This file is indexed.

/usr/share/perl5/Bio/Align/DNAStatistics.pm is in libbio-perl-perl 1.7.1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
#
# BioPerl module for Bio::Align::DNAStatistics
#
# Please direct questions and support issues to <bioperl-l@bioperl.org> 
#
# Cared for by Jason Stajich <jason-AT-bioperl.org>
#
# Copyright Jason Stajich
#
# You may distribute this module under the same terms as perl itself

# POD documentation - main docs before the code

=head1 NAME

Bio::Align::DNAStatistics - Calculate some statistics for a DNA alignment

=head1 SYNOPSIS

  use Bio::AlignIO;
  use Bio::Align::DNAStatistics;

  my $stats = Bio::Align::DNAStatistics->new();
  my $alignin = Bio::AlignIO->new(-format => 'emboss',
                                 -file   => 't/data/insulin.water');
  my $aln = $alignin->next_aln;
  my $jcmatrix = $stats->distance(-align => $aln, 
                                  -method => 'Jukes-Cantor');

  print $jcmatrix->print_matrix;
  ## and for measurements of synonymous /nonsynonymous substitutions ##

  my $in = Bio::AlignIO->new(-format => 'fasta',
                            -file   => 't/data/nei_gojobori_test.aln');
  my $alnobj = $in->next_aln;
  my ($seq1id,$seq2id) = map { $_->display_id } $alnobj->each_seq;
  my $results = $stats->calc_KaKs_pair($alnobj, $seq1id, $seq2id);
  print "comparing ".$results->[0]{'Seq1'}." and ".$results->[0]{'Seq2'}."\n";
  for (sort keys %{$results->[0]} ){
      next if /Seq/;
      printf("%-9s %.4f \n",$_ , $results->[0]{$_});
  }

  my $results2 = $stats->calc_all_KaKs_pairs($alnobj);
  for my $an (@$results2){
      print "comparing ". $an->{'Seq1'}." and ". $an->{'Seq2'}. " \n";
      for (sort keys %$an ){
	  next if /Seq/;
	  printf("%-9s %.4f \n",$_ , $an->{$_});
      }
      print "\n\n";
  }

  my $result3 = $stats->calc_average_KaKs($alnobj, 1000);
  for (sort keys %$result3 ){
      next if /Seq/;
      printf("%-9s %.4f \n",$_ , $result3->{$_});
  }

=head1 DESCRIPTION

This object contains routines for calculating various statistics and
distances for DNA alignments.  The routines are not well tested and do
contain errors at this point.  Work is underway to correct them, but
do not expect this code to give you the right answer currently!  Use
dnadist/distmat in the PHLYIP or EMBOSS packages to calculate the
distances.


Several different distance method calculations are supported.  Listed
in brackets are the pattern which will match

=over 3

=item *

JukesCantor [jc|jukes|jukescantor|jukes-cantor]

=item *

Uncorrected [jcuncor|uncorrected]

=item *

F81 [f81|felsenstein]

=item *

Kimura [k2|k2p|k80|kimura]

=item *

Tamura [t92|tamura|tamura92]

=item *

F84 [f84|felsenstein84]

=item *

TajimaNei [tajimanei|tajima\-nei]

=item *

JinNei [jinnei|jin\-nei] (not implemented)

=back

There are also three methods to calculate the ratio of synonymous to
non-synonymous mutations.  All are implementations of the Nei-Gojobori
evolutionary pathway method and use the Jukes-Cantor method of
nucleotide substitution. This method works well so long as the
nucleotide frequencies are roughly equal and there is no significant
transition/transversion bias.  In order to use these methods there are
several pre-requisites for the alignment.

=over 3

=item 1

DNA alignment must be based on protein alignment. Use the subroutine
L<Bio::Align::Utilities/aa_to_dna_aln> to achieve this.

=item 2

Therefore alignment gaps must be in multiples of 3 (representing an aa
deletion/insertion) and at present must be indicated by a '-' symbol.

=item 3

Alignment must be solely of coding region and be in reading frame 0 to
achieve meaningful results

=item 4

Alignment must therefore be a multiple of 3 nucleotides long.

=item 5

All sequences must be the same length (including gaps). This should be
the case anyway if the sequences have been automatically aligned using
a program like Clustal.

=item 6

Only the standard codon alphabet is supported at present.

=back

calc_KaKs_pair() calculates a number of statistics for a named pair of
sequences in the alignment.

calc_all_KaKs_pairs() calculates these statistics for all pairwise
comparisons in an MSA.  The statistics returned are:

=over 3

=item *

S_d - Number of synonymous mutations between the 2 sequences.

=item *

N_d - Number of non-synonymous mutations between the 2 sequences.

=item *

S -  Mean number of  synonymous sites in both sequences.

=item *

N -  mean number of  synonymous sites in both sequences.

=item *

P_s - proportion of synonymous differences in both sequences given by
P_s = S_d/S.

=item *

P_n - proportion of non-synonymous differences in both sequences given
by P_n = S_n/S.

=item *

D_s - estimation of synonymous mutations per synonymous site (by
Jukes-Cantor).

=item *

D_n - estimation of non-synonymous mutations per non-synonymous site (by
Jukes-Cantor).

=item *

D_n_var - estimation of variance of D_n .

=item *

D_s_var - estimation of variance of S_n.

=item *

z_value - calculation of z value.Positive value indicates D_n E<gt> D_s,
negative value indicates D_s E<gt> D_n.

=back

The statistics returned by calc_average_KaKs are:

=over 3

=item *

D_s - Average number of synonymous mutations/synonymous site.

=item *

D_n - Average number of non-synonymous mutations/non-synonymous site.

=item *

D_s_var - Estimated variance of Ds from bootstrapped alignments.

=item *

D_n_var - Estimated variance of Dn from bootstrapped alignments.

=item *

z_score - calculation of z value. Positive value indicates D_n E<gt>D_s,
negative values vice versa.

=back

The design of the code is based around the explanation of the
Nei-Gojobori algorithm in the excellent book "Molecular Evolution and
Phylogenetics" by Nei and Kumar, published by Oxford University
Press. The methods have been tested using the worked example 4.1 in
the book, and reproduce those results. If people like having this sort
of analysis in BioPerl other methods for estimating Ds and Dn can be
provided later.

Much of the DNA distance code is based on implementations in EMBOSS
(Rice et al, www.emboss.org) [distmat.c] and PHYLIP (J. Felsenstein et
al) [dnadist.c].  Insight also gained from Eddy, Durbin, Krogh, &
Mitchison.

=head1 REFERENCES

=over 3

=item *

D_JukesCantor 

"Phylogenetic Inference", Swoffrod, Olsen, Waddell and Hillis, in
Mol. Systematics, 2nd ed, 1996, Ch 11.  Derived from "Evolution of
Protein Molecules", Jukes & Cantor, in Mammalian Prot. Metab., III,
1969, pp. 21-132.

=item *

D_Tamura

K Tamura, Mol. Biol. Evol. 1992, 9, 678.

=item *

D_Kimura 

M Kimura, J. Mol. Evol., 1980, 16, 111.

=item *

JinNei 

Jin and Nei, Mol. Biol. Evol. 82, 7, 1990.

=item *

D_TajimaNei

Tajima and Nei, Mol. Biol. Evol. 1984, 1, 269.

=back

=head1 FEEDBACK

=head2 Mailing Lists

User feedback is an integral part of the evolution of this and other
Bioperl modules. Send your comments and suggestions preferably to
the Bioperl mailing list.  Your participation is much appreciated.

  bioperl-l@bioperl.org                  - General discussion
  http://bioperl.org/wiki/Mailing_lists  - About the mailing lists

=head2 Support 

Please direct usage questions or support issues to the mailing list:

I<bioperl-l@bioperl.org>

rather than to the module maintainer directly. Many experienced and 
reponsive experts will be able look at the problem and quickly 
address it. Please include a thorough description of the problem 
with code and data examples if at all possible.

