This file is indexed.

/usr/share/perl5/Bio/PhyloNetwork.pm is in libbio-perl-perl 1.7.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
#
# Module for Bio::PhyloNetwork
#
# Please direct questions and support issues to <bioperl-l@bioperl.org>
#
# Cared for by Gabriel Cardona <gabriel(dot)cardona(at)uib(dot)es>
#
# Copyright Gabriel Cardona, Gabriel Valiente
#
# You may distribute this module under the same terms as perl itself

# POD documentation - main docs before the code

=head1 NAME

Bio::PhyloNetwork - Module to compute with Phylogenetic Networks

=head1 SYNOPSIS

 use Bio::PhyloNetwork;

 # Create a PhyloNetwork object from a eNewick string
 my $net1=Bio::PhyloNetwork->new(
   -eNewick=>'t0:((H1,(H2,l2)),H2); H1:((H3,l1)); H2:((H3,(l3,H1))); H3:(l4);'
 );

 # Print all available data
 print $net1;

 # Rebuild $net1 from its mu_data
 my %mudata=$net1->mudata();
 my $net2=Bio::PhyloNetwork->new(-mudata=>\%mudata,-numleaves=>4);
 print $net2;
 print "d=".$net1->mu_distance($net2)."\n";

 # Get another one and compute distance
 my $net3=Bio::PhyloNetwork->new(
   -eNewick=>'(l2,((l1,(H1,l4)),H1))r; (l3)H1;'
 );
 print "d=".$net1->mu_distance($net3)."\n";

 # ...and find an optimal alignment w.r.t. the Manhattan distance (default)
 my ($weight,%alignment)=$net1->optimal_alignment($net3);
 print "weight:$weight\n";
 foreach my $node1 (keys %alignment) {
   print "$node1 => ".$alignment{$node1}."\n";
 }
 # ...or the Hamming distance

 my ($weightH,%alignmentH)=$net1->optimal_alignment($net3,-metric=>'Hamming');
 print "weight:$weightH\n";
 foreach my $node1 (keys %alignmentH) {
   print "$node1 => ".$alignmentH{$node1}."\n";
 }

 # Test for time consistency of $net1
 if ($net1->is_time_consistent) {
   print "net1 is time consistent\n"
 }
 else {
   print "net1 is not time consistent\n"
 }

 # create a network from the list of edges
 my $net4=Bio::PhyloNetwork->new(-edges=>
   [qw(r s r t s u s c t c t v u b u l3 u b v b v l4 b l2 c l1)]);

 # Test for time consistency of $net3
 if ($net4->is_time_consistent) {
   print "net4 is time consistent\n"
 }
 else {
   print "net4 is not time consistent\n"
 }

 # And print all information on net4
 print $net4;

 # Compute some tripartitions
 my %triparts=$net1->tripartitions();

 # Now these are stored
 print $net1;

 # And can compute the tripartition error
 print "dtr=".$net1->tripartition_error($net3)."\n";

=head1 DESCRIPTION

=head2 Phylogenetic Networks

This is a module to work with phylogenetic networks. Phylogenetic networks
have been studied over the last years as a richer model of the evolutionary
history of sets of organisms than phylogenetic trees, because they take not
only mutation events but also recombination and horizontal gene transfer
events into account.

The natural model for describing the evolutionary
history of a set of sequences under recombination events is a DAG, hence
this package relies on the package Graph::Directed to represent the
underlying graph of a phylogenetic network. We refer the reader to [CRV1,CRV2]
for formal definitions related to phylogenetic networks.

=head2 eNewick description

With this package, phylogenetic networks can be given by its eNewick
string. This description appeared in other packages related to
phylogenetic networks (see [PhyloNet] and [NetGen]); in fact, these two
packages use different descriptions. The Bio::PhyloNetwork
package allows both of them, but uses the second one in its output.

The first approach [PhyloNet] goes as follows: For each hybrid node H, say with
parents u_1,u_2,...,u_k and children v_1,v_2,...v_l: split H in k+1 different
nodes; let each of the first k copies be a child of one of the u_1,...,u_k
(one for each) and have no children (hence we will have k extra leaves);
as for the last copy, let it have no parents and have v_1,...,v_l be its
children. This way we get a forest; each of the trees will be rooted at either
one root of the phylogenetic network or a hybrid node of it; the set of leaves
(of the whole forest) will be the set of leaves of the original network
together with the set of hybrid nodes (each of them repeated as many times
as its in-degree). Then, the eNewick representation of the phylogenetic network
will be the Newick representation of all the trees in the obtained forest,
each of them with its root labeled.

The second approach [NetGen] goes as follows: For each hybrid node H, say with
parents u_1,u_2,...,u_k and children v_1,v_2,...v_l: split H in k different
nodes; let the first copy be a child of u_1 and have all v_1,v_2,...v_l as
its children; let the other copies be child of u_2,...,u_k (one for each)
and have no children. This way, we get a tree whose set of leaves is the
set of leaves of the original network together with the set of hybrid nodes
(possibly repeated). Then the Newick string of the obtained tree (note that
some internal nodes will be labeled and some leaves will be repeated) is
the eNewick string of the phylogenetic network.

For example, consider the network depicted below:

       r
      / \
     /   \
    U     V
   / \   / \
  1   \ /   3
       H
       |
       2

If the first approach is taken, we get the forest:

       r
      / \
     /   \
    U     V
   / \   / \
  1   H H   3
       |
       H
       |
       2

Hence, the eNewick string is '((1,H),(H,3))r; (2)H;'.

As for the second one, one gets the tree:

       r
      / \
     /   \
    U     V
   / \   / \
  1   H |   3
        H
        |
        2

Hence, the eNewick string is '((1,H),((2)H,3))r;'.

Note: when rooting a tree, this package allows the notations
'(subtree,subtree,...)root' as well as 'root:(subtree,subtree,...)', but
the first one is used when writing eNewick strings.

=head2 Tree-child phylogenetic networks

Tree-child (TC) phylogenetic networks are a special class of phylogenetic
networks for which a distance, called mu-distance, is defined [CRV2]
based on certain data (mu-data) associated to every node.
Moreover, this distance extends the
Robinson-Foulds on phylogenetic trees. This package allows testing for a
phylogenetic network if it is TC and computes mu-distances between networks
over the same set of leaves.

Moreover, the mu-data allows one to define the optimal
(in some precise sense) alignment between networks
over the same set of leaves. This package also computes this optimal alignment.

=head2 Tripartitions

Although tripartitions (see [CRV1] and the references therein) do not allow
to define distances, this package outputs tripartitions and computes a weak
form of the tripartition error.

