0;
      for (size_t i=0; i<dim; i++) {
        out[0]  -= in[i];
        out[i+1] = in[i];
      }
    }

    //! \brief Evaluate Jacobian of all shape functions
    inline void
    evaluateJacobian (const typename Traits::DomainType& in,         // position
                      std::vector<typename Traits::JacobianType>& out) const      // return value
    {
      out.resize(size());

      for (int i=0; i<dim; i++)
        out[0][0][i] = -1;

      for (int i=0; i<dim; i++)
        for (int j=0; j<dim; j++)
          out[i+1][0][j] = (i==j);

    }

    /** \brief Evaluate partial derivatives of any order of all shape functions
     * \param order Order of the partial derivatives, in the classic multi-index notation
     * \param in Position where to evaluate the derivatives
     * \param[out] out Return value: the desired partial derivatives
     */
    inline void partial(const std::array<unsigned int,dim>& order,
                        const typename Traits::DomainType& in,
                        std::vector<typename Traits::RangeType>& out) const
    {
      auto totalOrder = std::accumulate(order.begin(), order.end(), 0);

      if (totalOrder==0)
        evaluateFunction(in, out);
      else if (totalOrder==1)
      {
        auto direction = std::find(order.begin(), order.end(), 1);
        out.resize(size());

        out[0] = -1;
        for (int i=0; i<dim; i++)
          out[i+1] = (i==(direction-order.begin()));
      }
      else  // all higher order derivatives are zero
      {
        out.resize(size());

        for (int i=0; i<dim+1; i++)
          out[i] = 0;
      }
    }

    //! \brief Evaluate all shape functions
    template<unsigned int k>
    inline void DUNE_DEPRECATED_MSG("Use method 'partial' instead!")
    evaluate (const typename std::array<int,k>& directions,
                          const typename Traits::DomainType& in,
                          std::vector<typename Traits::RangeType>& out) const
    {
      if (k==0)
        evaluateFunction(in, out);
      else if (k==1)
      {
        out.resize(size());

        out[0] = -1;
        for (int i=0; i<dim; i++)
          out[i+1] = (i==directions[0]);
      }
      else if (k==2)
      {
        out.resize(size());

        for (int i=0; i<dim+1; i++)
          out[i] = 0;
      }
    }

    //! \brief Polynomial order of the shape functions
    unsigned int order () const
    {
      return 1;
    }
  };
}
#endif