=head2 Reporting Bugs

Report bugs to the Bioperl bug tracking system to help us keep track
of the bugs and their resolution. Bug reports can be submitted via the
web:

  https://github.com/bioperl/bioperl-live/issues

=head1 AUTHOR - Jason Stajich

Email jason-AT-bioperl.org

=head1 CONTRIBUTORS

Richard Adams, richard.adams@ed.ac.uk

=head1 APPENDIX

The rest of the documentation details each of the object methods.
Internal methods are usually preceded with a _

=cut


# Let the code begin...


package Bio::Align::DNAStatistics;
use vars qw(%DNAChanges @Nucleotides %NucleotideIndexes
	    $GapChars $SeqCount $DefaultGapPenalty %DistanceMethods
            $CODONS %synchanges $synsites $Precision $GCChhars);
use strict;
use Bio::Align::PairwiseStatistics;
use Bio::Matrix::PhylipDist;
use Bio::Tools::IUPAC;

BEGIN {
    $GapChars = '[\.\-]';
    $GCChhars = '[GCS]';
    @Nucleotides = qw(A G T C);
    $SeqCount = 2;
    $Precision = 5;
    
    # these values come from EMBOSS distmat implementation
    %NucleotideIndexes = ( 'A' => 0,
			   'T' => 1,
			   'C' => 2,
			   'G' => 3,

			   'AT' => 0,
			   'AC' => 1,
			   'AG' => 2,
			   'CT' => 3,
			   'GT' => 4,
			   'CG' => 5,

# these are wrong now
#			   'S' => [ 1, 3],
#			   'W' => [ 0, 4],
#			   'Y' => [ 2, 3],
#			   'R' => [ 0, 1],
#			   'M' => [ 0, 3],
#			   'K' => [ 1, 2],
#			   'B' => [ 1, 2, 3],
#			   'H' => [ 0, 2, 3],
#			   'V' => [ 0, 1, 3],
#			   'D' => [ 0, 1, 2],
			   );

    $DefaultGapPenalty = 0;
    # could put ambiguities here?
    %DNAChanges = ( 'Transversions' => { 'A' => [ 'T', 'C'],
					 'T' => [ 'A', 'G'],
					 'C' => [ 'A', 'G'],
					 'G' => [ 'C', 'T'],
				     },
		    'Transitions'   => { 'A' => [ 'G' ],
					 'G' => [ 'A' ],
					 'C' => [ 'T' ],
					 'T' => [ 'C' ],
				     },
		    );
    %DistanceMethods = ( 'jc|jukes|jukescantor|jukes\-cantor' => 'JukesCantor',
			 'jcuncor|uncorrected'   => 'Uncorrected',
			 'f81|felsenstein81'     => 'F81',
			 'k2|k2p|k80|kimura'     => 'Kimura',
			 't92|tamura|tamura92'   => 'Tamura',
			 'f84|felsenstein84'     => 'F84',
			 'tajimanei|tajima\-nei' => 'TajimaNei',
			 'jinnei|jin\-nei'       => 'JinNei');

}
use base qw(Bio::Root::Root Bio::Align::StatisticsI);

## generate look up hashes for Nei_Gojobori methods##
$CODONS = get_codons();
my @t = split '', "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG";
#create look up hash of number of possible synonymous mutations per codon
$synsites = get_syn_sites();
#create reference look up hash of single basechanges in codons
%synchanges = get_syn_changes();



=head2 new

 Title   : new
 Usage   : my $obj = Bio::Align::DNAStatistics->new();
 Function: Builds a new Bio::Align::DNAStatistics object 
 Returns : Bio::Align::DNAStatistics
 Args    : none


=cut

sub new { 
    my ($class,@args) = @_;
    my $self = $class->SUPER::new(@args);
    
    $self->pairwise_stats( Bio::Align::PairwiseStatistics->new());

    return $self;
}


=head2 distance

 Title   : distance
 Usage   : my $distance_mat = $stats->distance(-align  => $aln, 
		 			       -method => $method);
 Function: Calculates a distance matrix for all pairwise distances of
           sequences in an alignment.
 Returns : L<Bio::Matrix::PhylipDist> object
 Args    : -align  => Bio::Align::AlignI object
           -method => String specifying specific distance method 
                      (implementing class may assume a default)
See also: L<Bio::Matrix::PhylipDist>

=cut

sub distance{
   my ($self,@args) = @_;
   my ($aln,$method) = $self->_rearrange([qw(ALIGN METHOD)],@args);
   if( ! defined $aln || ! ref ($aln) || ! $aln->isa('Bio::Align::AlignI') ) { 
       $self->throw("Must supply a valid Bio::Align::AlignI for the -align parameter in distance");
   }
   $method ||= 'JukesCantor';
   foreach my $m ( keys %DistanceMethods ) {
       if(defined $m &&  $method =~ /$m/i ) {
	   my $mtd = "D_$DistanceMethods{$m}";
	   return $self->$mtd($aln);
       }
   }
   $self->warn("Unrecognized distance method $method must be one of [".
	       join(',',$self->available_distance_methods())."]");
   return;
}

=head2 available_distance_methods

 Title   : available_distance_methods
 Usage   : my @methods = $stats->available_distance_methods();
 Function: Enumerates the possible distance methods
 Returns : Array of strings
 Args    : none


=cut

sub available_distance_methods{
   my ($self,@args) = @_;
   return values %DistanceMethods;
}

=head2 D - distance methods


=cut


=head2 D_JukesCantor

 Title   : D_JukesCantor
 Usage   : my $d = $stat->D_JukesCantor($aln)
 Function: Calculates D (pairwise distance) between 2 sequences in an 
           alignment using the Jukes-Cantor 1 parameter model. 
 Returns : L<Bio::Matrix::PhylipDist>
 Args    : L<Bio::Align::AlignI> of DNA sequences
           double - gap penalty


=cut

sub D_JukesCantor{
   my ($self,$aln,$gappenalty) = @_;
   return 0 unless $self->_check_arg($aln);
   $gappenalty = $DefaultGapPenalty unless defined $gappenalty;
   # ambiguities ignored at this point
   my (@seqs,@names,@values,%dist);
   my $seqct = 0;
   foreach my $seq ( $aln->each_seq) {
       push @names, $seq->display_id;
       push @seqs, uc $seq->seq();
       $seqct++;
   }
   my $precisionstr = "%.$Precision"."f";
   for(my $i = 0; $i < $seqct-1; $i++ ) {
       # (diagonals) distance is 0 for same sequence
       $dist{$names[$i]}->{$names[$i]} = [$i,$i];
       $values[$i][$i] = sprintf($precisionstr,0);        

       for( my $j = $i+1; $j < $seqct; $j++ ) {
	   my ($matrix,$pfreq,$gaps) = $self->_build_nt_matrix($seqs[$i],
							       $seqs[$j]);
	   # just want diagonals
	   my $m = ( $matrix->[0]->[0] + $matrix->[1]->[1] + 
		     $matrix->[2]->[2] + $matrix->[3]->[3] );
	   my $D = 1 - ( $m / ($aln->length - $gaps + ( $gaps * $gappenalty)));
	   my $d = (- 3 / 4) * log ( 1 - (4 * $D/ 3));
	   # fwd and rev lookup
	   $dist{$names[$i]}->{$names[$j]} = [$i,$j];
	   $dist{$names[$j]}->{$names[$i]} = [$i,$j];	   
	   $values[$j][$i] = $values[$i][$j] = sprintf($precisionstr,$d);
           # (diagonals) distance is 0 for same sequence
	   $dist{$names[$j]}->{$names[$j]} = [$j,$j];   
	   $values[$j][$j] = sprintf($precisionstr,0);
       }
   }
   return Bio::Matrix::PhylipDist->new(-program => 'bioperl_DNAstats',
				       -matrix  => \%dist,
				       -names   => \@names,
				       -values  => \@values);   
}

