This file is indexed.

/usr/include/dune/localfunctions/dualmortarbasis/dualq1/dualq1localbasis.hh is in libdune-localfunctions-dev 2.5.0-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// -*- tab-width: 4; indent-tabs-mode: nil; c-basic-offset: 2 -*-
// vi: set et ts=4 sw=2 sts=2:
#ifndef DUNE_DUAL_Q1_LOCALBASIS_HH
#define DUNE_DUAL_Q1_LOCALBASIS_HH

#include <array>
#include <numeric>

#include <dune/common/fvector.hh>
#include <dune/common/fmatrix.hh>

#include <dune/localfunctions/common/localbasis.hh>

namespace Dune
{
  /**@ingroup LocalBasisImplementation
         \brief Dual Lagrange shape functions of order 1 on the reference cube.

         \tparam D Type to represent the field in the domain.
         \tparam R Type to represent the field in the range.
     \tparam dim Dimension of the cube

         \nosubgrouping
   */
  template<class D, class R, int dim>
  class DualQ1LocalBasis
  {
  public:
    typedef LocalBasisTraits<D,dim,Dune::FieldVector<D,dim>,R,1,Dune::FieldVector<R,1>,
        Dune::FieldMatrix<R,1,dim> > Traits;

    void setCoefficients(const std::array<Dune::FieldVector<R, (1<<dim)> ,(1<<dim)>& coefficients)
    {
      coefficients_ = coefficients;
    }

    //! \brief number of shape functions
    unsigned int size () const
    {
      return 1<<dim;
    }

    //! \brief Evaluate all shape functions
    inline void evaluateFunction (const typename Traits::DomainType& in,
                                  std::vector<typename Traits::RangeType>& out) const
    {
      // compute q1 values
      std::vector<typename Traits::RangeType> q1Values(size());

      for (size_t i=0; i<size(); i++) {

        q1Values[i] = 1;

        for (int j=0; j<dim; j++)
          // if j-th bit of i is set multiply with in[j], else with 1-in[j]
          q1Values[i] *= (i & (1<<j)) ? in[j] :  1-in[j];

      }

      // compute the dual values by using that they are linear combinations of q1 functions
      out.resize(size());
      for (size_t i=0; i<size(); i++)
        out[i] = 0;

      for (size_t i=0; i<size(); i++)
        for (size_t j=0; j<size(); j++)
          out[i] += coefficients_[i][j]*q1Values[j];


    }

    //! \brief Evaluate Jacobian of all shape functions
    inline void
    evaluateJacobian (const typename Traits::DomainType& in,             // position
                      std::vector<typename Traits::JacobianType>& out) const // return value
    {
      // compute q1 jacobians
      std::vector<typename Traits::JacobianType> q1Jacs(size());

      // Loop over all shape functions
      for (size_t i=0; i<size(); i++) {

        // Loop over all coordinate directions
        for (int j=0; j<dim; j++) {

          // Initialize: the overall expression is a product
          // if j-th bit of i is set to -1, else 1
          q1Jacs[i][0][j] = (i & (1<<j)) ? 1 : -1;

          for (int k=0; k<dim; k++) {

            if (j!=k)
              // if k-th bit of i is set multiply with in[j], else with 1-in[j]
              q1Jacs[i][0][j] *= (i & (1<<k)) ? in[k] :  1-in[k];

          }

        }

      }

      // compute the dual jacobians by using that they are linear combinations of q1 functions
      out.resize(size());
      for (size_t i=0; i<size(); i++)
        out[i] = 0;

      for (size_t i=0; i<size(); i++)
        for (size_t j=0; j<size(); j++)
          out[i].axpy(coefficients_[i][j],q1Jacs[j]);

    }

    //! \brief Evaluate partial derivatives of all shape functions
    void partial (const std::array<unsigned int, dim>& order,
                  const typename Traits::DomainType& in,         // position
                  std::vector<typename Traits::RangeType>& out) const      // return value
    {
      auto totalOrder = std::accumulate(order.begin(), order.end(), 0);
      if (totalOrder == 0) {
        evaluateFunction(in, out);
      } else {
        DUNE_THROW(NotImplemented, "Desired derivative order is not implemented");
      }
    }

    //! \brief Polynomial order of the shape functions
    unsigned int order () const
    {
      return 1;
    }

  private:
    std::array<Dune::FieldVector<R, (1<<dim)> ,(1<<dim)> coefficients_;
  };
}
#endif