/usr/share/perl5/Bio/Restriction/Enzyme.pm is in libbio-perl-perl 1.7.1-2.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 | #------------------------------------------------------------------
#
# BioPerl module Bio::Restriction::Enzyme
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Rob Edwards <redwards@utmem.edu>
#
# You may distribute this module under the same terms as perl itself
#------------------------------------------------------------------
## POD Documentation:
=head1 NAME
Bio::Restriction::Enzyme - A single restriction endonuclease
(cuts DNA at specific locations)
=head1 SYNOPSIS
# set up a single restriction enzyme. This contains lots of
# information about the enzyme that is generally parsed from a
# rebase file and can then be read back
use Bio::Restriction::Enzyme;
# define a new enzyme with the cut sequence
my $re=Bio::Restriction::Enzyme->new
(-enzyme=>'EcoRI', -seq=>'G^AATTC');
# once the sequence has been defined a bunch of stuff is calculated
# for you:
#### PRECALCULATED
# find where the enzyme cuts after ...
my $ca=$re->cut;
# ... and where it cuts on the opposite strand
my $oca = $re->complementary_cut;
# get the cut sequence string back.
# Note that site will return the sequence with a caret
my $with_caret=$re->site; #returns 'G^AATTC';
# but it is also a Bio::PrimarySeq object ....
my $without_caret=$re->seq; # returns 'GAATTC';
# ... and so does string
$without_caret=$re->string; #returns 'GAATTC';
# what is the reverse complement of the cut site
my $rc=$re->revcom; # returns 'GAATTC';
# now the recognition length. There are two types:
# recognition_length() is the length of the sequence
# cutter() estimate of cut frequency
my $recog_length = $re->recognition_length; # returns 6
# also returns 6 in this case but would return
# 4 for GANNTC and 5 for RGATCY (BstX2I)!
$recog_length=$re->cutter;
# is the sequence a palindrome - the same forwards and backwards
my $pal= $re->palindromic; # this is a boolean
# is the sequence blunt (i.e. no overhang - the forward and reverse
# cuts are the same)
print "blunt\n" if $re->overhang eq 'blunt';
# Overhang can have three values: "5'", "3'", "blunt", and undef
# Direction is very important if you use Klenow!
my $oh=$re->overhang;
# what is the overhang sequence
my $ohseq=$re->overhang_seq; # will return 'AATT';
# is the sequence ambiguous - does it contain non-GATC bases?
my $ambig=$re->is_ambiguous; # this is boolean
print "Stuff about the enzyme\nCuts after: $ca\n",
"Complementary cut: $oca\nSite:\n\t$with_caret or\n",
"\t$without_caret\n";
print "Reverse of the sequence: $rc\nRecognition length: $recog_length\n",
"Is it palindromic? $pal\n";
print "The overhang is $oh with sequence $ohseq\n",
"And is it ambiguous? $ambig\n\n";
### THINGS YOU CAN SET, and get from rich REBASE file
# get or set the isoschizomers (enzymes that recognize the same
# site)
$re->isoschizomers('PvuII', 'SmaI'); # not really true :)
print "Isoschizomers are ", join " ", $re->isoschizomers, "\n";
# get or set the methylation sites
$re->methylation_sites(2); # not really true :)
print "Methylated at ", join " ", keys %{$re->methylation_sites},"\n";
#Get or set the source microbe
$re->microbe('E. coli');
print "It came from ", $re->microbe, "\n";
# get or set the person who isolated it
$re->source("Rob"); # not really true :)
print $re->source, " sent it to us\n";
# get or set whether it is commercially available and the company
# that it can be bought at
$re->vendors('NEB'); # my favorite
print "Is it commercially available :";
print $re->vendors ? "Yes" : "No";
print " and it can be got from ", join " ",
$re->vendors, "\n";
# get or set a reference for this
$re->reference('Edwards et al. J. Bacteriology');
print "It was not published in ", $re->reference, "\n";
# get or set the enzyme name
$re->name('BamHI');
print "The name of EcoRI is not really ", $re->name, "\n";
=head1 DESCRIPTION
This module defines a single restriction endonuclease. You can use it
to make custom restriction enzymes, and it is used by
Bio::Restriction::IO to define enzymes in the New England Biolabs
REBASE collection.
Use Bio::Restriction::Analysis to figure out which enzymes are available
and where they cut your sequence.
=head1 RESTRICTION MODIFICATION SYSTEMS
At least three geneticaly and biochamically distinct restriction
modification systems exist. The cutting components of them are known
as restriction endonuleases. The three systems are known by roman
numerals: Type I, II, and III restriction enzymes.
REBASE format 'cutzymes'(#15) lists enzyme type in its last field. The
categories there do not always match the the following short
descriptions of the enzymes types. See
http://it.stlawu.edu/~tbudd/rmsyst.html for a better overview.
=head2 TypeI
Type I systems recognize a bipartite asymetrical sequence of 5-7 bp:
---TGA*NnTGCT--- * = methylation sites
---ACTNnA*CGA--- n = 6 for EcoK, n = 8 for EcoB
The cleavage site is roughly 1000 (400-7000) base pairs from the
recognition site.
=head2 TypeII
The simplest and most common (at least commercially).
Site recognition is via short palindromic base sequences that are 4-6
base pairs long. Cleavage is at the recognition site (but may
occasionally be just adjacent to the palindromic sequence, usually
within) and may produce blunt end termini or staggered, "sticky
end" termini.
=head2 TypeIII
The recognition site is a 5-7 bp asymmetrical sequence. Cleavage is
ATP dependent 24-26 base pairs downstream from the recognition site
and usually yields staggered cuts 2-4 bases apart.