=head2 D_F81

 Title   : D_F81
 Usage   : my $d = $stat->D_F81($aln)
 Function: Calculates D (pairwise distance) between 2 sequences in an 
           alignment using the Felsenstein 1981 distance model. 
           Relaxes the assumption of equal base frequencies that is
           in JC.
 Returns : L<Bio::Matrix::PhylipDist>
 Args    : L<Bio::Align::AlignI> of DNA sequences


=cut

sub D_F81{
   my ($self,$aln,$gappenalty) = @_;
   return 0 unless $self->_check_arg($aln);
   $gappenalty = $DefaultGapPenalty unless defined $gappenalty;
   # ambiguities ignored at this point
   my (@seqs,@names,@values,%dist);
   my $seqct = 0;
   foreach my $seq ( $aln->each_seq) {
       push @names, $seq->display_id;;
       push @seqs, uc $seq->seq();
       $seqct++;
   }
   my $precisionstr = "%.$Precision"."f";
   for(my $i = 0; $i < $seqct-1; $i++ ) {
       # (diagonals) distance is 0 for same sequence
       $dist{$names[$i]}->{$names[$i]} = [$i,$i];
       $values[$i][$i] = sprintf($precisionstr,0);        

       for( my $j = $i+1; $j < $seqct; $j++ ) {
	   
	   my ($matrix,$pfreq,$gaps) = $self->_build_nt_matrix($seqs[$i],
							       $seqs[$j]);
	   # just want diagonals
	   my $m = ( $matrix->[0]->[0] + $matrix->[1]->[1] + 
		     $matrix->[2]->[2] + $matrix->[3]->[3] );
	   my $D = 1 - ( $m / ($aln->length - $gaps + ( $gaps * $gappenalty)));
	   my $d = (- 3 / 4) * log ( 1 - (4 * $D/ 3));
	   # fwd and rev lookup
	   $dist{$names[$i]}->{$names[$j]} = [$i,$j];
	   $dist{$names[$j]}->{$names[$i]} = [$i,$j];	   
	   $values[$j][$i] = $values[$i][$j] = sprintf($precisionstr,$d);
           # (diagonals) distance is 0 for same sequence
	   $dist{$names[$j]}->{$names[$j]} = [$j,$j];	   
	   $values[$j][$j] = sprintf($precisionstr,0); 
       }
   }
   return Bio::Matrix::PhylipDist->new(-program => 'bioperl_DNAstats',
				       -matrix  => \%dist,
				       -names   => \@names,
				       -values  => \@values);   
}

=head2 D_Uncorrected

 Title   : D_Uncorrected
 Usage   : my $d = $stats->D_Uncorrected($aln)
 Function: Calculate a distance D, no correction for multiple substitutions 
           is used.  In rare cases where sequences may not overlap, 'NA' is
           substituted for the distance.
 Returns : L<Bio::Matrix::PhylipDist>
 Args    : L<Bio::Align::AlignI> (DNA Alignment)
           [optional] gap penalty

=cut

sub D_Uncorrected {
   my ($self,$aln,$gappenalty) = @_;
   $gappenalty = $DefaultGapPenalty unless defined $gappenalty;
   return 0 unless $self->_check_arg($aln);
   # ambiguities ignored at this point
   my (@seqs,@names,@values,%dist);
   my $seqct = 0;
   foreach my $seq ( $aln->each_seq) {
       push @names, $seq->display_id;
       push @seqs, uc $seq->seq();
       $seqct++;
   }

   my $precisionstr = "%.$Precision"."f";
   my $len = $aln->length;
   for( my $i = 0; $i < $seqct-1; $i++ ) {
       # (diagonals) distance is 0 for same sequence
       $dist{$names[$i]}->{$names[$i]} = [$i,$i];
       $values[$i][$i] = sprintf($precisionstr,0);
       
       for( my $j = $i+1; $j < $seqct; $j++ ) {
	   my ($matrix,$pfreq,$gaps) = $self->_build_nt_matrix($seqs[$i],
							       $seqs[$j]);
	   my $m = ( $matrix->[0]->[0] + 
		     $matrix->[1]->[1] +
		     $matrix->[2]->[2] +
		     $matrix->[3]->[3] );
       my $denom = ( $len - $gaps + ( $gaps * $gappenalty));
       
       $self->warn("No distance calculated between $names[$i] and $names[$j], inserting -1")
            unless $denom;
       
	   my $D = $denom ? 1 - ( $m / $denom) : -1;
	   # fwd and rev lookup
	   $dist{$names[$i]}->{$names[$j]} = [$i,$j];
	   $dist{$names[$j]}->{$names[$i]} = [$i,$j];
	   $values[$j][$i] = $values[$i][$j] = $denom ? sprintf($precisionstr,$D)
                                                  : sprintf("%-*s", $Precision + 2, $D);
           # (diagonals) distance is 0 for same sequence
	   $dist{$names[$j]}->{$names[$j]} = [$j,$j];	   
	   $values[$j][$j] = sprintf($precisionstr,0); 
       }
   }
   return Bio::Matrix::PhylipDist->new(-program => 'bioperl_DNAstats',
				       -matrix  => \%dist,
				       -names   => \@names,
				       -values  => \@values); 
}


# M Kimura, J. Mol. Evol., 1980, 16, 111.

=head2 D_Kimura

 Title   : D_Kimura
 Usage   : my $d = $stat->D_Kimura($aln)
 Function: Calculates D (pairwise distance) between all pairs of sequences 
           in an alignment using the Kimura 2 parameter model.
 Returns : L<Bio::Matrix::PhylipDist>
 Args    : L<Bio::Align::AlignI> of DNA sequences


=cut

sub D_Kimura {
   my ($self,$aln) = @_;
   return 0 unless $self->_check_arg($aln);
   # ambiguities ignored at this point
   my (@names,@values,%dist);
   my $seqct = 0;
   foreach my $seq ( $aln->each_seq) {
       push @names, $seq->display_id;
       $seqct++;
   }

   my $precisionstr = "%.$Precision"."f";

   for( my $i = 0; $i < $seqct-1; $i++ ) {
       # (diagonals) distance is 0 for same sequence
       $dist{$names[$i]}->{$names[$i]} = [$i,$i];
       $values[$i][$i] = sprintf($precisionstr,0);

       for( my $j = $i+1; $j < $seqct; $j++ ) {
	   my $pairwise = $aln->select_noncont($i+1,$j+1);
	   my $L = $self->pairwise_stats->number_of_comparable_bases($pairwise);
	   unless( $L ) { 
	       $L = 1;
	   }
	   my $P = $self->transitions($pairwise) / $L;
	   my $Q = $self->transversions($pairwise) / $L;
	   my $K = 0;
	   my $denom = ( 1 - (2 * $P) - $Q);
	   if( $denom == 0 ) {
	       $self->throw("cannot find distance for ",$i+1,
			    ",",$j+1," $P, $Q\n");
	   }
	   my $a = 1 / ( 1 - (2 * $P) - $Q);
	   my $b = 1 / ( 1 - 2 * $Q );
	   if( $a < 0 || $b < 0 ) { 
	       $K = -1;
	   } else{ 
	       $K = (1/2) * log ( $a ) + (1/4) * log($b);
	   }
	   # fwd and rev lookup
	   $dist{$names[$i]}->{$names[$j]} = [$i,$j];
	   $dist{$names[$j]}->{$names[$i]} = [$i,$j];	   
	   $values[$j][$i] = $values[$i][$j] = sprintf($precisionstr,$K);
           # (diagonals) distance is 0 for same sequence
	   $dist{$names[$j]}->{$names[$j]} = [$j,$j];	   
	   $values[$j][$j] = sprintf($precisionstr,0); 
       }
   }
   return Bio::Matrix::PhylipDist->new(-program => 'bioperl_DNAstats',
				       -matrix  => \%dist,
				       -names   => \@names,
				       -values  => \@values); 
}