=head2 Time-consistency

Another useful property of Phylogenetic Networks that appears in the literature
is that of time-consistency or real-time hybrids [BSS]. Roughly speaking, a
network admits a temporal representation if it can be drawn in such a way
that tree arcs (those whose end is a tree node) are inclined downwards, while
hybridization arcs (those whose end is a hybrid node) are horizontal.
This package checks for time-consistency and, if so, a temporal representation
is provided.

=head1 AUTHOR

 Gabriel Cardona, gabriel(dot)cardona(at)uib(dot)es
 Gabriel Valiente, valiente(at)lsi(dot)upc(dot)edu

=head1 SEE ALSO

=over

=item [CRV1]

G. Cardona, F. Rossello, G. Valiente. Tripartitions do not always
discriminate phylogenetic networks. arXiv:0707.2376v1 [q-bio.PE]

=item [CRV2]

G. Cardona, F. Rossello, G. Valiente. A Distance Measure for
Tree-Child Phylogenetic Networks. Preprint.

=item [NetGen]

M.M. Morin, and B.M.E. Moret. NetGen: generating phylogenetic networks
with diploid hybrids. Bioinformatics 22 (2006), 1921-1923

=item [PhyloNet]

PhyloNet: "Phylogenetic Networks Toolkit".
http://bioinfo.cs.rice.edu/phylonet

=item [BSS]

M. Baroni, C. Semple, and M. Steel. Hybrids in Real
Time. Syst. Biol. 55(1):46-56, 2006

=back

=head1 APPENDIX

The rest of the documentation details each of the object methods.

=cut

package Bio::PhyloNetwork;

use strict;
use warnings;

use base qw(Bio::Root::Root);

use Bio::PhyloNetwork::muVector;
use Graph::Directed;
use Bio::TreeIO;
use Bio::Tree::Node;
use IO::String;
use Array::Compare;
use Algorithm::Munkres;

# Creator

=head2 new

 Title   : new
 Usage   : my $obj = new Bio::PhyloNetwork();
 Function: Creates a new Bio::PhyloNetwork object
 Returns : Bio::PhyloNetwork
 Args    : none
            OR
           -eNewick => string
            OR
           -graph => Graph::Directed object
            OR
           -edges => reference to an array
            OR
           -tree => Bio::Tree::Tree object
            OR
           -mudata => reference to a hash,
           -leaves => reference to an array
            OR
           -mudata => reference to a hash,
           -numleaves => integer

Returns a Bio::PhyloNetwork object, created according to the data given:

=over 3

=item new()

creates an empty network.

=item new(-eNewick =E<gt> $str)

creates the network whose
Extended Newick representation (see description above) is the string $str.

=item new(-graph =E<gt> $graph)

creates the network with underlying
graph given by the Graph::Directed object $graph

=item new(-tree =E<gt> $tree)

creates a network as a copy of the
Bio::Tree::Tree object in $tree

=item new(-mudata =E<gt> \%mudata, -leaves =E<gt> \@leaves)

creates the network by reconstructing it from its mu-data stored in
\%mudata and with set of leaves in \@leaves.

=item new(-mudata =E<gt> \%mudata, -numleaves =E<gt> $numleaves)

creates the network by reconstructing it from its mu-data stored in
\%mudata and with set of leaves in ("l1".."l$numleaves").

=back

=cut

sub new {
  my ($pkg,@args)=@_;
  my $self=$pkg->SUPER::new(@args);
  my ($eNewick,$edgesR,$leavesR,$numleaves,$graph,$tree,$mudataR)=
    $self->_rearrange([qw(ENEWICK
			  EDGES
			  LEAVES
			  NUMLEAVES
			  GRAPH
			  TREE
			  MUDATA)],@args);
  bless($self,$pkg);

  $self->build_from_eNewick($eNewick) if defined $eNewick;
  $self->build_from_edges(@$edgesR) if defined $edgesR;
  $self->build_from_graph($graph) if defined $graph;
  $self->build_from_tree($tree) if defined $tree;
  if ((! defined $leavesR) && (defined $numleaves)) {
    my @leaves=map {"l$_"} (1..$numleaves);
    $leavesR=\@leaves;
  }
  $self->build_from_mudata($mudataR,$leavesR)
    if ((defined $mudataR) && (defined $leavesR));
  return $self;
}

# Builders

sub build_from_edges {
  my ($self,@edges)=@_;
  my $graph=Graph::Directed->new();
  $graph->add_edges(@edges);
  $self->{graph}=$graph;
  $self->recompute();
  my $labels={};
  foreach my $node ($self->nodes()) {
    $labels->{$node}=$node;
  }
  $self->{labels}=$labels;
}

sub build_from_graph {
  my ($self,$graph)=@_;
  my $graphcp=$graph->copy();
  $self->{graph}=$graphcp;
  $self->recompute();
  my $labels={};
  foreach my $node ($self->nodes()) {
    $labels->{$node}=$node;
  }
  $self->{labels}=$labels;
}

my $_eN_index;

sub build_from_eNewick {
  my ($self,$string)=@_;
  $_eN_index=0;
  my $graph=Graph::Directed->new();
  my $labels={};
  my @blocks=split(/; */,$string);
  foreach my $block (@blocks) {
    my ($rt,$str)=get_root_and_subtree($block);
    my ($rtlbl,$rttype,$rtid,$rtlng)=get_label_type_id_length($rt);
    process_block($graph,$labels,$block,$rtid);
    $labels->{$rtid}=$rtlbl.'';
  }
  $self->{graph}=$graph;
  $self->{labels}=$labels;
  $self->recompute();
}

sub process_block {
  my ($graph,$labels,$block,$rtid)=@_;
  my ($rt,$str)=get_root_and_subtree($block);
  my @substrs=my_split($str);
  foreach my $substr (@substrs) {
    my ($subrt,$subblock)=get_root_and_subtree($substr);
    my ($subrtlbl,$subrttype,$subrtid,$subrtlng)=
      get_label_type_id_length($subrt);
    if (! $subrtlng eq '') {
      $graph->add_weighted_edges($rtid,$subrtid,$subrtlng);
    }
    else {
      $graph->add_edges($rtid,$subrtid);
    }
    if (! $subrttype eq '') {
      $graph->set_edge_attribute($rtid,$subrtid,'type',$subrttype);
    }
    $subrtlbl.='';
#    if (! $subrtlbl eq '') {
    if ((! defined $labels->{$subrtid})||($labels->{$subrtid} eq '')){
      $labels->{$subrtid}=$subrtlbl;
    } elsif (( $labels->{$subrtid} ne $subrtlbl )&&($subrtlbl ne '')) {
      # error
      die("Different labels for the same node (".$labels->{$subrtid}." and $subrtlbl)");
    }
#    }
    if ($subblock ne "") {
      process_block($graph,$labels,$subblock,$subrtid);
    }
  }
}