=head1 COMMENTS
I am trying to make this backwards compatible with
Bio::Tools::RestrictionEnzyme. Undoubtedly some things will break,
but we can fix things as we progress.....!
I have added another comments section at the end of this POD that
discusses a couple of areas I know are broken (at the moment)
=head1 TO DO
=over 2
=item *
Convert vendors touse full names of companies instead of code
=item *
Add regular expression based matching to vendors
=item *
Move away from the archaic ^ notation for cut sites. Ideally
I'd totally like to remove this altogether, or add a method
that adds it in if someone really wants it. We should be
fixed on a sequence, number notation.
=back
=head1 FEEDBACK
=head2 Mailing Lists
User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to one
of the Bioperl mailing lists. Your participation is much appreciated.
bioperl-l@bioperl.org - General discussion
http://bioperl.org/wiki/Mailing_lists - About the mailing lists
=head2 Support
Please direct usage questions or support issues to the mailing list:
I<bioperl-l@bioperl.org>
rather than to the module maintainer directly. Many experienced and
reponsive experts will be able look at the problem and quickly
address it. Please include a thorough description of the problem
with code and data examples if at all possible.
=head2 Reporting Bugs
Report bugs to the Bioperl bug tracking system to help us keep track
the bugs and their resolution. Bug reports can be submitted via the
web:
https://github.com/bioperl/bioperl-live/issues
=head1 AUTHOR
Rob Edwards, redwards@utmem.edu
=head1 CONTRIBUTORS
Heikki Lehvaslaiho, heikki-at-bioperl-dot-org
Peter Blaiklock, pblaiklo@restrictionmapper.org
Mark A. Jensen, maj-at-fortinbras-dot-us
=head1 COPYRIGHT
Copyright (c) 2003 Rob Edwards.
Some of this work is Copyright (c) 1997-2002 Steve A. Chervitz. All
Rights Reserved. This module is free software; you can redistribute
it and/or modify it under the same terms as Perl itself.
=head1 SEE ALSO
L<Bio::Restriction::Analysis>,
L<Bio::Restriction::EnzymeCollection>, L<Bio::Restriction::IO>
=head1 APPENDIX
Methods beginning with a leading underscore are considered private and
are intended for internal use by this module. They are not considered
part of the public interface and are described here for documentation
purposes only.
=cut
package Bio::Restriction::Enzyme;
use strict;
use Bio::PrimarySeq;
use Data::Dumper;
use Tie::RefHash;
use vars qw (%TYPE);
use base qw(Bio::Root::Root Bio::Restriction::EnzymeI);
BEGIN {
my %TYPE = (I => 1, II => 1, III => 1);
}
=head2 new
Title : new
Function
Function : Initializes the Enzyme object
Returns : The Restriction::Enzyme object
Argument : A standard definition can have several formats. For example:
$re->new(-enzyme='EcoRI', -seq->'GAATTC' -cut->'1')
Or, you can define the cut site in the sequence, for example
$re->new(-enzyme='EcoRI', -seq->'G^AATTC'), but you must use a caret
Or, a sequence can cut outside the recognition site, for example
$re->new(-enzyme='AbeI', -seq->'CCTCAGC' -cut->'-5/-2')
Other arguments:
-isoschizomers=>\@list a reference to an array of
known isoschizomers
-references=>$ref a reference to the enzyme
-source=>$source the source (person) of the enzyme
-commercial_availability=>@companies a list of companies
that supply the enzyme
-methylation_site=>\%sites a reference to hash that has
the position as the key and the type of methylation
as the value
-xln_sub => sub { ($self,$cut) = @_; ...; return $xln_cut },
a coderef to a routine that translates the input cut value
into Bio::Restriction::Enzyme coordinates
( e.g., for withrefm format, this might be
-xln_sub => sub { length( shift()->string ) + shift } )
A Restriction::Enzyme object manages its recognition sequence as a
Bio::PrimarySeq object.
The minimum requirement is for a name and a sequence.
This will create the restriction enzyme object, and define several
things about the sequence, such as palindromic, size, etc.
=cut
# do all cut/comp cut setting within the constructor
# new args
sub new {
my($class, @args) = @_;
my $self = $class->SUPER::new(@args);
my ($name,$enzyme,$site,$seq,$precut, $postcut,$cut,$complementary_cut, $is_prototype, $prototype,
$isoschizomers, $meth, $microbe, $source, $vendors, $references, $neo, $recog, $xln_sub) =
$self->_rearrange([qw(
NAME
ENZYME
SITE
SEQ
PRECUT
POSTCUT
CUT
COMPLEMENTARY_CUT
IS_PROTOTYPE
PROTOTYPE
ISOSCHIZOMERS
METHYLATION_SITES
MICROBE
SOURCE
VENDORS
REFERENCES
IS_NEOSCHIZOMER
RECOG
XLN_SUB
)], @args);
$self->throw('At the minimum, you must define a name and '.
'recognition site for the restriction enzyme')
unless (($name || $enzyme) && ($site || $recog || $seq));
$self->{_isoschizomers} = [];
$self->{_methylation_sites} = {};
$self->{_vendors} = [];
$self->{_references} = [];
# squelch warnings
$postcut ||='';
# enzyme name
$enzyme && $self->name($enzyme);
$name && $self->name($name);