=head2 D_Kimura_variance

 Title   : D_Kimura
 Usage   : my $d = $stat->D_Kimura_variance($aln)
 Function: Calculates D (pairwise distance) between all pairs of sequences 
           in an alignment using the Kimura 2 parameter model.
 Returns : array of 2 L<Bio::Matrix::PhylipDist>,
           the first is the Kimura distance and the second is
           a matrix of variance V(K)
 Args    : L<Bio::Align::AlignI> of DNA sequences


=cut

sub D_Kimura_variance {
   my ($self,$aln) = @_;
   return 0 unless $self->_check_arg($aln);
   # ambiguities ignored at this point
   my (@names,@values,%dist,@var);
   my $seqct = 0;
   foreach my $seq ( $aln->each_seq) {
       push @names, $seq->display_id;
       $seqct++;
   }

   my $precisionstr = "%.$Precision"."f";

   for( my $i = 0; $i < $seqct-1; $i++ ) {
       # (diagonals) distance is 0 for same sequence
       $dist{$names[$i]}->{$names[$i]} = [$i,$i];
       $values[$i][$i] = sprintf($precisionstr,0);

       for( my $j = $i+1; $j < $seqct; $j++ ) {
	   my $pairwise = $aln->select_noncont($i+1,$j+1);
	   my $L = $self->pairwise_stats->number_of_comparable_bases($pairwise);
	   unless( $L ) { 
	       $L = 1;
	   }
	   my $P = $self->transitions($pairwise) / $L;
	   my $Q = $self->transversions($pairwise) / $L;
	   my ($a,$b,$K,$var_k);
	   my $a_denom = ( 1 - (2 * $P) - $Q);
	   my $b_denom = 1 - 2 * $Q;
	   unless( $a_denom > 0 && $b_denom > 0 ) {
	       $a = 1;
	       $b = 1;
	       $K = -1;
	       $var_k = -1;
	   } else { 
	       $a = 1 / $a_denom;
	       $b = 1 / $b_denom;
	       $K = (1/2) * log ( $a ) + (1/4) * log($b);
	       # from Wu and Li 1985 which in turn is from Kimura 1980
	       my $c = ( $a - $b ) / 2;
	       my $d = ( $a + $b ) / 2;
	       $var_k = ( $a**2 * $P + $d**2 * $Q - ( $a * $P + $d * $Q)**2 ) / $L;
	   }

	   # fwd and rev lookup
	   $dist{$names[$i]}->{$names[$j]} = [$i,$j];
	   $dist{$names[$j]}->{$names[$i]} = [$i,$j];	   
	   $values[$j][$i] = $values[$i][$j] = sprintf($precisionstr,$K);
           # (diagonals) distance is 0 for same sequence
	   $dist{$names[$j]}->{$names[$j]} = [$j,$j];   
	   $values[$j]->[$j] = sprintf($precisionstr,0); 
	   
	   $var[$j]->[$i] = $var[$i]->[$j] = sprintf($precisionstr,$var_k);
	   $var[$j]->[$j] = $values[$j]->[$j];
       }
   }
   return ( Bio::Matrix::PhylipDist->new(-program => 'bioperl_DNAstats',
					 -matrix  => \%dist,
					 -names   => \@names,
					 -values  => \@values),
	    Bio::Matrix::PhylipDist->new(-program => 'bioperl_DNAstats',
					 -matrix  => \%dist,
					 -names   => \@names,
					 -values  => \@var)
	    );
}


#  K Tamura, Mol. Biol. Evol. 1992, 9, 678.

=head2 D_Tamura

 Title   : D_Tamura
 Usage   : Calculates D (pairwise distance) between 2 sequences in an 
           alignment using Tamura 1992 distance model. 
 Returns : L<Bio::Matrix::PhylipDist>
 Args    : L<Bio::Align::AlignI> of DNA sequences


=cut

sub D_Tamura {
   my ($self,$aln) = @_;
   return 0 unless $self->_check_arg($aln);
   # ambiguities ignored at this point
   my (@seqs,@names,@values,%dist,$i,$j);
   my $seqct = 0;
   my $length = $aln->length;
   foreach my $seq ( $aln->each_seq) {
       push @names, $seq->display_id;;
       push @seqs, uc $seq->seq();
       $seqct++;
   }

   my $precisionstr = "%.$Precision"."f";
   my (@gap,@gc,@trans,@tranv,@score);
   $i = 0;
   for my $t1 ( @seqs ) {
       $j = 0;
       for my $t2 ( @seqs ) {
	   $gap[$i][$j] = 0;
	   for( my $k = 0; $k < $length; $k++ ) {
	       my ($c1,$c2) = ( substr($seqs[$i],$k,1),
				substr($seqs[$j],$k,1) );
	       if( $c1 =~ /^$GapChars$/ ||
		   $c2 =~ /^$GapChars$/ ) {
		   $gap[$i][$j]++;	
	       } elsif( $c2 =~ /^$GCChhars$/i ) {
		   $gc[$i][$j]++;
	       } 
	   }
	   $gc[$i][$j] = ( $gc[$i][$j] / 
			   ($length - $gap[$i][$j]) );
	   $j++;
       }
       $i++;
   }
   
   for( $i = 0; $i < $seqct-1; $i++ ) {
       # (diagonals) distance is 0 for same sequence
       $dist{$names[$i]}->{$names[$i]} = [$i,$i];
       $values[$i][$i] = sprintf($precisionstr,0);
       
       for( $j = $i+1; $j < $seqct; $j++ ) {
	   
	   my $pairwise = $aln->select_noncont($i+1,$j+1);
	   my $L = $self->pairwise_stats->number_of_comparable_bases($pairwise);
	   my $P = $self->transitions($pairwise) / $L;
	   my $Q = $self->transversions($pairwise) / $L;
	   my $C = $gc[$i][$j] + $gc[$j][$i]- 
	       ( 2 * $gc[$i][$j] * $gc[$j][$i] );
	   if( $P ) {
	       $P = $P / $C;
	   }
	   my $d = -($C * log(1- $P - $Q)) -(0.5* ( 1 - $C) * log(1 - 2 * $Q));
           # fwd and rev lookup
	   $dist{$names[$i]}->{$names[$j]} = [$i,$j];
	   $dist{$names[$j]}->{$names[$i]} = [$i,$j];	   
	   $values[$j][$i] = $values[$i][$j] = sprintf($precisionstr,$d);
           # (diagonals) distance is 0 for same sequence
	   $dist{$names[$j]}->{$names[$j]} = [$j,$j];
	   $values[$j][$j] = sprintf($precisionstr,0); 
       }
   }
   return Bio::Matrix::PhylipDist->new(-program => 'bioperl_DNAstats',
				       -matrix  => \%dist,
				       -names   => \@names,
				       -values  => \@values); 

}

=head2 D_F84

 Title   : D_F84
 Usage   : my $d = $stat->D_F84($aln)
 Function: Calculates D (pairwise distance) between 2 sequences in an 
           alignment using the Felsenstein 1984 distance model. 
 Returns : L<Bio::Matrix::PhylipDist>
 Args    : L<Bio::Align::AlignI> of DNA sequences
           [optional] double - gap penalty

=cut

sub D_F84 {
   my ($self,$aln,$gappenalty) = @_;
   return 0 unless $self->_check_arg($aln);
   $self->throw_not_implemented();
   # ambiguities ignored at this point
   my (@seqs,@names,@values,%dist);
   my $seqct = 0;
   foreach my $seq ( $aln->each_seq) {
       # if there is no name, 
       my $id = $seq->display_id;
       if( ! length($id) ||       # deal with empty names
	   $id =~ /^\s+$/ ) {
	   $id = $seqct+1;
       }
       push @names, $id;
       push @seqs, uc $seq->seq();
       $seqct++;
   }

   my $precisionstr = "%.$Precision"."f";

   for( my $i = 0; $i < $seqct-1; $i++ ) {
       # (diagonals) distance is 0 for same sequence
       $dist{$names[$i]}->{$names[$i]} = [$i,$i];
       $values[$i][$i] = sprintf($precisionstr,0);

       for( my $j = $i+1; $j < $seqct; $j++ ) {
       }
   }   
}

# Tajima and Nei, Mol. Biol. Evol. 1984, 1, 269.
#  Tajima-Nei correction used for multiple substitutions in the calc
# of the distance matrix. Nucleic acids only.
#
#  D = p-distance = 1 - (matches/(posns_scored + gaps)
#
#  distance = -b * ln(1-D/b)
#

