This file is indexed.

/usr/mips64-linux-gnuabi64/include/bits/cmathcalls.h is in libc6-dev-mips64-cross 2.24-10cross1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
/* Prototype declarations for complex math functions;
   helper file for <complex.h>.
   Copyright (C) 1997-2016 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <http://www.gnu.org/licenses/>.  */

/* NOTE: Because of the special way this file is used by <complex.h>, this
   file must NOT be protected from multiple inclusion as header files
   usually are.

   This file provides prototype declarations for the math functions.
   Most functions are declared using the macro:

   __MATHCALL (NAME, (ARGS...));

   This means there is a function `NAME' returning `double' and a function
   `NAMEf' returning `float'.  Each place `_Mdouble_' appears in the
   prototype, that is actually `double' in the prototype for `NAME' and
   `float' in the prototype for `NAMEf'.  Reentrant variant functions are
   called `NAME_r' and `NAMEf_r'.

   Functions returning other types like `int' are declared using the macro:

   __MATHDECL (TYPE, NAME, (ARGS...));

   This is just like __MATHCALL but for a function returning `TYPE'
   instead of `_Mdouble_'.  In all of these cases, there is still
   both a `NAME' and a `NAMEf' that takes `float' arguments.  */

#ifndef _COMPLEX_H
#error "Never use <bits/cmathcalls.h> directly; include <complex.h> instead."
#endif

#define _Mdouble_complex_ _Mdouble_ _Complex


/* Trigonometric functions.  */

/* Arc cosine of Z.  */
__MATHCALL (cacos, (_Mdouble_complex_ __z));
/* Arc sine of Z.  */
__MATHCALL (casin, (_Mdouble_complex_ __z));
/* Arc tangent of Z.  */
__MATHCALL (catan, (_Mdouble_complex_ __z));

/* Cosine of Z.  */
__MATHCALL (ccos, (_Mdouble_complex_ __z));
/* Sine of Z.  */
__MATHCALL (csin, (_Mdouble_complex_ __z));
/* Tangent of Z.  */
__MATHCALL (ctan, (_Mdouble_complex_ __z));


/* Hyperbolic functions.  */

/* Hyperbolic arc cosine of Z.  */
__MATHCALL (cacosh, (_Mdouble_complex_ __z));
/* Hyperbolic arc sine of Z.  */
__MATHCALL (casinh, (_Mdouble_complex_ __z));
/* Hyperbolic arc tangent of Z.  */
__MATHCALL (catanh, (_Mdouble_complex_ __z));

/* Hyperbolic cosine of Z.  */
__MATHCALL (ccosh, (_Mdouble_complex_ __z));
/* Hyperbolic sine of Z.  */
__MATHCALL (csinh, (_Mdouble_complex_ __z));
/* Hyperbolic tangent of Z.  */
__MATHCALL (ctanh, (_Mdouble_complex_ __z));


/* Exponential and logarithmic functions.  */

/* Exponential function of Z.  */
__MATHCALL (cexp, (_Mdouble_complex_ __z));

/* Natural logarithm of Z.  */
__MATHCALL (clog, (_Mdouble_complex_ __z));

#ifdef __USE_GNU
/* The base 10 logarithm is not defined by the standard but to implement
   the standard C++ library it is handy.  */
__MATHCALL (clog10, (_Mdouble_complex_ __z));
#endif

/* Power functions.  */

/* Return X to the Y power.  */
__MATHCALL (cpow, (_Mdouble_complex_ __x, _Mdouble_complex_ __y));

/* Return the square root of Z.  */
__MATHCALL (csqrt, (_Mdouble_complex_ __z));


/* Absolute value, conjugates, and projection.  */

/* Absolute value of Z.  */
__MATHDECL (_Mdouble_,cabs, (_Mdouble_complex_ __z));

/* Argument value of Z.  */
__MATHDECL (_Mdouble_,carg, (_Mdouble_complex_ __z));

/* Complex conjugate of Z.  */
__MATHCALL (conj, (_Mdouble_complex_ __z));

/* Projection of Z onto the Riemann sphere.  */
__MATHCALL (cproj, (_Mdouble_complex_ __z));


/* Decomposing complex values.  */

/* Imaginary part of Z.  */
__MATHDECL (_Mdouble_,cimag, (_Mdouble_complex_ __z));

/* Real part of Z.  */
__MATHDECL (_Mdouble_,creal, (_Mdouble_complex_ __z));


/* Now some optimized versions.  GCC has handy notations for these
   functions.  Recent GCC handles these as builtin functions so does
   not need inlines.  */
#if defined __GNUC__ && !__GNUC_PREREQ (2, 97) && defined __OPTIMIZE__ \
    && defined __extern_inline

/* Imaginary part of Z.  */
__extern_inline _Mdouble_
__MATH_PRECNAME(cimag) (_Mdouble_complex_ __z) __THROW
{
  return __imag__ __z;
}

/* Real part of Z.  */
__extern_inline _Mdouble_
__MATH_PRECNAME(creal) (_Mdouble_complex_ __z) __THROW
{
  return __real__ __z;
}

/* Complex conjugate of Z.  */
__extern_inline _Mdouble_complex_
__MATH_PRECNAME(conj) (_Mdouble_complex_ __z) __THROW
{
  return __extension__ ~__z;
}

#endif