# site
#
# note that the site() setter will automatically set
# cut(), complementary_cut(), if the cut site is indicated
# in $site with '^' /maj
# create the cut site if appropriate/this is a kludge due to
# the base.pm format in the new B:R order...
if ( $cut and $cut <= length $site) {
$site = substr($site, 0, $cut).'^'.substr($site, $cut);
}
if ($site) {
$self->site($site);
}
else {
$seq && $self->site($seq);
}
if ($recog) {
$self->recog($recog);
}
else {
$seq && $self->recog($seq);
$site && $self->recog($site);
}
# call revcom_site to initialize it and revcom_recog:
$self->revcom_site();
$recog = $self->string; # for length calculations below
if ($xln_sub) {
$self->warn("Translation subroutine is not a coderef; ignoring") unless
ref($xln_sub) eq 'CODE';
}
# cut coordinates
my ($pc_cut, $pc_comp_cut) = ( $postcut =~ /(-?\d+)\/(-?\d+)/ );
# cut definitions in constructor override any autoset in
# site()
# definitions in site conform to withrefm coords, translation
# happens here
if (defined $cut) {
$self->cut( $xln_sub ? $xln_sub->($self, $cut) : $cut );
}
elsif ( defined $pc_cut ) {
$self->cut( $xln_sub ? $xln_sub->($self, $pc_cut) : $pc_cut );
}
if (defined $complementary_cut) {
$self->complementary_cut($xln_sub ? $xln_sub->($self,$complementary_cut) : $complementary_cut);
}
elsif (defined $pc_comp_cut) {
$self->complementary_cut($xln_sub ? $xln_sub->($self,$pc_comp_cut) : $pc_comp_cut);
}
$is_prototype && $self->is_prototype($is_prototype);
$prototype && $self->prototype($prototype);
$isoschizomers && $self->isoschizomers($isoschizomers);
$meth && $self->methylation_sites($meth);
$microbe && $self->microbe($microbe);
$source && $self->source($source);
$vendors && $self->vendors($vendors);
$references && $self->references($references);
$neo && $self->is_neoschizomer($neo);
# create multicut enzymes here if $precut defined
if (defined $precut) {
bless $self, 'Bio::Restriction::Enzyme::MultiCut';
my ($pc_cut, $pc_comp_cut) = $precut =~ /(-?\d+)\/(-?\d+)/;
my $re2 = $self->clone;
$re2->cut($xln_sub ? $xln_sub->($self, -$pc_cut) : -$pc_cut);
$re2->complementary_cut($xln_sub ? $xln_sub->($self, -$pc_comp_cut) : -$pc_comp_cut);
$self->others($re2);
}
return $self;
}
=head1 Essential methods
=cut
=head2 name
Title : name
Usage : $re->name($newval)
Function : Gets/Sets the restriction enzyme name
Example : $re->name('EcoRI')
Returns : value of name
Args : newvalue (optional)
This will also clean up the name. I have added this because some
people get confused about restriction enzyme names. The name should
be One upper case letter, and two lower case letters (because it is
derived from the organism name, eg. EcoRI is from E. coli). After
that it is all confused, but the numbers should be roman numbers not
numbers, therefore we'll correct those. At least this will provide
some standard, I hope.
=cut
sub name{
my ($self, $name)=@_;
if ($name) { # correct and set the name
my $old_name = $name;
# remove spaces. Some people write HindIII as Hind III
$name =~ s/\s+//g;
# change TAILING ones to I's
if ($name =~ m/(1+)$/) {
my $i = 'I' x length($1);
$name =~ s/1+$/$i/;
}
# make the first letter upper case
$name =~ s/^(\w)/uc($1)/e;
unless ($name eq $old_name) {
# we have changed the name, so send a warning
$self->warn("The enzyme name $old_name was changed to $name");
}
$self->{'_name'} = $name;
}
return $self->{'_name'};
}
=head2 site
Title : site
Usage : $re->site();
Function : Gets/sets the recognition sequence for the enzyme.
Example : $seq_string = $re->site();
Returns : String containing recognition sequence indicating
: cleavage site as in 'G^AATTC'.
Argument : n/a
Throws : n/a
Side effect: the sequence is always converted to upper case.
The cut site can also be set by using methods L<cut|cut> and
L<complementary_cut|complementary_cut>.
This will pad out missing sequence with N's. For example the enzyme
Acc36I cuts at ACCTGC(4/8). This will be returned as ACCTGCNNNN^
Note that the common notation ACCTGC(4/8) means that the forward
strand cut is four nucleotides after the END of the recognition
site. The forward cut() in the coordinates used here in Acc36I
ACCTGC(4/8) is at 6+4 i.e. 10.
** This is the main setable method for the recognition site.
=cut
sub site {
my ( $self, $site ) = @_;
if ($site) {
$self->throw("Unrecognized characters in site: [$site]")
if $site =~ /[^ATGCMRWSYKVHDBN\^]/i;
# we may have to redefine this if there is a ^ in the sequence
# first, check and see if we have a cut site in the sequence
# if so, find the position, and set the target sequence and cut site
$self->{'_site'} = $site;
my ( $first, $second ) = $site =~ /(.*)\^(.*)/;
$site = "$1$2" if defined $first;
$self->{'_site'} = $site;
# now set the recognition site as a new Bio::PrimarySeq object
# we need it before calling cut() and complementary_cut()
$self->{_seq} = Bio::PrimarySeq->new(
-id => $self->name,
-seq => $site,
-verbose => $self->verbose,
-alphabet => 'dna'
);
if ( defined $first ) {
$self->cut( length $first );
$self->complementary_cut( length $second );
$self->revcom_site();
}
}
return $self->{'_site'};
}
=head2 revcom_site
Title : revcom_site
Usage : $re->revcom_site();
Function : Gets/sets the complementary recognition sequence for the enzyme.
Example : $seq_string = $re->revcom_site();
Returns : String containing recognition sequence indicating
: cleavage site as in 'G^AATTC'.
Argument : none (sets on first call)
Throws : n/a
This is the same as site, except it returns the revcom site. For
palindromic enzymes these two are identical. For non-palindromic
enzymes they are not!
On set, this also handles setting the revcom_recog attribute.