=head2 D_TajimaNei

 Title   : D_TajimaNei
 Usage   : my $d = $stat->D_TajimaNei($aln)
 Function: Calculates D (pairwise distance) between 2 sequences in an 
           alignment using the TajimaNei 1984 distance model. 
 Returns : L<Bio::Matrix::PhylipDist>
 Args    : Bio::Align::AlignI of DNA sequences


=cut

sub D_TajimaNei{
   my ($self,$aln) = @_;
   return 0 unless $self->_check_arg($aln);
   # ambiguities ignored at this point
   my (@seqs,@names,@values,%dist);
   my $seqct = 0;
   foreach my $seq ( $aln->each_seq) {
       # if there is no name, 
       push @names, $seq->display_id;
       push @seqs, uc $seq->seq();
       $seqct++;
   }
   my $precisionstr = "%.$Precision"."f";
   my ($i,$j,$bs);
   # pairwise
   for( $i =0; $i < $seqct -1; $i++ ) {
       $dist{$names[$i]}->{$names[$i]} = [$i,$i];
       $values[$i][$i] = sprintf($precisionstr,0);

       for ( $j = $i+1; $j <$seqct;$j++ ) {
	   my ($matrix,$pfreq,$gaps) = $self->_build_nt_matrix($seqs[$i],
							       $seqs[$j]);
	   my $pairwise = $aln->select_noncont($i+1,$j+1);
	   my $slen = $self->pairwise_stats->number_of_comparable_bases($pairwise);	    
	   my $fij2 = 0;
	   for( $bs = 0; $bs < 4; $bs++ ) {
	       my $fi = 0;
	       map {$fi += $matrix->[$bs]->[$_] } 0..3;
	       my $fj = 0;
	       # summation 
	       map { $fj += $matrix->[$_]->[$bs] } 0..3;
	       my $fij = ( $fi && $fj ) ? ($fi + $fj) /( 2 * $slen) : 0;
	       $fij2 += $fij**2;
	   }
	   
	   my ($pair,$h) = (0,0);
	   for( $bs = 0; $bs < 3; $bs++ ) {
	       for(my $bs1 = $bs+1; $bs1 <= 3; $bs1++ ) {
		   my $fij = $pfreq->[$pair++] / $slen;
		   if( $fij ) {
		       
		       my ($ci1,$ci2,$cj1,$cj2) = (0,0,0,0);

		       map { $ci1 += $matrix->[$_]->[$bs] } 0..3;
		       map { $cj1 += $matrix->[$bs]->[$_] } 0..3;
		       map { $ci2 += $matrix->[$_]->[$bs1] } 0..3;
		       map { $cj2 += $matrix->[$bs1]->[$_] } 0..3;
		       
		       if( $fij ) {
			   $h += ( ($fij**2) / 2 ) / 
			       (  ( ( $ci1 + $cj1 ) / (2 * $slen) ) *
				  ( ( $ci2 + $cj2 ) / (2 * $slen) ) 
				  );
		       }
		       $self->debug( "slen is $slen h is $h fij = $fij ci1 =$ci1 cj1=$cj1 ci2=$ci2 cj2=$cj2\n");
		   }
	       }
	   }
	   # just want diagonals which are matches (A matched A, C -> C)

	   my $m = ( $matrix->[0]->[0] + $matrix->[1]->[1] + 
		     $matrix->[2]->[2] + $matrix->[3]->[3] );
	   my $D = 1 - ( $m / $slen);
	   my $d;
	   if( $h == 0 ) {
	       $d = -1;
	   } else {
	       my $b = (1 - $fij2 + (($D**2)/$h)) / 2;
	       my $c = 1- $D/ $b;

	       if( $c < 0 ) {
		   $d = -1;
	       } else { 
		   $d = (-1 * $b) * log ( $c);
	       }
	   }
	   # fwd and rev lookup
	   $dist{$names[$i]}->{$names[$j]} = [$i,$j];
	   $dist{$names[$j]}->{$names[$i]} = [$i,$j];	   
	   $values[$j][$i] = $values[$i][$j] = sprintf($precisionstr,$d);

           # (diagonals) distance is 0 for same sequence
	   $dist{$names[$j]}->{$names[$j]} = [$j,$j];	   
	   $values[$j][$j] = sprintf($precisionstr,0); 
       }
   }
   return Bio::Matrix::PhylipDist->new(-program => 'bioperl_DNAstats',
				       -matrix  => \%dist,
				       -names   => \@names,
				       -values  => \@values); 

}

# Jin and Nei, Mol. Biol. Evol. 82, 7, 1990.

=head2 D_JinNei

 Title   : D_JinNei
 Usage   : my $d = $stat->D_JinNei($aln)
 Function: Calculates D (pairwise distance) between 2 sequences in an 
           alignment using the Jin-Nei 1990 distance model. 
 Returns : L<Bio::Matrix::PhylipDist>
 Args    : L<Bio::Align::AlignI> of DNA sequences


=cut

sub D_JinNei{
   my ($self,@args) = @_;
   $self->warn("JinNei implementation not completed");
   return;
}

=head2 transversions

 Title   : transversions
 Usage   : my $transversions = $stats->transversion($aln);
 Function: Calculates the number of transversions between two sequences in 
           an alignment
 Returns : integer
 Args    : Bio::Align::AlignI


=cut

sub transversions{
   my ($self,$aln) = @_;
   return $self->_trans_count_helper($aln, $DNAChanges{'Transversions'});
}

=head2 transitions

 Title   : transitions
 Usage   : my $transitions = Bio::Align::DNAStatistics->transitions($aln);
 Function: Calculates the number of transitions in a given DNA alignment
 Returns : integer representing the number of transitions
 Args    : Bio::Align::AlignI object


=cut

sub transitions{
   my ($self,$aln) = @_;
   return $self->_trans_count_helper($aln, $DNAChanges{'Transitions'});
}


sub _trans_count_helper {
    my ($self,$aln,$type) = @_;
    return 0 unless( $self->_check_arg($aln) );
    if( ! $aln->is_flush ) { $self->throw("must be flush") }
    my (@tcount);
    my ($first,$second) = ( uc $aln->get_seq_by_pos(1)->seq(),
			    uc $aln->get_seq_by_pos(2)->seq() );
    my $alen = $aln->length; 
    for (my $i = 0;$i<$alen; $i++ ) { 
	my ($c1,$c2) = ( substr($first,$i,1),
			 substr($second,$i,1) );
	if( $c1 ne $c2 ) { 
	    foreach my $nt ( @{$type->{$c1}} ) {
		if( $nt eq $c2) {
		   $tcount[$i]++;
	       }
	    }
	}
    }
    my $sum = 0;
    map { if( $_) { $sum += $_} } @tcount;
    return $sum;
}

# this will generate a matrix which records across the row, the number
# of DNA subst 
# 
sub _build_nt_matrix {
    my ($self,$seqa,$seqb) = @_;
    

    my $basect_matrix = [ [ qw(0 0 0 0) ],  # number of bases that match
			  [ qw(0 0 0 0) ],
			  [ qw(0 0 0 0) ],
			  [ qw(0 0 0 0) ] ];
    my $gaps = 0;                           # number of gaps
    my $pfreq = [ qw( 0 0 0 0 0 0)];        # matrix for pair frequency
    my $len_a = length($seqa);
    for( my $i = 0; $i < $len_a; $i++) {
	my ($ti,$tj) = (substr($seqa,$i,1),substr($seqb,$i,1));
	$ti =~ tr/U/T/;
	$tj =~ tr/U/T/;

	if( $ti =~ /^$GapChars$/) { $gaps++; next; }
	if( $tj =~ /^$GapChars$/) { $gaps++; next }

	my $ti_index = $NucleotideIndexes{$ti};		
	my $tj_index = $NucleotideIndexes{$tj};	    

	if( ! defined $ti_index ) {
	    $self->warn("ti_index not defined for $ti\n");
	    next;
	}
	