sub get_root_and_subtree {
  my ($block)=@_;
  my ($rt,$str)=("","");
#  ($rt,$str)=split(/:|=/,$block);
  ($rt,$str)=split(/=/,$block);
  if ($rt eq $block) {
    # try to look for root label at the end
    my $pos=length($rt)-1;
    while ((substr($rt,$pos,1) ne ")") && ($pos >=0)) {
      $pos--;
    }
    $rt=substr($block,$pos+1,length($block)-$pos);
    $str=substr($block,0,$pos+1);
  }
  $rt=trim($rt);
  $str=trim($str);
  return ($rt,$str);
}

sub get_label_type_id_length {
  my ($string) = @_;
  $string.='';
#  print "$string\n";
  if (index($string,'#')==-1) {
    # no hybrid
    my ($label,$length)=split(':',$string);
    $label.='';
    my $id;
    if ((! defined $label) || ($label eq '')) {
      # create id
      $_eN_index++;
      $id="T$_eN_index";
    } else {
      $id=$label;
    }
    return ($label,'',$id,$length);
  }
  else {
    # hybrid
    my ($label,$string2)=split('#',$string);
    my ($typeid,$length)=split(':',$string2);
    my $type=$typeid;
    $type =~ s/\d//g;
    my $id=$typeid;
    $id =~ s/\D//g;
    return ($label,$type,'#'.$id,$length);
  }
}

sub trim
{
  my ($string) = @_;
  $string =~ s/^\s+//;
  $string =~ s/\s+$//;
  return $string;
}

sub my_split {
  my ( $string ) = @_;
  my $temp="";
  my @substrings;
  my $level=1;
  for my $i ( 1 .. length( $string ) ) {
    my $char=substr($string,$i,1);
    if ($char eq "(") {
      $level++;
    }
    if ($char eq ")") {
      if ($level==1) {
      	push @substrings, $temp;
	$temp="";
      }
      $level--;
    }
    if (($char eq ",") && ($level==1)) {
      	push @substrings, $temp;
	$temp="";
	$char="";
    }
    $temp = $temp.$char;
  }
  return @substrings;
}

sub build_from_mudata {
  my ($self,$mus,$leavesR)=@_;
  my $graph=Graph::Directed->new();
  my @nodes=keys %{$mus};
  my @leaves=@{$leavesR};

  my %seen;
  my @internal;

  @seen{@leaves} = ();

  foreach my $node (@nodes) {
    push(@internal, $node) unless exists $seen{$node};
  }

  @internal=sort {$mus->{$b} <=> $mus->{$a} } @internal;
  @nodes=(@internal,@leaves);
  my $numnodes=@nodes;
  for (my $i=0;$i<$numnodes;$i++) {
    my $mu=$mus->{$nodes[$i]};
    my $j=$i+1;
    while ($mu->is_positive() && $j<$numnodes) {
      if ($mu->geq_poset($mus->{$nodes[$j]})) {
	$graph->add_edges(($nodes[$i],$nodes[$j]));
	$mu = $mu - $mus->{$nodes[$j]};
      }
      $j++;
    }
  }
  $self->build_from_graph($graph);
}

# sub relabel_tree {
#   my ($tree)=@_;
#   my $i=1;
#   my $j=1;
#   my $root=$tree->get_root_node();
#   foreach my $node ($tree->get_nodes()) {
#     if ($node == $root) {
#       $node->{'_id'}="r";
#     }
#     elsif (! $node->is_Leaf) {
#       $node->{'_id'}="t$i";
#       $i++;
#     }
#     else {
#       if ($node->{'_id'} eq "") {
# 	$node->{'_id'}="l$j";
# 	$j++;
#       }
#     }
#   }
#   return $tree;
# }

# sub build_subtree {
#   my ($graph,$root)=@_;
#   foreach my $child ($root->each_Descendent) {
#     $graph->add_edge($root->id,$child->id);
#     $graph=build_subtree($graph,$child);
#   }
#   return $graph;
# }

sub build_from_tree {
  my ($self,$tree)=@_;
#  relabel_tree($tree);
#  my $treeroot=$tree->get_root_node;
#  my $graph=Graph::Directed->new();
#  $graph=build_subtree($graph,$treeroot);
#  $self->build_from_graph($graph);
  my $str;
  my $io=IO::String->new($str);
  my $treeio=Bio::TreeIO->new(-format => 'newick', -fh => $io);
  $treeio->write_tree($tree);
#  print "intern: $str\n";
  $self->build_from_eNewick($str);
}

sub recompute {
  my ($self)=@_;
  $self->throw("Graph is not DAG:".$self->{graph})
    unless $self->{graph}->is_dag();
  my @leaves=$self->{graph}->successorless_vertices();
  @leaves=sort @leaves;
  my $numleaves=@leaves;
  my @roots=$self->{graph}->predecessorless_vertices();
  my $numroots=@roots;
  #$self->throw("Graph is not rooted") unless ($numroots == 1);
  my @nodes=$self->{graph}->vertices();
  @nodes=sort @nodes;
  my $numnodes=@nodes;
  foreach my $node (@nodes) {
    if (! defined $self->{labels}->{$node}) {
      $self->{labels}->{$node}='';
    }
  }
  $self->{leaves}=\@leaves;
  $self->{numleaves}=$numleaves;
  $self->{roots}=\@roots;
  $self->{numroots}=$numroots;
  $self->{nodes}=\@nodes;
  $self->{numnodes}=$numnodes;
  $self->{mudata}={};
  $self->{h}={};
  $self->compute_height();
  $self->compute_mu();
  return $self;
}

# Hybridizing

sub is_attackable {
  my ($self,$u1,$v1,$u2,$v2)=@_;
  if ( $self->is_hybrid_node($v1) ||
       $self->is_hybrid_node($v2) ||
       $self->graph->is_reachable($v2,$u1) ||
       (($u1 eq $u2)&&($v1 eq $v2)) ||
       (! scalar grep {($_ ne $v2) && ($self->is_tree_node($_))}
	$self->graph->successors($u2)))
    {
      return 0;
    }
  return 1;
}

sub do_attack {
  my ($self,$u1,$v1,$u2,$v2,$lbl)=@_;
  my $graph=$self->{graph};
  $graph->delete_edge($u1,$v1);
  $graph->delete_edge($u2,$v2);
  $graph->add_edge($u1,"T$lbl");
  $graph->add_edge("T$lbl",$v1);
  $graph->add_edge($u2,"#H$lbl");
  $graph->add_edge("#H$lbl",$v2);
  $graph->add_edge("T$lbl","#H$lbl");
  $self->build_from_graph($graph);
}