See also L<site|site> above.
=cut
sub revcom_site {
my $self = shift;
# getter
return $self->{'_revcom_site'} unless !$self->{'_revcom_site'};
# setter
my $site = $self->{'_site'};
if ($self->is_palindromic) {
$self->{'_revcom_site'}=$self->{'_site'};
$self->revcom_recog( $self->string );
return $self->{'_revcom_site'};
}
$self->throw("Unrecognized characters in revcom site: [$site]")
if $site =~ /[^ATGCMRWSYKVHDBN\^]/i;
if ($site =~ /\^/) {
# first, check and see if we have a cut site indicated in the sequence
# if so, find the position, and set the target sequence and cut site
$site = $self->revcom;
$self->revcom_recog( $site );
my $c = length($site)-$self->cut;
$site = substr($site, 0, $c).'^'.substr($site,$c);
$self->{'_revcom_site'} = $site;
}
else {
my $revcom=$self->revcom;
$self->revcom_recog( $revcom );
# my $cc=$self->complementary_cut;
# my $hat=length($revcom)-$cc+1; # we need it on the other strand!
# if ($cc > length($revcom)) {
# my $pad= "N" x ($cc-length($revcom));
# $revcom = $pad. $revcom;
# $hat=length($revcom)-$cc+1;
# }
# elsif ($cc < 0) {
# my $pad = "N" x -$cc;
# $revcom .= $pad;
# $hat=length($revcom);
# }
# $revcom =~ s/(.{$hat})/$1\^/;
$self->{'_revcom_site'}=$revcom;
}
return $self->{'_revcom_site'};
}
=head2 cut
Title : cut
Usage : $num = $re->cut(1);
Function : Sets/gets an integer indicating the position of cleavage
relative to the 5' end of the recognition sequence in the
forward strand.
For type II enzymes, sets the symmetrically positioned
reverse strand cut site by calling complementary_cut().
Returns : Integer, 0 if not set
Argument : an integer for the forward strand cut site (optional)
Note that the common notation ACCTGC(4/8) means that the forward
strand cut is four nucleotides after the END of the recognition
site. The forwad cut in the coordinates used here in Acc36I
ACCTGC(4/8) is at 6+4 i.e. 10.
Note that REBASE uses notation where cuts within symmetic sites are
marked by '^' within the forward sequence but if the site is
asymmetric the parenthesis syntax is used where numbering ALWAYS
starts from last nucleotide in the forward strand. That's why AciI has
a site usually written as CCGC(-3/-1) actualy cuts in
C^C G C
G G C^G
In our notation, these locations are 1 and 3.
The cuts locations in the notation used are relative to the first
(non-N) nucleotide of the reported forward strand of the recognition
sequence. The following diagram numbers the phosphodiester bonds
(marked by + ) which can be cut by the restriction enzymes:
1 2 3 4 5 6 7 8 ...
N + N + N + N + N + G + A + C + T + G + G + N + N + N
... -5 -4 -3 -2 -1
=cut
sub cut {
my ($self, $value) = @_;
if (defined $value) {
$self->throw("The cut position needs to be an integer [$value]")
unless $value =~ /[-+]?\d+/;
$self->{'_cut'} = $value;
# add the caret to the site attribute only if internal /maj
if ( ($self->{_site} !~ /\^/) && ($value <= length ($self->{_site}))) {
$self->{_site} =
substr($self->{_site}, 0, $value). '^'. substr($self->{_site}, $value);
}
# auto-set comp cut only if cut site is inside the recog site./maj
$self->complementary_cut(length ($self->seq->seq) - $value )
if (($self->{_site} =~ /\^/) && ($self->type eq 'II'));
}
# return undef if not defined yet, not 0 /maj
return $self->{'_cut'};
}
=head2 cuts_after
Title : cuts_after
Usage : Alias for cut()
=cut
sub cuts_after {
shift->cut(@_);
}
=head2 complementary_cut
Title : complementary_cut
Usage : $num = $re->complementary_cut('1');
Function : Sets/Gets an integer indicating the position of cleavage
: on the reverse strand of the restriction site.
Returns : Integer
Argument : An integer (optional)
Throws : Exception if argument is non-numeric.
This method determines the cut on the reverse strand of the sequence.
For most enzymes this will be within the sequence, and will be set
automatically based on the forward strand cut, but it need not be.
B<Note> that the returned location indicates the location AFTER the
first non-N site nucleotide in the FORWARD strand.
=cut
sub complementary_cut {
my ($self, $num)=@_;
if (defined $num) {
$self->throw("The cut position needs to be an integer [$num]")
unless $num =~ /[-+]?\d+/;
$self->{'_rc_cut'} = $num;
}
# return undef, not 0, if not yet defined /maj
return $self->{'_rc_cut'};
}
=head1 Read only (usually) recognition site descriptive methods
=cut
=head2 type
Title : type
Usage : $re->type();
Function : Get/set the restriction system type
Returns :
Argument : optional type: ('I'|II|III)
Restriction enzymes have been catezorized into three types. Some
REBASE formats give the type, but the following rules can be used to
classify the known enzymes:
=over 4
=item 1
Bipartite site (with 6-8 Ns in the middle and the cut site
is E<gt> 50 nt away) =E<gt> type I
=item 2
Site length E<lt> 3 =E<gt> type I
=item 3
5-6 asymmetric site and cuts E<gt>20 nt away =E<gt> type III
=item 4
All other =E<gt> type II
=back
There are some enzymes in REBASE which have bipartite recognition site
and cat far from the site but are still classified as type I. I've no
idea if this is really so.