	$basect_matrix->[$ti_index]->[$tj_index]++;
	
	if( $ti ne $tj ) {
	    $pfreq->[$NucleotideIndexes{join('',sort ($ti,$tj))}]++;
	}
    }
    return ($basect_matrix,$pfreq,$gaps);
}

sub _check_ambiguity_nucleotide {
    my ($base1,$base2) = @_;
    my %iub = Bio::Tools::IUPAC->iupac_iub();
    my @amb1 = @{ $iub{uc($base1)} };
    my @amb2 = @{ $iub{uc($base2)} };    
    my ($pmatch) = (0);
    for my $amb ( @amb1 ) {
	if( grep { $amb eq $_ } @amb2 ) {
	    $pmatch = 1;
	    last;
	}
    }
    if( $pmatch ) { 
	return (1 / scalar @amb1) * (1 / scalar @amb2);
    } else { 
	return 0;
    }
}


sub _check_arg {
    my($self,$aln ) = @_;
    if( ! defined $aln || ! $aln->isa('Bio::Align::AlignI') ) {
	$self->warn("Must provide a Bio::Align::AlignI compliant object to Bio::Align::DNAStatistics");
	return 0;
    } elsif( $aln->get_seq_by_pos(1)->alphabet ne 'dna' ) { 
	$self->warn("Must provide a DNA alignment to Bio::Align::DNAStatistics, you provided a " . $aln->get_seq_by_pos(1)->alphabet);
	return 0;
    }
    return 1;
}

=head2 Data Methods

=cut

=head2 pairwise_stats

 Title   : pairwise_stats
 Usage   : $obj->pairwise_stats($newval)
 Function: 
 Returns : value of pairwise_stats
 Args    : newvalue (optional)


=cut

sub pairwise_stats{
   my ($self,$value) = @_;
   if( defined $value) {
      $self->{'_pairwise_stats'} = $value;
    }
    return $self->{'_pairwise_stats'};

}

=head2 calc_KaKs_pair

 Title    : calc_KaKs_pair
 Useage   : my $results = $stats->calc_KaKs_pair($alnobj,
            $name1, $name2).
 Function : calculates Nei-Gojobori statistics for pairwise 
            comparison.
 Args     : A Bio::Align::AlignI compliant object such as a 
            Bio::SimpleAlign object, and 2 sequence name strings.
 Returns  : a reference to a hash of statistics with keys as 
            listed in Description.

=cut

sub calc_KaKs_pair {
    my ( $self, $aln, $seq1_id, $seq2_id) = @_;
    $self->throw("Needs 3 arguments - an alignment object, and 2 sequence ids") 
	if @_!= 4;
    $self->throw ("This calculation needs a Bio::Align::AlignI compatible object, not a [ " . ref($aln) . " ]object") unless $aln->isa('Bio::Align::AlignI');
    my @seqs = (
		#{id => $seq1_id, seq =>($aln->each_seq_with_id($seq1_id))[0]->seq},
		#{id => $seq2_id, seq =>($aln->each_seq_with_id($seq2_id))[0]->seq}
		{id => $seq1_id, seq => uc(($aln->each_seq_with_id($seq1_id))[0]->seq)},
                {id => $seq2_id, seq => uc(($aln->each_seq_with_id($seq2_id))[0]->seq)}
	       ) ;
    if (length($seqs[0]{'seq'}) != length($seqs[1]{'seq'})) {
	$self->throw(" aligned sequences must be of equal length!");
    }
    my $results = [];
    $self->_get_av_ds_dn(\@seqs, $results);
    return $results;

}

=head2 calc_all_KaKs_pairs

 Title    : calc_all_KaKs_pairs
 Useage   : my $results2 = $stats->calc_KaKs_pair($alnobj).
 Function : Calculates Nei_gojobori statistics for all pairwise
            combinations in sequence.
 Arguments: A Bio::Align::ALignI compliant object such as
            a Bio::SimpleAlign object.
 Returns  : A reference to an array of hashes of statistics of
            all pairwise comparisons in the alignment.

=cut



sub calc_all_KaKs_pairs {
#returns a multi_element_array with all pairwise comparisons
	my ($self,$aln) = @_;
	$self->throw ("This calculation needs a Bio::Align::AlignI compatible object, not a [ " . ref($aln) . " ]object") unless $aln->isa('Bio::Align::AlignI');
	my @seqs;
	for my $seq ($aln->each_seq) {
		push @seqs, {id => $seq->display_id, seq=>$seq->seq};
		}
	my $results ;
	$results = $self->_get_av_ds_dn(\@seqs, $results);
	return $results;
}

=head2 calc_average_KaKs

 Title    : calc_average_KaKs.  
 Useage   : my $res= $stats->calc_average_KaKs($alnobj, 1000).
 Function : calculates Nei_Gojobori stats for average of all 
            sequences in the alignment.
 Args     : A Bio::Align::AlignI compliant object such as a
            Bio::SimpleAlign object, number of bootstrap iterations
            (default 1000).
 Returns  : A reference to a hash of statistics as listed in Description.

=cut

sub calc_average_KaKs {
#calculates global value for sequences in alignment using bootstrapping
#this is quite slow (~10 seconds per  3 X 200nt seqs); 
    my ($self, $aln, $bootstrap_rpt) = @_;
    $bootstrap_rpt ||= 1000;
    $self->throw ("This calculation needs a Bio::Align::AlignI compatible object, not a [ " . ref($aln) . " ]object") unless $aln->isa('Bio::Align::AlignI');
    my @seqs;
    for my $seq ($aln->each_seq) {
	push @seqs, {id => $seq->display_id, seq=>$seq->seq};
    }
    my $results ;
    my ($ds_orig, $dn_orig) = $self->_get_av_ds_dn(\@seqs);
    #print "ds = $ds_orig, dn = $dn_orig\n";
    $results = {D_s => $ds_orig, D_n => $dn_orig};
    $self->_run_bootstrap(\@seqs, $results, $bootstrap_rpt);
    return $results;
}

############## primary internal subs for alignment comparisons ########################

sub _run_bootstrap {
    ### generates sampled sequences, calculates Ds and Dn values,
    ### then calculates variance of sampled sequences and add results to results hash
    ### 
    my ($self,$seq_ref, $results, $bootstrap_rpt) = @_;	
    my @seqs = @$seq_ref;
    my @btstrp_aoa; # to hold array of array of nucleotides for resampling
    my %bootstrap_values = (ds => [], dn =>[]);	# to hold list of av values 

    #1st make alternative array of codons;
    my $c = 0;
    while ($c < length $seqs[0]{'seq'}) {
	for (0..$#seqs) {
	    push @{$btstrp_aoa[$_]}, substr ($seqs[$_]{'seq'}, $c, 3);
	}
	$c+=3;
    }

    for (1..$bootstrap_rpt) {
	my $sampled = _resample (\@btstrp_aoa);
	my ($ds, $dn) = $self->_get_av_ds_dn ($sampled) ; # is array ref
	push @{$bootstrap_values{'ds'}}, $ds;
	push @{$bootstrap_values{'dn'}}, $dn;
    }	