# Computation of mu-data

sub compute_mu {
  my ($self)=@_;
  my $graph=$self->{graph};
  my $mudata=$self->{mudata};
  my @leaves=@{$self->{leaves}};
  my $numleaves=$self->{numleaves};
  for (my $i=0;$i<$numleaves;$i++) {
    my $vec=Bio::PhyloNetwork::muVector->new($numleaves);
    $vec->[$i]=1;
    $mudata->{$leaves[$i]}=$vec;
  }
  my $h=1;
  while (my @nodes=grep {$self->{h}->{$_} == $h} @{$self->{nodes}} )
    {
      foreach my $u (@nodes) {
	my $vec=Bio::PhyloNetwork::muVector->new($numleaves);
	foreach my $son ($graph->successors($u)) {
	  $vec+=$mudata->{$son};
	}
	$mudata->{$u}=$vec;
      }
      $h++;
    }
}

sub compute_height {
  my ($self)=@_;
  my $graph=$self->{graph};
  my @leaves=@{$self->{leaves}};
  foreach my $leaf (@leaves) {
    $self->{h}->{$leaf}=0;
  }
  my $h=0;
  while (my @nodes=grep {(defined $self->{h}->{$_})&&($self->{h}->{$_} == $h)}
	 @{$self->{nodes}} )
    {
    foreach my $node (@nodes) {
      foreach my $parent ($graph->predecessors($node)) {
	$self->{h}->{$parent}=$h+1;
      }
    }
    $h++;
  }
}

# Tests

=head2 is_leaf

 Title   : is_leaf
 Usage   : my $b=$net->is_leaf($u)
 Function: tests if $u is a leaf in $net
 Returns : boolean
 Args    : scalar

=cut

sub is_leaf {
  my ($self,$node)=@_;
  if ($self->{graph}->out_degree($node) == 0) {return 1;}
  return 0;
}

=head2 is_root

 Title   : is_root
 Usage   : my $b=$net->is_root($u)
 Function: tests if $u is the root of $net
 Returns : boolean
 Args    : scalar

=cut

sub is_root {
  my ($self,$node)=@_;
  if ($self->{graph}->in_degree($node) == 0) {return 1;}
  return 0;
}

=head2 is_tree_node

 Title   : is_tree_node
 Usage   : my $b=$net->is_tree_node($u)
 Function: tests if $u is a tree node in $net
 Returns : boolean
 Args    : scalar

=cut

sub is_tree_node {
  my ($self,$node)=@_;
  if ($self->{graph}->in_degree($node) <= 1) {return 1;}
  return 0;
}

=head2 is_hybrid_node

 Title   : is_hybrid_node
 Usage   : my $b=$net->is_hybrid_node($u)
 Function: tests if $u is a hybrid node in $net
 Returns : boolean
 Args    : scalar

=cut

sub is_hybrid_node {
  my ($self,$node)=@_;
  if ($self->{graph}->in_degree($node) > 1) {return 1;}
  return 0;
}

sub has_tree_child {
  # has_tree_child(g,u) returns 1 if u has a tree child in graph g
  # and 0 otherwise
  my $g=shift(@_);
  my $node=shift(@_);
  my @Sons=$g->successors($node);
  foreach my $son (@Sons) {
    if ($g->in_degree($son)==1) {
      return 1;
    }
  }
  return 0;
}

=head2 is_tree_child

 Title   : is_tree_child
 Usage   : my $b=$net->is_tree_child()
 Function: tests if $net is a Tree-Child phylogenetic network
 Returns : boolean
 Args    : Bio::PhyloNetwork

=cut

sub is_tree_child {
  my ($self)=@_;
  if (defined $self->{is_tree_child}) {
    return $self->{is_tree_child};
  }
  $self->{is_tree_child}=0;
  my $graph=$self->{graph};
  foreach my $node (@{$self->{nodes}}) {
    return 0 unless ($graph->out_degree($node)==0 ||
		     has_tree_child($graph,$node));
  }
  $self->{is_tree_child}=1;
  return 1;
}

# Accessors

=head2 nodes

 Title   : nodes
 Usage   : my @nodes=$net->nodes()
 Function: returns the set of nodes of $net
 Returns : array
 Args    : none

=cut

sub nodes {
  my ($self)=@_;
  return @{$self->{nodes}};
}

=head2 leaves

 Title   : leaves
 Usage   : my @leaves=$net->leaves()
 Function: returns the set of leaves of $net
 Returns : array
 Args    : none

=cut

sub leaves {
  my ($self)=@_;
  return @{$self->{leaves}};
}

=head2 roots

 Title   : roots
 Usage   : my @roots=$net->roots()
 Function: returns the set of roots of $net
 Returns : array
 Args    : none

=cut

sub roots {
  my ($self)=@_;
  return @{$self->{roots}};
}

=head2 internal_nodes

 Title   : internal_nodes
 Usage   : my @internal_nodes=$net->internal_nodes()
 Function: returns the set of internal nodes of $net
 Returns : array
 Args    : none

=cut

sub internal_nodes {
  my ($self)=@_;
  return grep {! $self->is_leaf($_)} $self->nodes();
}

=head2 tree_nodes

 Title   : tree_nodes
 Usage   : my @tree_nodes=$net->tree_nodes()
 Function: returns the set of tree nodes of $net
 Returns : array
 Args    : none

=cut

sub tree_nodes {
  my ($self)=@_;
  return grep {$self->is_tree_node($_)} $self->nodes();
}

=head2 hybrid_nodes

 Title   : hybrid_nodes
 Usage   : my @hybrid_nodes=$net->hybrid_nodes()
 Function: returns the set of hybrid nodes of $net
 Returns : array
 Args    : none

=cut

sub hybrid_nodes {
  my ($self)=@_;
  return grep {$self->is_hybrid_node($_)} $self->nodes();
}

=head2 graph

 Title   : graph
 Usage   : my $graph=$net->graph()
 Function: returns the underlying graph of $net
 Returns : Graph::Directed
 Args    : none

=cut

sub graph {
  my ($self)=@_;
  return $self->{graph};
}

=head2 edges

 Title   : edges
 Usage   : my @edges=$net->edges()
 Function: returns the set of edges of $net
 Returns : array
 Args    : none

Each element in the array is an anonimous array whose first element is the
head of the edge and the second one is the tail.