=cut
sub type {
my ($self, $value) = @_;
if ($value) {
$self->throw("Not a valid value [$value], needs to one of : ".
join (', ', sort keys %TYPE) )
unless $TYPE{$value};
return $self->{'_type'} = $value;
}
# pre set
#return $self->{'_type'} if $self->{'_type'};
# bipartite
return $self->{'_type'} = 'I'
if $self->{'_seq'}->seq =~ /N*[^N]+N{6,8}[^N]/ and abs($self->cut) > 50 ;
# 3 nt site
return $self->{'_type'} = 'I'
if $self->{'_seq'}->length == 3;
# asymmetric and cuts > 20 nt
return $self->{'_type'} = 'III'
if (length $self->string == 5 or length $self->string == 6 ) and
not $self->palindromic and abs($self->cut) > 20;
return $self->{'_type'} = 'II';
}
=head2 seq
Title : seq
Usage : $re->seq();
Function : Get the Bio::PrimarySeq.pm object representing
: the recognition sequence
Returns : A Bio::PrimarySeq object representing the
enzyme recognition site
Argument : n/a
Throws : n/a
=cut
sub seq {
shift->{'_seq'};
}
=head2 string
Title : string
Usage : $re->string();
Function : Get a string representing the recognition sequence.
Returns : String. Does NOT contain a '^' representing the cut location
as returned by the site() method.
Argument : n/a
Throws : n/a
=cut
sub string {
shift->{'_seq'}->seq;
}
=head2 recog
Title : recog
Usage : $enz->recog($recognition_sequence)
Function: Gets/sets the pure recognition site. Sets as
regexp if appropriate.
As for string(), the cut indicating carets (^)
are expunged.
Example :
Returns : value of recog (a scalar)
Args : on set, new value (a scalar or undef, optional)
=cut
sub recog{
my $self = shift;
my $recog = shift;
return $self->{'recog'} unless $recog;
$recog =~ s/\^//g;
$recog = _expand($recog) if $recog =~ /[^ATGC]/;
return $self->{'recog'} = $recog;
}
=head2 revcom_recog
Title : revcom_recog
Usage : $enz->revcom_recog($recognition_sequence)
Function: Gets/sets the pure reverse-complemented recognition site.
Sets as regexp if appropriate.
As for string(), the cut indicating carets (^) are expunged.
Example :
Returns : value of recog (a scalar)
Args : on set, new value (a scalar or undef, optional)
=cut
sub revcom_recog{
my $self = shift;
my $recog = shift;
unless ($recog) {
$self->throw( "revcom recognition site not set; call \$enz->revcom_site to initialize" ) unless $self->{'revcom_recog'};
return $self->{'revcom_recog'};
}
$recog =~ s/\^//g;
$recog = _expand($recog) if $recog =~ /[^ATGC]/;
return $self->{'revcom_recog'} = $recog;
}
=head2 revcom
Title : revcom
Usage : $re->revcom();
Function : Get a string representing the reverse complement of
: the recognition sequence.
Returns : String
Argument : n/a
Throws : n/a
=cut
sub revcom {
shift->{'_seq'}->revcom->seq();
}
=head2 recognition_length
Title : recognition_length
Usage : $re->recognition_length();
Function : Get the length of the RECOGNITION sequence.
This is the total recognition sequence,
inluding the ambiguous codes.
Returns : An integer
Argument : Nothing
See also: L<non_ambiguous_length>
=cut
sub recognition_length {
my $self = shift;
return length($self->string);
}
=head2 cutter
Title : cutter
Usage : $re->cutter
Function : Returns the "cutter" value of the recognition site.
This is a value relative to site length and lack of
ambiguity codes. Hence: 'RCATGY' is a five (5) cutter site
and 'CCTNAGG' a six cutter
This measure correlates to the frequency of the enzyme
cuts much better than plain recognition site length.
Example : $re->cutter
Returns : integer or float number
Args : none
Why is this better than just stripping the ambiguos codes? Think about
it like this: You have a random sequence; all nucleotides are equally
probable. You have a four nucleotide re site. The probability of that
site finding a match is one out of 4^4 or 256, meaning that on average
a four cutter finds a match every 256 nucleotides. For a six cutter,
the average fragment length is 4^6 or 4096. In the case of ambiguity
codes the chances are finding the match are better: an R (A|T) has 1/2
chance of finding a match in a random sequence. Therefore, for RGCGCY
the probability is one out of (2*4*4*4*4*2) which exactly the same as
for a five cutter! Cutter, although it can have non-integer values
turns out to be a useful and simple measure.
From bug 2178: VHDB are ambiguity symbols that match three different
nucleotides, so they contribute less to the effective recognition sequence
length than e.g. Y which matches only two nucleotides. A symbol which matches n
of the 4 nucleotides has an effective length of 1 - log(n) / log(4).
=cut
sub cutter {
my ($self)=@_;
$_ = uc $self->string;
my $cutter = tr/[ATGC]//d;
my $count = tr/[MRWSYK]//d;
$cutter += $count/2;
$count = tr/[VHDB]//d;
$cutter += $count * (1 - log(3) / log(4));
return $cutter;
}
=head2 is_palindromic
Title : is_palindromic
Alias : palindromic
Usage : $re->is_palindromic();
Function : Determines if the recognition sequence is palindromic
: for the current restriction enzyme.