    $results->{'D_s_var'} = sampling_variance($bootstrap_values{'ds'});
    $results->{'D_n_var'} = sampling_variance($bootstrap_values{'dn'});
    $results->{'z_score'} = 	($results->{'D_n'} - $results->{'D_s'}) / 
	sqrt($results->{'D_s_var'} + $results->{'D_n_var'} ); 
    #print "bootstrapped var_syn = 	$results->{'D_s_var'} \n" ;
    #print "bootstrapped var_nc = 	$results->{'D_n_var'} \n"; 
    #print "z is $results->{'z_score'}\n";	### end of global set up of/perm look up data
}

sub _resample {
    my $ref = shift;
    my $codon_num = scalar (@{$ref->[0]});
    my @altered;
    for (0..$codon_num -1) {	#for each codon
	my $rand = int (rand ($codon_num));
	for (0..$#$ref) {
	    push @{$altered[$_]}, $ref->[$_][$rand];
	}
    }
    my @stringed = map {join '', @$_}@altered;
    my @return;
    #now out in random name to keep other subs happy
    for (@stringed) {
	push @return, {id=>'1', seq=> $_};
    }
    return \@return;
}

sub _get_av_ds_dn {
    # takes array of hashes of sequence strings and ids   #
    my $self = shift;
    my $seq_ref = shift;
    my $result = shift if @_;
    my @caller = caller(1);
    my @seqarray = @$seq_ref;
    my $bootstrap_score_list;
    #for a multiple alignment considers all pairwise combinations#
    my %dsfor_average = (ds => [], dn => []); 
    for (my $i = 0; $i < scalar @seqarray; $i++) {
	for (my $j = $i +1; $j<scalar @seqarray; $j++ ){
#			print "comparing $i and $j\n";
	    if (length($seqarray[$i]{'seq'}) != length($seqarray[$j]{'seq'})) {
		$self->warn(" aligned sequences must be of equal length!");
		next;
	    }

	    my $syn_site_count = count_syn_sites($seqarray[$i]{'seq'}, $synsites);
	    my $syn_site_count2 = count_syn_sites($seqarray[$j]{'seq'}, $synsites);
#			print "syn 1 is $syn_site_count , syn2 is $syn_site_count2\n";
	    my ($syn_count, $non_syn_count, $gap_cnt) = analyse_mutations($seqarray[$i]{'seq'}, $seqarray[$j]{'seq'});	
	    #get averages
	    my $av_s_site = ($syn_site_count + $syn_site_count2)/2;
	    my $av_ns_syn_site = length($seqarray[$i]{'seq'}) - $gap_cnt- $av_s_site ;

	    #calculate ps and pn  (p54)
	    my $syn_prop = $syn_count / $av_s_site;
	    my $nc_prop = $non_syn_count / $av_ns_syn_site	;

	    #now use jukes/cantor to calculate D_s and D_n, would alter here if needed a different method
	    my $d_syn = $self->jk($syn_prop);
	    my $d_nc = $self->jk($nc_prop);

	    #JK calculation must succeed for continuation of calculation
	    #ret_value = -1 if error
	    next unless $d_nc >=0 && $d_syn >=0;


	    push @{$dsfor_average{'ds'}}, $d_syn;
	    push @{$dsfor_average{'dn'}}, $d_nc;

	    #if not doing bootstrap, calculate the pairwise comparisin stats
	    if ($caller[3] =~ /calc_KaKs_pair/ || $caller[3] =~ /calc_all_KaKs_pairs/) {
				#now calculate variances assuming large sample
		my $d_syn_var =  jk_var($syn_prop, length($seqarray[$i]{'seq'})  - $gap_cnt );
		my $d_nc_var =  jk_var($nc_prop, length ($seqarray[$i]{'seq'}) - $gap_cnt);
		#now calculate z_value
		#print "d_syn_var is  $d_syn_var,and d_nc_var is $d_nc_var\n";
		#my $z = ($d_nc - $d_syn) / sqrt($d_syn_var + $d_nc_var);
		my $z = ($d_syn_var + $d_nc_var) ? 
		  ($d_nc - $d_syn) / sqrt($d_syn_var + $d_nc_var) : 0;
		#	print "z is $z\n";
		push @$result , {S => $av_s_site, N=>$av_ns_syn_site,
				 S_d => $syn_count, N_d =>$non_syn_count,
				 P_s => $syn_prop, P_n=>$nc_prop,
				 D_s => @{$dsfor_average{'ds'}}[-1],
				 D_n => @{$dsfor_average{'dn'}}[-1],
				 D_n_var =>$d_nc_var, D_s_var => $d_syn_var,
				 Seq1 => $seqarray[$i]{'id'},
				 Seq2 => $seqarray[$j]{'id'},
				 z_score => $z,
			     };
		$self->warn (" number of mutations too small to justify normal test for  $seqarray[$i]{'id'} and $seqarray[$j]{'id'}\n- use Fisher's exact, or bootstrap a MSA")
		    if ($syn_count < 10 || $non_syn_count < 10 ) && $self->verbose > -1 ;
	    }#endif
	    }
    }

    #warn of failure if no results hashes are present
    #will fail if Jukes Cantor has failed for all pairwise combinations
    #$self->warn("calculation failed!") if scalar @$result ==0;

    #return results unless bootstrapping
    return $result if $caller[3]=~ /calc_all_KaKs/ || $caller[3] =~ /calc_KaKs_pair/; 
    #else if getting average for bootstrap
    return( mean ($dsfor_average{'ds'}),mean ($dsfor_average{'dn'})) ;
}


sub jk {
    my ($self, $p) = @_;
    if ($p > 0.75) {
	$self->warn( " Jukes Cantor won't  work -too divergent!");
	return -1;
    }
    return -1 * (3/4) * (log(1 - (4/3) * $p));
}

#works for large value of n (50?100?)
sub jk_var {
    my ($p, $n) = @_;
    return (9 * $p * (1 -$p))/(((3 - 4 *$p) **2) * $n);
}


# compares 2 sequences to find the number of synonymous/non
# synonymous mutations between them

sub analyse_mutations {
    my ($seq1, $seq2) = @_;
    my %mutator = ( 2=> {0=>[[1,2],  # codon positions to be altered 
			     [2,1]], # depend on which is the same
			 1=>[[0,2],
			     [2,0]],
			 2=>[[0,1],
			     [1,0]],	
		     },
		    3=> [ [0,1,2],  # all need to be altered 
			  [1,0,2],
			  [0,2,1],
			  [1,2,0],
			  [2,0,1],
			  [2,1,0] ],
		    );
    my $TOTAL   = 0;    # total synonymous changes
    my $TOTAL_n = 0;	# total non-synonymous changes
    my $gap_cnt = 0;

    my %input;
    my $seqlen = length($seq1);
    for (my $j=0; $j< $seqlen; $j+=3) {
	$input{'cod1'} = substr($seq1, $j,3);
	$input{'cod2'} = substr($seq2, $j,3);

	#ignore codon if beeing compared with gaps! 
	if ($input{'cod1'} =~ /\-/ || $input{'cod2'} =~ /\-/){
	    $gap_cnt += 3; #just increments once if there is a pair of gaps
	    next;
	}

	my ($diff_cnt, $same) = count_diffs(\%input);

	#ignore if codons are identical
	next if $diff_cnt == 0 ;
	if ($diff_cnt == 1) {
	    $TOTAL += $synchanges{$input{'cod1'}}{$input{'cod2'}};
	    $TOTAL_n += 1 - $synchanges{$input{'cod1'}}{$input{'cod2'}};
	    #print " \nfordiff is 1 , total now $TOTAL, total n now $TOTAL_n\n\n"
	}
	elsif ($diff_cnt ==2) {
	    my $s_cnt = 0;
	    my $n_cnt = 0;
	    my $tot_muts = 4;
	    #will stay 4 unless there are stop codons at intervening point
	  OUTER:for my $perm (@{$mutator{'2'}{$same}}) {
	      my $altered = $input{'cod1'};
	      my $prev= $altered;
	      #		print "$prev -> (", $t[$CODONS->{$altered}], ")";
	      for 	my $mut_i (@$perm) { #index of codon mutated
		  substr($altered, $mut_i,1) = substr($input{'cod2'}, $mut_i, 1);
		  if ($t[$CODONS->{$altered}] eq '*') {
		      $tot_muts -=2;
		      #print "changes to stop codon!!\n";
		      next OUTER;
		  }
		  else {
		      $s_cnt += $synchanges{$prev}{$altered};
		      #					print "$altered ->(", $t[$CODONS->{$altered}], ") ";
		  }
		  $prev = $altered;
	      }
	      #		print "\n";
	  }
	    if ($tot_muts != 0) {
		$TOTAL += ($s_cnt/($tot_muts/2));
		$TOTAL_n += ($tot_muts - $s_cnt)/ ($tot_muts / 2);
	    }