=cut

sub edges {
  my ($self)=@_;
  return $self->{graph}->edges();
}

=head2 tree_edges

 Title   : tree_edges
 Usage   : my @tree_edges=$net->tree_edges()
 Function: returns the set of tree edges of $net
           (those whose tail is a tree node)
 Returns : array
 Args    : none

=cut

sub tree_edges {
  my ($self)=@_;
  return grep {$self->is_tree_node($_->[1])} $self->edges();
}

=head2 hybrid_edges

 Title   : hybrid_edges
 Usage   : my @hybrid_edges=$net->hybrid_edges()
 Function: returns the set of hybrid edges of $net
           (those whose tail is a hybrid node)
 Returns : array
 Args    : none

=cut

sub hybrid_edges {
  my ($self)=@_;
  return grep {$self->is_hybrid_node($_->[1])} $self->edges();
}

=head2 explode

 Title   : explode
 Usage   : my @trees=$net->explode()
 Function: returns the representation of $net by a set of
           Bio::Tree:Tree objects
 Returns : array
 Args    : none

=cut

sub explode {
  my ($self)=@_;
  my @trees;
  $self->explode_rec(\@trees);
  return @trees;
}

sub explode_rec {
  my ($self,$trees)=@_;
  my @h = $self->hybrid_nodes;
  if (scalar @h) {
    my $v = shift @h;
    for my $u ($self->{graph}->predecessors($v)) {
      $self->{graph}->delete_edge($u,$v);
      $self->explode_rec($trees);
      $self->{graph}->add_edge($u,$v);
    }
  } else {
    my $io = IO::String->new($self->eNewick);
    my $treeio = Bio::TreeIO->new(-format => 'newick', -fh => $io);
    my $tree = $treeio->next_tree;
    $tree->contract_linear_paths;
    push @{$trees}, $tree;
  }
}

=head2 mudata

 Title   : mudata
 Usage   : my %mudata=$net->mudata()
 Function: returns the representation of $net by its mu-data
 Returns : hash
 Args    : none

$net-E<gt>mudata() returns a hash with keys the nodes of $net and each value is a
muVector object holding its mu-vector.

=cut

sub mudata {
  my ($self)=@_;
  return %{$self->{mudata}};
}

sub mudata_node {
  my ($self,$u)=@_;
  return $self->{mudata}{$u};
}

=head2 heights

 Title   : heights
 Usage   : my %heights=$net->heights()
 Function: returns the heights of the nodes of $net
 Returns : hash
 Args    : none

$net-E<gt>heights() returns a hash with keys the nodes of $net and each value
is its height.

=cut

sub heights {
  my ($self)=@_;
  return %{$self->{h}};
}

sub height_node {
  my ($self,$u)=@_;
  return $self->{h}{$u};
}

=head2 mu_distance

 Title   : mu_distance
 Usage   : my $dist=$net1->mu_distance($net2)
 Function: Computes the mu-distance between the networks $net1 and $net2 on
           the same set of leaves
 Returns : scalar
 Args    : Bio::PhyloNetwork

=cut

sub mu_distance {
  my ($net1,$net2)=@_;
  my @nodes1=$net1->nodes;
  my @nodes2=$net2->nodes;
  my $comp = Array::Compare->new;
  $net1->throw("Cannot compare phylogenetic networks on different set of leaves")
    unless $comp->compare($net1->{leaves},$net2->{leaves});
  $net1->warn("Not a tree-child phylogenetic network")
    unless $net1->is_tree_child();
  $net2->warn("Not a tree-child phylogenetic network")
    unless $net2->is_tree_child();
  my @leaves=@{$net1->{leaves}};
  my %matched1;
  my %matched2;
  OUTER: foreach my $node1 (@nodes1) {
    foreach my $node2 (@nodes2) {
      if (
	  (! exists $matched1{$node1}) && (! exists $matched2{$node2}) &&
	  ($net1->{mudata}{$node1} == $net2->{mudata}{$node2})
	 ) {
	$matched1{$node1}=$node2;
	$matched2{$node2}=$node1;
	next OUTER;
      }
    }
  }
  return (scalar @nodes1)+(scalar @nodes2)-2*(scalar keys %matched1);
}

=head2 mu_distance_generalized

 Title   : mu_distance_generalized
 Usage   : my $dist=$net1->mu_distance($net2)
 Function: Computes the mu-distance between the topological restrictions of
           networks $net1 and $net2 on its common set of leaves
 Returns : scalar
 Args    : Bio::PhyloNetwork

=cut

sub mu_distance_generalized {
  my ($net1,$net2)=@_;
  my ($netr1,$netr2)=$net1->topological_restriction($net2);
  return $netr1->mu_distance($netr2);
}

# mudata_string (code mu_data in a string; useful for isomorphism testing)

sub mudata_string_node {
  my ($self,$u)=@_;
  return $self->{mudata}->{$u}->display();
}

sub mudata_string {
  my ($self)=@_;
  return $self->{mudata_string} if defined $self->{mudata_string};
  my @internal=$self->internal_nodes;
  my $mus=$self->{mudata};
  @internal=sort {$mus->{$b} <=> $mus->{$a} } @internal;
  my $str="";
  foreach my $node (@internal) {
    $str=$str.$self->mudata_string_node($node);
  }
  $self->{mudata_string}=$str;
  return $str;
}

sub is_mu_isomorphic {
  my ($net1,$net2)=@_;
  return ($net1->mudata_string() eq $net2->mudata_string());
}

# tripartitions

sub compute_tripartition_node {
  my ($self,$u)=@_;
  $self->warn("Cannot compute tripartitions on unrooted networks. Will assume one at random")
    unless ($self->{numroots} == 1);
  my $root=$self->{roots}->[0];
  my $graph=$self->{graph};
  my $graphPruned=$graph->copy();
  $graphPruned->delete_vertex($u);
  my $tripartition="";
  foreach my $leaf (@{$self->{leaves}}) {
    my $type;
    if ($graph->is_reachable($u,$leaf)) {
      if ($graphPruned->is_reachable($root,$leaf)) {$type="B";}
      else {$type="A";}
    }
    else {$type="C";}
    $tripartition .= $type;
  }
  $self->{tripartitions}->{$u}=$tripartition;
}

sub compute_tripartitions {
  my ($self)=@_;
  foreach my $node (@{$self->{nodes}}) {
    $self->compute_tripartition_node($node);
  }
}

=head2 tripartitions

 Title   : tripartitions
 Usage   : my %tripartitions=$net->tripartitions()
 Function: returns the set of tripartitions of $net
 Returns : hash
 Args    : none

$net-E<gt>tripartitions() returns a hash with keys the nodes of $net and each value
is a string representing the tripartition of the leaves induced by the node.
A string "BCA..." associated with a node u (e.g.) means, the first leaf is in
the set B(u), the second one in C(u), the third one in A(u), and so on.