Returns : Boolean
Argument : n/a
Throws : n/a
A palindromic site (EcoRI):
5-GAATTC-3
3-CTTAAG-5
=cut
sub is_palindromic {
my $self = shift;
return $self->{_palindromic} if defined $self->{_palindromic};
if ($self->string eq $self->revcom) {
return $self->{_palindromic}=1;
}
return $self->{_palindromic} = 0;
}
sub palindromic { shift->is_palindromic(@_) }
=head2 is_symmetric
Title : is_symmetric
Alias : symmetric
Usage : $re->is_symmetric();
Function : Determines if the enzyme is a symmetric cutter
Returns : Boolean
Argument : none
A symmetric but non-palindromic site (HindI):
v
5-C A C-3
3-G T G-5
^
=cut
sub is_symmetric {
no warnings qw( uninitialized );
my $self = shift;
return $self->{_symmetric} if defined $self->{_symmetric};
if ($self->is_palindromic) {
return $self->{_symmetric} = 1;
}
if ($self->cut == length($self->string) - $self->complementary_cut) {
return $self->{_symmetric}=1;
}
return $self->{_symmetric} = 0;
}
sub symmetric { shift->is_symmetric(@_) }
=head2 overhang
Title : overhang
Usage : $re->overhang();
Function : Determines the overhang of the restriction enzyme
Returns : "5'", "3'", "blunt" of undef
Argument : n/a
Throws : n/a
A blunt site in SmaI returns C<blunt>
5' C C C^G G G 3'
3' G G G^C C C 5'
A 5' overhang in EcoRI returns C<5'>
5' G^A A T T C 3'
3' C T T A A^G 5'
A 3' overhang in KpnI returns C<3'>
5' G G T A C^C 3'
3' C^C A T G G 5'
=cut
sub overhang {
my $self = shift;
unless ($self->{'_cut'} && $self->{'_rc_cut'}) {
return "unknown";
}
if ($self->{_cut} < $self->{_rc_cut}) {
$self->{_overhang}="5'";
} elsif ($self->{_cut} == $self->{_rc_cut}) {
$self->{_overhang}="blunt";
} elsif ($self->{_cut} > $self->{_rc_cut}) {
$self->{_overhang}="3'";
} else {
$self->{_overhang}="unknown";
}
return $self->{_overhang}
}
=head2 overhang_seq
Title : overhang_seq
Usage : $re->overhang_seq();
Function : Determines the overhang sequence of the restriction enzyme
Returns : a Bio::LocatableSeq
Argument : n/a
Throws : n/a
I do not think it is necessary to create a seq object of these. (Heikki)
Note: returns empty string for blunt sequences and undef for ones that
we don't know. Compare these:
A blunt site in SmaI returns empty string
5' C C C^G G G 3'
3' G G G^C C C 5'
A 5' overhang in EcoRI returns C<AATT>
5' G^A A T T C 3'
3' C T T A A^G 5'
A 3' overhang in KpnI returns C<GTAC>
5' G G T A C^C 3'
3' C^C A T G G 5'
Note that you need to use method L<overhang|overhang> to decide
whether it is a 5' or 3' overhang!!!
Note: The overhang stuff does not work if the site is asymmetric! Rethink!
=cut
sub overhang_seq {
my $self = shift;
# my $overhang->Bio::PrimarySeq(-id=>$self->name . '-overhang',
# -verbose=>$self->verbose,
# -alphabet=>'dna');
return '' if $self->overhang eq 'blunt' ;
unless ($self->{_cut} && $self->{_rc_cut}) {
# lets just check that we really can't figure it out
$self->cut;
$self->complementary_cut;
unless ($self->{_cut} && $self->{_rc_cut}) {
return;
}
}
# this is throwing an error for sequences outside the restriction
# site (eg ^NNNNGATCNNNN^)
# So if this is the case we need to fake these guys
if (($self->{_cut}<0) ||
($self->{_rc_cut}<0) ||
($self->{_cut}>$self->seq->length) ||
($self->{_rc_cut}>$self->seq->length)) {
my $tempseq=$self->site;
my ($five, $three)=split /\^/, $tempseq;
if ($self->{_cut} > $self->{_rc_cut}) {
return substr($five, $self->{_rc_cut})
} elsif ($self->{_cut} < $self->{_rc_cut}) {
return substr($three, 0, $self->{_rc_cut})
} else {
return '';
}
}
if ($self->{_cut} > $self->{_rc_cut}) {
return $self->seq->subseq($self->{_rc_cut}+1,$self->{_cut});
} elsif ($self->{_cut} < $self->{_rc_cut}) {
return $self->seq->subseq($self->{_cut}+1, $self->{_rc_cut});
} else {
return '';
}
}
=head2 compatible_ends
Title : compatible_ends
Usage : $re->compatible_ends($re2);
Function : Determines if the two restriction enzyme cut sites
have compatible ends.
Returns : 0 if not, 1 if only one pair ends match, 2 if both ends.
Argument : a Bio::Restriction::Enzyme
Throws : unless the argument is a Bio::Resriction::Enzyme and
if there are Ns in the ovarhangs
In case of type II enzymes which which cut symmetrically, this
function can be considered to return a boolean value.
=cut
sub compatible_ends {
my ($self, $re) = @_;
$self->throw("Need a Bio::Restriction::Enzyme as an argument, [$re]")
unless $re->isa('Bio::Restriction::Enzyme');
# $self->throw("Only type II enzymes work now")
# unless $self->type eq 'II';
$self->debug("N(s) in overhangs. Can not compare")
if $self->overhang_seq =~ /N/ or $re->overhang_seq =~ /N/;
return 2 if $self->overhang_seq eq $re->overhang_seq and
$self->overhang eq $re->overhang;
return 0;
}
=head2 is_ambiguous
Title : is_ambiguous
Usage : $re->is_ambiguous();
Function : Determines if the restriction enzyme contains ambiguous sequences
Returns : Boolean
Argument : n/a
Throws : n/a
=cut
sub is_ambiguous {
my $self = shift;
return $self->string =~ m/[^AGCT]/ ? 1 : 0 ;
}
=head2 Additional methods from Rebase
=cut
=head2 is_prototype
Title : is_prototype
Usage : $re->is_prototype
Function : Get/Set method for finding out if this enzyme is a prototype
Example : $re->is_prototype(1)
Returns : Boolean
Args : none
Prototype enzymes are the most commonly available and usually first
enzymes discoverd that have the same recognition site. Using only
prototype enzymes in restriction analysis avoids redundancy and
speeds things up.