	}
	elsif ($diff_cnt ==3 ) {
	    my $s_cnt = 0;
	    my $n_cnt = 0;
	    my $tot_muts = 18;	#potential number  of mutations
	  OUTER: for my $perm (@{$mutator{'3'}}) {
	      my $altered = $input{'cod1'};
	      my $prev= $altered;
	      #	print "$prev -> (", $t[$CODONS->{$altered}], ")";
	      for my $mut_i (@$perm) { #index of codon mutated
		  substr($altered, $mut_i,1) = substr($input{'cod2'}, $mut_i, 1);
		  if ($t[$CODONS->{$altered}] eq '*') {
		      $tot_muts -=3;
		      #	print "changes to stop codon!!\n";
		      next OUTER;

		  }
		  else {
		      $s_cnt += $synchanges{$prev}{$altered};
		      #			print "$altered ->(", $t[$CODONS->{$altered}], ") ";
		  }
		  $prev = $altered;
	      }
	      #	print "\n";

	  }#end OUTER loop
	      #calculate number of synonymous/non synonymous mutations for that codon
	      # and add to total
	      if ($tot_muts != 0) {
		  $TOTAL += ($s_cnt / ($tot_muts /3));
		  $TOTAL_n += 3 - ($s_cnt / ($tot_muts /3));
	      }
	}			#endif $diffcnt = 3
    }				#end of sequencetraversal
    return ($TOTAL, $TOTAL_n, $gap_cnt);
}


sub count_diffs {
    #counts the number of nucleotide differences between 2 codons
    # returns this value plus the codon index of which nucleotide is the same when 2
    #nucleotides are different. This is so analyse_mutations() knows which nucleotides
    # to change.
    my $ref = shift;
    my $cnt = 0;
    my $same= undef;
    #just for 2 differences
    for (0..2) {
	if (substr($ref->{'cod1'}, $_,1) ne substr($ref->{'cod2'}, $_, 1)){
	    $cnt++;
	} else {
	    $same = $_;
	}
    }
    return ($cnt, $same);
}

=head2 get_syn_changes

 Title   : get_syn_changes
 Usage   : Bio::Align::DNAStatitics->get_syn_changes
 Function: Generate a hashref of all pairwise combinations of codns
           differing by 1
 Returns : Symetic matrix using hashes
           First key is codon
           and each codon points to a hashref of codons
           the values of which describe type of change.
           my $type = $hash{$codon1}->{$codon2};
           values are :
             1   synonymous
             0   non-syn
            -1   either codon is a stop codon
 Args    : none

=cut

sub get_syn_changes {
#hash of all pairwise combinations of codons differing by 1
# 1 = syn, 0 = non-syn, -1 = stop
    my %results;
    my @codons = _make_codons ();
    my $arr_len = scalar @codons;
    for (my $i = 0; $i < $arr_len -1; $i++) {
	my $cod1 = $codons[$i];
	for (my $j = $i +1; $j < $arr_len; $j++) {
	    my $diff_cnt = 0;
	    for my $pos(0..2) {
		$diff_cnt++ if substr($cod1, $pos, 1) ne substr($codons[$j], $pos, 1);
	    }
	    next if $diff_cnt !=1;

	    #synon change
	    if($t[$CODONS->{$cod1}] eq $t[$CODONS->{$codons[$j]}]) {
		$results{$cod1}{$codons[$j]} =1;
		$results{$codons[$j]}{$cod1} = 1;
	    }
	    #stop codon
	    elsif ($t[$CODONS->{$cod1}] eq '*' or $t[$CODONS->{$codons[$j]}] eq '*') {
		$results{$cod1}{$codons[$j]} = -1;
		$results{$codons[$j]}{$cod1} = -1;
	    }
	    # nc change
	    else {
		$results{$cod1}{$codons[$j]} = 0;
		$results{$codons[$j]}{$cod1} = 0;
	    }
	}
    }
    return %results;
}

=head2 dnds_pattern_number

 Title   : dnds_pattern_number
 Usage   : my $patterns = $stats->dnds_pattern_number($alnobj);
 Function: Counts the number of codons with no gaps in the MSA
 Returns : Number of codons with no gaps ('patterns' in PAML notation)
 Args    : A Bio::Align::AlignI compliant object such as a
            Bio::SimpleAlign object.

=cut

sub dnds_pattern_number{
    my ($self, $aln) = @_;
    return ($aln->remove_gaps->length)/3;
}

sub count_syn_sites {
    #counts the number of possible synonymous changes for sequence
    my ($seq, $synsite) = @_;
    __PACKAGE__->throw("not integral number of codons") if length($seq) % 3 != 0;
    my $S = 0;
    for (my $i = 0; $i< length($seq); $i+=3) {
	my $cod = substr($seq, $i, 3);
	next if $cod =~ /\-/;	#deal with alignment gaps
	$S +=  $synsite->{$cod}{'s'};
    }
    #print "S is $S\n";
    return $S;
}

	

sub get_syn_sites {
    #sub to generate lookup hash for the number of synonymous changes per codon
    my @nucs = qw(T C A G);
    my %raw_results;
    for my $i (@nucs) {
	for my $j (@nucs) {
	    for my $k (@nucs) {
		# for each possible codon
          	my $cod = "$i$j$k";
           	my $aa = $t[$CODONS->{$cod}];
		#calculate number of synonymous mutations vs non syn mutations
            	for my $i (qw(0 1 2)){
		    my $s = 0;
		    my $n = 3;
		    for my $nuc (qw(A T C G)) {
			next if substr ($cod, $i,1) eq $nuc;
			my $test = $cod;
			substr($test, $i, 1) = $nuc ;
			if ($t[$CODONS->{$test}] eq $aa) {
			    $s++;
			}
			if ($t[$CODONS->{$test}] eq '*') {
			    $n--;
			}	
		    }
		    $raw_results{$cod}[$i] = {'s' => $s ,
					      'n' => $n };
		}
		
	    } #end analysis of single codon
	}
    } #end analysis of all codons
    my %final_results;
    
    for my $cod (sort keys %raw_results) {
    	my $t = 0;
    	map{$t += ($_->{'s'} /$_->{'n'})} @{$raw_results{$cod}};
    	$final_results{$cod} = { 's'=>$t, 'n' => 3 -$t};
    }
    return \%final_results;
}

sub _make_codons {
#makes all codon combinations, returns array of them
    my @nucs = qw(T C A G);
    my @codons;
    for my $i (@nucs) {
        for my $j (@nucs) {
            for my $k (@nucs) {
            	push @codons, "$i$j$k";
	    }
	}
    }    
    return @codons;
}

sub get_codons {
 #generates codon translation look up table#
 my $x = 0;
 my  $CODONS = {};
 for my $codon (_make_codons) {
     $CODONS->{$codon} = $x;
     $x++;
 } 
 return $CODONS;
}

#########stats subs, can go in another module? Here for speed. ###
sub mean {
    my $ref = shift;
    my $el_num = scalar @$ref;
    my $tot = 0;
    map{$tot += $_}@$ref;
    return ($tot/$el_num);
}

sub variance {
    my $ref = shift;
    my $mean = mean($ref);
    my $sum_of_squares = 0;
    map{$sum_of_squares += ($_ - $mean) **2}@$ref;
    return $sum_of_squares;
}

sub sampling_variance {
    my $ref = shift;
    return variance($ref) / (scalar @$ref -1);
}

1;