=cut

sub tripartitions {
  my ($self)=@_;
  $self->compute_tripartitions() unless defined $self->{tripartitions};
  return %{$self->{tripartitions}};
}

# to do: change to tri_distance and test for TC and time-cons

sub tripartition_error {
  my ($net1,$net2)=@_;
  my $comp = Array::Compare->new;
  $net1->throw("Cannot compare phylogenetic networks on different set of leaves")
    unless $comp->compare($net1->{leaves},$net2->{leaves});
  $net1->warn("Not a tree-child phylogenetic network")
    unless $net1->is_tree_child();
  $net2->warn("Not a tree-child phylogenetic network")
    unless $net2->is_tree_child();
  $net1->warn("Not a time-consistent network")
    unless $net1->is_time_consistent();
  $net2->warn("Not a time-consistent network")
    unless $net2->is_time_consistent();
  $net1->compute_tripartitions() unless defined $net1->{tripartitions};
  $net2->compute_tripartitions() unless defined $net2->{tripartitions};
  my @edges1=$net1->{graph}->edges();
  my @edges2=$net2->{graph}->edges();
  my ($FN,$FP)=(0,0);
  foreach my $edge1 (@edges1) {
    my $matched=0;
    foreach my $edge2 (@edges2) {
      if ($net1->{tripartitions}->{$edge1->[1]} eq
	  $net2->{tripartitions}->{$edge2->[1]}) {
	$matched=1;
	last;
      }
    }
    if (! $matched) {$FN++;}
  }
  foreach my $edge2 (@edges2) {
    my $matched=0;
    foreach my $edge1 (@edges1) {
      if ($net1->{tripartitions}->{$edge1->[1]} eq
	  $net2->{tripartitions}->{$edge2->[1]}) {
	$matched=1;
	last;
      }
    }
    if (! $matched) {$FP++;}
  }
  return ($FN/(scalar @edges1)+$FP/(scalar @edges2))/2;
}

# Time-consistency

# to do: add weak time consistency

=head2 is_time_consistent

 Title   : is_time_consistent
 Usage   : my $b=$net->is_time_consistent()
 Function: tests if $net is (strong) time-consistent
 Returns : boolean
 Args    : none

=cut

sub is_time_consistent {
  my ($self)=@_;
  $self->compute_temporal_representation()
    unless exists $self->{has_temporal_representation};
  return $self->{has_temporal_representation};
}

=head2 temporal_representation

 Title   : temporal_representation
 Usage   : my %time=$net->temporal_representation()
 Function: returns a hash containing a temporal representation of $net, or 0
           if $net is not time-consistent
 Returns : hash
 Args    : none

=cut

sub temporal_representation {
  my ($self)=@_;
  if ($self->is_time_consistent) {
    return %{$self->{temporal_representation}};
  }
  return 0;
}

sub compute_temporal_representation {
  my ($self)=@_;
  my $quotient=Graph::Directed->new();
  my $classes=find_classes($self);
  my %repr;
  map {$repr{$_}=$classes->{$_}[0]} $self->nodes();
  foreach my $e ($self->tree_edges()) {
    $quotient->add_edge($repr{$e->[0]},$repr{$e->[1]});
  }
  my %temp;
  my $depth=0;
  while ($quotient->vertices()) {
    if (my @svs=$quotient->predecessorless_vertices()) {
      foreach my $sv (@svs) {
	$temp{$sv}=$depth;
      }
      $quotient->delete_vertices(@svs);
    } else {
      return 0;
    }
    $depth++;
  }
  foreach my $node (@{$self->{nodes}}) {
    $temp{$node}=$temp{$repr{$node}}
  }
  $self->{temporal_representation}=\%temp;
  $self->{has_temporal_representation}=1;
}

sub find_classes {
  my ($self)=@_;
  my $classes={};
  map {$classes->{$_}=[$_]} $self->nodes();
  foreach my $e ($self->hybrid_edges()) {
    $classes=join_classes($classes,$e->[0],$e->[1]);
  }
  return $classes;
}

sub join_classes {
  my ($classes,$u,$v)=@_;
  my @clu=@{$classes->{$u}};
  my @clv=@{$classes->{$v}};
  my @cljoin=(@clu,@clv);
  map {$classes->{$_}=\@cljoin} @cljoin;
  return $classes;
}

# alignment

=head2 contract_elementary


 Title   : contract_elementary
 Usage   : my ($contracted,$blocks)=$net->contract_elementary();
 Function: Returns the network $contracted, obtained by contracting elementary
           paths of $net into edges. The reference $blocks points to a hash
           where, for each node of $contracted, gives the corresponding nodes
           of $net that have been deleted.
 Returns : Bio::PhyloNetwork,reference to hash
 Args    : none

=cut

sub contract_elementary {
  my ($self)=@_;

  my $contracted=$self->graph->copy();
  my @nodes=$self->nodes();
  my $mus=$self->{mudata};
  my $hs=$self->{h};
  my %blocks;
  foreach my $u (@nodes) {
    $blocks{$u}=[$u];
  }
  my @elementary=grep { $contracted->out_degree($_) == 1} $self->tree_nodes();
  @elementary=sort {$mus->{$b} <=> $mus->{$a} ||
			 $hs->{$b} <=> $hs->{$a}} @elementary;
  foreach my $elem (@elementary) {
    my @children=$contracted->successors($elem);
    my $child=$children[0];
    if ($contracted->in_degree($elem) == 1) {
      my @parents=$contracted->predecessors($elem);
      my $parent=$parents[0];
      $contracted->add_edge($parent,$child);
    }
    $contracted->delete_vertex($elem);
    my @blch=@{$blocks{$child}};
    my @blem=@{$blocks{$elem}};
    $blocks{$child}=[@blem,@blch];
    delete $blocks{$elem};
  }
  my $contr=Bio::PhyloNetwork->new(-graph => $contracted);
  return $contr,\%blocks;
}

=head2 optimal_alignment

 Title   : optimal_alignment
 Usage   : my ($weight,$alignment,$wgts)=$net->optimal_alignment($net2)
 Function: returns the total weight of an optimal alignment,
           the alignment itself, and partial weights
           between the networks $net1 and $net2 on the same set of leaves.
           An optional argument allows one to use the Manhattan (default) or the
           Hamming distance between mu-vectors.
 Returns : scalar,reference to hash,reference to hash
 Args    : Bio::PhyloNetwork,
           -metric => string (optional)

Supported strings for the -metric parameter are 'Manhattan' or 'Hamming'.