=cut
sub is_prototype {
my ($self, $value) = @_;
if (defined $value) {
return $self->{'_is_prototype'} = $value ;
}
if (defined $self->{'_is_prototype'}) {
return $self->{'_is_prototype'}
} else {
$self->warn("Can't unequivocally assign prototype based on input format alone");
return
}
}
=head2 is_neoschizomer
Title : is_neoschizomer
Usage : $re->is_neoschizomer
Function : Get/Set method for finding out if this enzyme is a neoschizomer
Example : $re->is_neoschizomer(1)
Returns : Boolean
Args : none
Neoschizomers are distinguishable from the prototype enzyme by having a
different cleavage pattern. Note that not all formats report this
=cut
sub is_neoschizomer {
my ($self, $value) = @_;
if (defined $value) {
return $self->{'_is_neoschizomer'} = $value ;
}
if (defined $self->{'_is_neoschizomer'}) {
return $self->{'_is_neoschizomer'}
} else {
$self->warn("Can't unequivocally assign neoschizomer based on input format alone");
return
}
}
=head2 prototype_name
Title : prototype_name
Alias : prototype
Usage : $re->prototype_name
Function : Get/Set method for the name of prototype for
this enzyme's recognition site
Example : $re->prototype_name(1)
Returns : prototype enzyme name string or an empty string
Args : optional prototype enzyme name string
If the enzyme itself is the prototype, its own name is returned. Not to
confuse the negative result with an unset value, use method
L<is_prototype|is_prototype>.
This method is called I<prototype_name> rather than I<prototype>,
because it returns a string rather than on object.
=cut
sub prototype_name {
my $self = shift;
$self->{'_prototype'} = shift if @_;
return $self->name if $self->{'_is_prototype'};
return $self->{'_prototype'} || '';
}
sub prototype { shift->prototype_name(@_) }
=head2 isoschizomers
Title : isoschizomers
Alias : isos
Usage : $re->isoschizomers(@list);
Function : Gets/Sets a list of known isoschizomers (enzymes that
recognize the same site, but don't necessarily cut at
the same position).
Arguments : A reference to an array that contains the isoschizomers
Returns : A reference to an array of the known isoschizomers or 0
if not defined.
This has to be the hardest name to spell, so now you can use the alias
'isos'. Added for compatibility to REBASE
=cut
sub isoschizomers {
my ($self) = shift;
push @{$self->{_isoschizomers}}, @_ if @_;
# make sure that you don't dereference if null
# chad believes quite strongly that you should return
# a reference to an array anyway. don't bother dereferencing.
# i'll post that to the list.
if ($self->{'_isoschizomers'}) {
return @{$self->{_isoschizomers}};
}
}
sub isos { shift->isoschizomers(@_) }
=head2 purge_isoschizomers
Title : purge_isoschizomers
Alias : purge_isos
Usage : $re->purge_isoschizomers();
Function : Purges the set of isoschizomers for this enzyme
Arguments :
Returns : 1
=cut
sub purge_isoschizomers {
my ($self) = shift;
$self->{_isoschizomers} = [];
}
sub purge_isos { shift->purge_isoschizomers(@_) }
=head2 methylation_sites
Title : methylation_sites
Usage : $re->methylation_sites(\%sites);
Function : Gets/Sets known methylation sites (positions on the sequence
that get modified to promote or prevent cleavage).
Arguments : A reference to a hash that contains the methylation sites
Returns : A reference to a hash of the methylation sites or
an empty string if not defined.
There are three types of methylation sites:
=over 3
=item * (6) = N6-methyladenosine
=item * (5) = 5-methylcytosine
=item * (4) = N4-methylcytosine
=back
These are stored as 6, 5, and 4 respectively. The hash has the
sequence position as the key and the type of methylation as the value.
A negative number in the sequence position indicates that the DNA is
methylated on the complementary strand.
Note that in REBASE, the methylation positions are given
Added for compatibility to REBASE.
=cut
sub methylation_sites {
my $self = shift;
while (@_) {
my $key = shift;
$self->{'_methylation_sites'}->{$key} = shift;
}
return %{$self->{_methylation_sites}};
}
=head2 purge_methylation_sites
Title : purge_methylation_sites
Usage : $re->purge_methylation_sites();
Function : Purges the set of methylation_sites for this enzyme
Arguments :
Returns :
=cut
sub purge_methylation_sites {
my ($self) = shift;
$self->{_methylation_sites} = {};
}
=head2 microbe
Title : microbe
Usage : $re->microbe($microbe);
Function : Gets/Sets microorganism where the restriction enzyme was found
Arguments : A scalar containing the microbes name
Returns : A scalar containing the microbes name or 0 if not defined
Added for compatibility to REBASE
=cut
sub microbe {
my ($self, $microbe) = @_;
if ($microbe) {
$self->{_microbe}=$microbe;
}
return $self->{_microbe} || '';
}
=head2 source
Title : source
Usage : $re->source('Rob Edwards');
Function : Gets/Sets the person who provided the enzyme
Arguments : A scalar containing the persons name
Returns : A scalar containing the persons name or 0 if not defined
Added for compatibility to REBASE
=cut
sub source {
my ($self, $source) = @_;
if ($source) {
$self->{_source}=$source;
}
return $self->{_source} || '';
}
=head2 vendors
Title : vendors
Usage : $re->vendor(@list_of_companies);
Function : Gets/Sets the a list of companies that you can get the enzyme from.