=cut

sub optimal_alignment {
  my ($net1,$net2,%params)=@_;

  my ($net1cont,$blocks1)=contract_elementary($net1);
  my ($net2cont,$blocks2)=contract_elementary($net2);
  my ($wc,$alignc,$weightc)=
    optimal_alignment_noelementary($net1cont,$net2cont,%params);
  my %alignment=();
  my $totalweigth=0;
  my %weigths=();
  foreach my $u1 (keys %$alignc) {
    my $u2=$alignc->{$u1};
    my @block1=@{$blocks1->{$u1}};
    my @block2=@{$blocks2->{$u2}};
    while (@block1 && @block2) {
      my $u1dc=pop @block1;
      my $u2dc=pop @block2;
      $alignment{$u1dc}=$u2dc;
      $weigths{$u1dc}=$weightc->{$u1};
      $totalweigth+=$weigths{$u1dc};
    }
  }
  return $totalweigth,\%alignment,\%weigths;
}

sub optimal_alignment_noelementary {
  my ($net1,$net2,%params)=@_;

  my $comp = Array::Compare->new;
  $net1->throw("Cannot align phylogenetic networks on different set of leaves")
    unless $comp->compare($net1->{leaves},$net2->{leaves});
  my $distance;
  if ((defined $params{-metric})and ($params{-metric} eq 'Hamming')) {
    $distance='Hamming';
  } else {
    $distance='Manhattan';
  }
  my $numleaves=$net1->{numleaves};
  my @nodes1=$net1->internal_nodes();
  my @nodes2=$net2->internal_nodes();
  my $numnodes1=@nodes1;
  my $numnodes2=@nodes2;
  my @matrix=();
  for (my $i=0;$i<$numnodes1;$i++) {
    my @row=();
    for (my $j=0;$j<$numnodes2;$j++) {
      push @row,weight($net1,$nodes1[$i],$net2,$nodes2[$j],$distance);
    }
    push @matrix,\@row;
  }
  my @alignment=();
  Algorithm::Munkres::assign(\@matrix,\@alignment);
  my %alignmenthash;
  my %weighthash;
  my $totalw=0;
  foreach my $leaf (@{$net1->{leaves}}) {
    $alignmenthash{$leaf}=$leaf;
    $weighthash{$leaf}=0;
  }
  for (my $i=0;$i<$numnodes1;$i++) {
    if (defined $nodes2[$alignment[$i]]) {
      $alignmenthash{$nodes1[$i]}=$nodes2[$alignment[$i]];
      $weighthash{$nodes1[$i]}=$matrix[$i][$alignment[$i]];
      $totalw += $matrix[$i][$alignment[$i]];
    }
  }
  return $totalw,\%alignmenthash,\%weighthash;
 }

=head2 optimal_alignment_generalized

 Title   : optimal_alignment_generalized
 Usage   : my ($weight,%alignment)=$net->optimal_alignment_generalized($net2)
 Function: returns the wieght of an optimal alignment, and the alignment itself,
           between the topological restriction of the networks $net1 and $net2
           on the set of common leaves.
           An optional argument allows one to use the Manhattan (default) or the
           Hamming distance between mu-vectors.
 Returns : scalar,hash
 Args    : Bio::PhyloNetwork,
           -metric => string (optional)

Supported strings for the -metric parameter are 'Manhattan' or 'Hamming'.

=cut

sub optimal_alignment_generalized {
  my ($net1,$net2,%params)=@_;
  my ($netr1,$netr2)=$net1->topological_restriction($net2);
  return $netr1->optimal_alignment($netr2,%params);
}

sub weight {
  my ($net1,$v1,$net2,$v2,$distance)=@_;
  my $w;
  if (! defined $distance) {
    $distance='Manhattan';
  }
  if ($distance eq 'Hamming') {
    $w=$net1->{mudata}->{$v1}->hamming($net2->{mudata}->{$v2});
  } else {
    $w=$net1->{mudata}->{$v1}->manhattan($net2->{mudata}->{$v2});
  }
  if (($net1->is_tree_node($v1) && $net2->is_hybrid_node($v2)) ||
      ($net2->is_tree_node($v2) && $net1->is_hybrid_node($v1))
     )
    {
      $w +=1/(2*$net1->{numleaves});
    }
  return $w;
}


=head2 topological_restriction

 Title   : topological_restriction
 Usage   : my ($netr1,$netr2)=$net1->topological_restriction($net2)
 Function: returns the topological restriction of $net1 and $net2 on its
           common set of leaves
 Returns : Bio::PhyloNetwork, Bio::PhyloNetwork
 Args    : Bio::PhyloNetwork

=cut

sub topological_restriction {
  my ($net1,$net2)=@_;

  my @leaves1=$net1->leaves();
  my @leaves2=$net2->leaves();
  my $numleaves1=scalar @leaves1;
  my $numleaves2=scalar @leaves2;
  my %position1;
  for (my $i=0; $i<$numleaves1; $i++) {
    $position1{$leaves1[$i]}=$i;
  }
  my %position2;
  my @commonleaves=();
  for (my $j=0; $j<$numleaves2; $j++) {
    if (defined $position1{$leaves2[$j]}) {
      push @commonleaves,$leaves2[$j];
      $position2{$leaves2[$j]}=$j;
    }
  }
  my $graphred1=$net1->{graph}->copy();
  my $graphred2=$net2->{graph}->copy();
 OUTER1:
  foreach my $u ($graphred1->vertices()) {
    my $mu=$net1->mudata_node($u);
    foreach my $leaf (@commonleaves) {
      if ($mu->[$position1{$leaf}]>0) {
	next OUTER1;
      }
    }
    $graphred1->delete_vertex($u);
  }
 OUTER2:
  foreach my $u ($graphred2->vertices()) {
    my $mu=$net2->mudata_node($u);
    foreach my $leaf (@commonleaves) {
      if ($mu->[$position2{$leaf}]>0) {
	next OUTER2;
      }
    }
    $graphred2->delete_vertex($u);
  }
  my $netr1=Bio::PhyloNetwork->new(-graph => $graphred1);
  my $netr2=Bio::PhyloNetwork->new(-graph => $graphred2);
  return ($netr1,$netr2);
}

# Functions for eNewick representation

=head2 eNewick

 Title   : eNewick
 Usage   : my $str=$net->eNewick()
 Function: returns the eNewick representation of $net without labeling
           internal tree nodes
 Returns : string
 Args    : none

=cut

sub eNewick {
  my ($self)=@_;
  my $str="";
  my $seen={};
  foreach my $root ($self->roots()) {
    $str=$str.$self->eNewick_aux($root,$seen,undef)."; ";
  }
  return $str;
}

sub eNewick_aux {
  my ($self,$node,$seen,$parent)=@_;
  my $str='';
  if ($self->is_leaf($node) ||
      (defined $seen->{$node}) )
    {
      $str=make_label($self,$parent,$node);
    }
  else {
    $seen->{$node}=1;
    my @sons=$self->{graph}->successors($node);
    $str="(";
    foreach my $son (@sons) {
      $str=$str.$self->eNewick_aux($son,$seen,$node).",";
    }
    chop($str);
    $str.=")".make_label($self,$parent,$node);
  }
  return $str;
}

sub make_label {
  my ($self,$parent,$node)=@_;
  my $str='';
  if ($self->is_hybrid_node($node)) {
    my $lbl=$self->{labels}->{$node};
    if ($lbl =~ /#/) {
      $lbl='';
    }
    $str.=$lbl; #$self->{labels}->{$node};
    $str.='#';
    if ((defined $parent) &&
	($self->graph->has_edge_attribute($parent,$node,'type'))) {
      $str.=$self->graph->get_edge_attribute($parent,$node,'type');
    }
    $str.=substr $node,1;
  } else {
    $str.=$self->{labels}->{$node};
  }
  if ((defined $parent) &&
      ($self->graph->has_edge_weight($parent,$node))) {
    $str.=":".$self->graph->get_edge_weight($parent,$node);
  }
  return $str;
}

=head2 eNewick_full

 Title   : eNewick_full
 Usage   : my $str=$net->eNewick_full()
 Function: returns the eNewick representation of $net labeling
           internal tree nodes
 Returns : string
 Args    : none

=cut

sub eNewick_full {
  my ($self)=@_;
  my $str="";
  my $seen={};
  foreach my $root ($self->roots()) {
    $str=$str.$self->eNewick_full_aux($root,$seen,undef)."; ";
  }
  return $str;
}

sub eNewick_full_aux {
  my ($self,$node,$seen,$parent)=@_;
  my $str='';
  if ($self->is_leaf($node) ||
      (defined $seen->{$node}) )
    {
      $str=make_label_full($self,$parent,$node);
    }
  else {
    $seen->{$node}=1;
    my @sons=$self->{graph}->successors($node);
    $str="(";
    foreach my $son (@sons) {
      $str=$str.$self->eNewick_full_aux($son,$seen,$node).",";
    }
    chop($str);
    $str.=")".make_label_full($self,$parent,$node);
  }
  return $str;
}

sub make_label_full {
  my ($self,$parent,$node)=@_;
  my $str='';
  if ($self->is_hybrid_node($node)) {
    my $lbl=$self->{labels}->{$node};
    if ($lbl =~ /#/) {
      $lbl='';
    }
    $str.=$lbl; #$self->{labels}->{$node};
    $str.='#';
    if ((defined $parent) &&
	($self->graph->has_edge_attribute($parent,$node,'type'))) {
      $str.=$self->graph->get_edge_attribute($parent,$node,'type');
    }
    $str.=substr $node,1;
  } else {
    if ((defined $self->{labels}->{$node})&&($self->{labels}->{$node} ne '')) {
      $str.=$self->{labels}->{$node};
    }
    else {
      $str.=$node;
    }
  }
  if ((defined $parent) &&
      ($self->graph->has_edge_weight($parent,$node))) {
    $str.=":".$self->graph->get_edge_weight($parent,$node);
  }
  return $str;
}

# sub eNewick_full {
#   my ($self)=@_;
#   my $str="";
#   my $seen={};
#   foreach my $root ($self->roots()) {
#     $str=$str.$self->eNewick_full_aux($root,$seen,undef)."; ";
#   }
#   return $str;
# }

# sub eNewick_full_aux {
#   my ($self,$node,$seen,$parent)=@_;
#   my $str;
#   if ($self->is_leaf($node) ||
#       (defined $seen->{$node}) )
#     {
#       if ($self->is_hybrid_node($node)) {
# 	my $tag=substr $node,1;
# 	if ((defined $parent) &&
# 	    ($self->graph->has_edge_attribute($parent,$node,'type'))) {
# 	  $str='#'.$self->graph->get_edge_attribute($parent,$node,'type').$tag;
# 	} else {
# 	  $str=$node;
# 	}
#       } else {
# 	$str=$node;
#       }
#     }
#   else {
#     $seen->{$node}=1;
#     my @sons=$self->{graph}->successors($node);
#     $str="(";
#     foreach my $son (@sons) {
#       $str=$str.$self->eNewick_full_aux($son,$seen,$node).",";
#     }
#     chop($str);
#     if ($self->is_hybrid_node($node)) {
#       my $tag=substr $node,1;
#       if ((defined $parent) &&
# 	  ($self->graph->has_edge_attribute($parent,$node,'type'))) {
# 	$str.=')#'.$self->graph->get_edge_attribute($parent,$node,'type').$tag;
#       } else {
# 	$str.=")$node";
#       }
#     } else {
#       $str.=")$node";
#     }
#   }
#   if ((defined $parent) &&
#       ($self->graph->has_edge_weight($parent,$node))) {
#     $str.=":".$self->graph->get_edge_weight($parent,$node);
#   }
#   return $str;
# }


# displaying data

use overload '""' => \&display;

=head2 display

 Title   : display
 Usage   : my $str=$net->display()
 Function: returns a string containing all the available information on $net
 Returns : string
 Args    : none

=cut

sub display {
  my ($self)=@_;
  my $str="";
  my $graph=$self->{graph};
  my @leaves=$self->leaves();
  my @nodes=@{$self->{nodes}};
  $str.= "Leaves:\t@leaves\n";
  $str.= "Nodes:\t@nodes\n";
  $str.= "Graph:\t$graph\n";
  $str.= "eNewick:\t".$self->eNewick()."\n";
  $str.= "Full eNewick:\t".$self->eNewick_full()."\n";
  $str.= "Mu-data and heights:\n";
  foreach my $node (@nodes) {
    $str.= "v=$node: ";
    if (exists $self->{labels}->{$node}) {
      $str.="\tlabel=".$self->{labels}->{$node}.",";
    } else {
      $str.="\tlabel=(none),";
    }
    $str.= "\th=".$self->{h}->{$node}.", \tmu=".$self->{mudata}->{$node}."\n";
  }
  if (exists $self->{has_temporal_representation}) {
    $str.= "Temporal representation:\n";
    if ($self->{has_temporal_representation}) {
      foreach my $node (@nodes) {
	$str.= "v=$node; ";
	$str.= "\tt=".$self->{temporal_representation}->{$node}."\n";
      }
    } else {
      $str.= "Does not exist.\n";
    }
  }
  if (exists $self->{tripartitions}) {
    $str.= "Tripartitions:\n";
    foreach my $node (@nodes) {
      $str.= "v=$node; ";
      $str.= "\ttheta=".$self->{tripartitions}->{$node}."\n";
    }
  }
  return $str;
}

1;