Also sets the commercially_available boolean
Arguments : A reference to an array containing the names of companies
that you can get the enzyme from
Returns : A reference to an array containing the names of companies
that you can get the enzyme from
Added for compatibility to REBASE
=cut
sub vendors {
my $self = shift;
push @{$self->{_vendors}}, @_ if @_;
if ($self->{'_vendors'}) {
return @{$self->{'_vendors'}};
}
}
=head2 purge_vendors
Title : purge_vendors
Usage : $re->purge_references();
Function : Purges the set of references for this enzyme
Arguments :
Returns :
=cut
sub purge_vendors {
my ($self) = shift;
$self->{_vendors} = [];
}
=head2 vendor
Title : vendor
Usage : $re->vendor(@list_of_companies);
Function : Gets/Sets the a list of companies that you can get the enzyme from.
Also sets the commercially_available boolean
Arguments : A reference to an array containing the names of companies
that you can get the enzyme from
Returns : A reference to an array containing the names of companies
that you can get the enzyme from
Added for compatibility to REBASE
=cut
sub vendor {
my $self = shift;
return push @{$self->{_vendors}}, @_;
return $self->{_vendors};
}
=head2 references
Title : references
Usage : $re->references(string);
Function : Gets/Sets the references for this enzyme
Arguments : an array of string reference(s) (optional)
Returns : an array of references
Use L<purge_references|purge_references> to reset the list of references
This should be a L<Bio::Biblio> object, but its not (yet)
=cut
sub references {
my ($self) = shift;
push @{$self->{_references}}, @_ if @_;
return @{$self->{_references}};
}
=head2 purge_references
Title : purge_references
Usage : $re->purge_references();
Function : Purges the set of references for this enzyme
Arguments :
Returns : 1
=cut
sub purge_references {
my ($self) = shift;
$self->{_references} = [];
}
=head2 clone
Title : clone
Usage : $re->clone
Function : Deep copy of the object
Arguments : -
Returns : new Bio::Restriction::EnzymeI object
This works as long as the object is a clean in-memory object using
scalars, arrays and hashes. You have been warned.
If you have module Storable, it is used, otherwise local code is used.
Todo: local code cuts circular references.
=cut
# there's some issue here; deprecating and rolling another below/maj
sub clone_depr {
my ($self, $this) = @_;
eval { require Storable; };
return Storable::dclone($self) unless $@;
# modified from deep_copy() @ http://www.stonehenge.com/merlyn/UnixReview/col30.html
unless ($this) {
my $new;
foreach my $k (keys %$self) {
if (not ref $self->{$k}) {
$new->{$k} = $self->{$k};
} else {
$new->{$k} = $self->clone($self->{$k});
}
#print Dumper $new;
}
bless $new, ref($self);
return $new;
}
if (not ref $this) {
$this;
}
elsif (ref $this eq "ARRAY") {
[map $self->clone($_), @$this];
}
elsif (ref $this eq "HASH") {
+{map { $_ => $self->clone($this->{$_}) } keys %$this};
} else { # objects
return if $this->isa('Bio::Restriction::EnzymeI');
return $this->clone if $this->can('clone');
my $obj;
foreach my $k (keys %$this) {
if (not ref $this->{$k}) {
$obj->{$k} = $this->{$k};
} else {
$obj->{$k} = $this->clone($this->{$k});
}
}
bless $obj, ref($this);
return $obj;
}
}
sub clone {
my $self = shift;
my ($this, $visited) = @_;
unless (defined $this) {
my %h;
tie %h, 'Tie::RefHash';
my $visited = \%h;
return $self->clone($self, $visited);
}
my $thing;
for ($this) {
if (ref) {
return $visited->{$this} if $visited->{$this};
}
# scalar
(!ref) && do {
$thing = $this;
last;
};
# object
(ref =~ /^Bio::/) && do {
$thing = {};
bless($thing, ref);
$visited->{$this} = $thing;
foreach my $attr (keys %{$_}) {
$thing->{$attr} = (defined $_->{$attr} ? $self->clone($_->{$attr},$visited) : undef );
}
last;
};
(ref eq 'ARRAY') && do {
$thing = [];
$visited->{$this} = $thing;
foreach my $elt (@{$_}) {
push @$thing, (defined $elt ? $self->clone($elt,$visited) : undef);
}
last;
};
(ref eq 'HASH') && do {
$thing = {};
$visited->{$this} = $thing;
no warnings qw( uninitialized ); # avoid 'uninitialized value' warning against $key
foreach my $key (%{$_}) {
$thing->{$key} = (defined $_->{key} ? $self->clone( $_->{$key},$visited) : undef );
}
use warnings;
last;
};
(ref eq 'SCALAR') && do {
$thing = ${$_};
$visited->{$this} = $thing;
$thing = \$thing;
last;
};
}
return $thing;
}
=head2 _expand
Title : _expand
Function : Expand nucleotide ambiguity codes to their representative letters
Returns : The full length string
Arguments : The string to be expanded.
Stolen from the original RestrictionEnzyme.pm
=cut
sub _expand {
my $str = shift;
$str =~ s/N|X/\./g;
$str =~ s/R/\[AG\]/g;
$str =~ s/Y/\[CT\]/g;
$str =~ s/S/\[GC\]/g;
$str =~ s/W/\[AT\]/g;
$str =~ s/M/\[AC\]/g;
$str =~ s/K/\[TG\]/g;
$str =~ s/B/\[CGT\]/g;
$str =~ s/D/\[AGT\]/g;
$str =~ s/H/\[ACT\]/g;
$str =~ s/V/\[ACG\]/g;
return $str;
}
1;
|