This file is indexed.

/usr/include/ap_linexpr0.h is in libapron-dev 0.9.10-9.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
/* ************************************************************************* */
/* ap_linexpr0.h: linear expressions */
/* ************************************************************************* */

/* This file is part of the APRON Library, released under LGPL license.  Please
   read the COPYING file packaged in the distribution */

/* normally included from ap_expr0.h */

#ifndef _AP_LINEXPR0_H_
#define _AP_LINEXPR0_H_

#include <limits.h>
#include <stdio.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include "ap_coeff.h"
#include "ap_dimension.h"

#ifdef __cplusplus
extern "C" {
#endif

/* ====================================================================== */
/* Datatypes */
/* ====================================================================== */

/* Discriminant for dense or sparse representation */
typedef enum ap_linexpr_discr_t {
  AP_LINEXPR_DENSE,
  AP_LINEXPR_SPARSE
} ap_linexpr_discr_t;

/* A term, for use in sparse representation */
/* Meant to be an abstract datatype ! */
typedef struct ap_linterm_t {
  ap_dim_t dim;
  ap_coeff_t coeff;
} ap_linterm_t;

/* A linear expression. */
/* Meant to be an abstract datatype ! */
typedef struct ap_linexpr0_t {
  ap_coeff_t cst;             /* constant */
  ap_linexpr_discr_t discr;   /* discriminant for array */
  size_t size;             /* size of the array */
  union {
    ap_coeff_t* coeff;     /* array of coefficients */
    ap_linterm_t* linterm; /* array of linear terms */
  } p;
} ap_linexpr0_t;
/* Important invariant:
   If sparse representation,

   - linear terms are sorted in increasing order wrt their dimension.

   - AP_DIM_MAX dimensions are meaningless: they serve as free linterm when a new dimension
     is needed (this avoids to permanently reallocating the array.
     They should be ignored.

*/

/* Comment: we do not inline the array in the structure, because this allows to
   redimension (with realloc) the array in a transparent way for the user. */

/* - An interval linear expression is the more general form.
   - A quasilinear expression is such that the only non-scalar
     coefficient is the constant coefficient.

   - A linear expression contains no non-scalar coefficients
*/ 
typedef enum ap_linexpr_type_t {
  AP_LINEXPR_INTLINEAR,
  AP_LINEXPR_QUASILINEAR,
  AP_LINEXPR_LINEAR
} ap_linexpr_type_t;

/* ====================================================================== */
/* I. Memory management and printing */
/* ====================================================================== */

ap_linexpr0_t* ap_linexpr0_alloc(ap_linexpr_discr_t lin_discr, size_t size);
  /* Allocates a linear expressions with coefficients by default of type SCALAR
     and DOUBLE. If sparse representation, corresponding new dimensions are
     initialized with AP_DIM_MAX. */

void ap_linexpr0_realloc(ap_linexpr0_t* e, size_t size);
  /* Change the dimensions of the array in linexpr0.
     If new coefficients are added, their type is of type SCALAR and DOUBLE.
     If sparse representation, corresponding new dimensions are initialized
     with AP_DIM_MAX. */

void ap_linexpr0_minimize(ap_linexpr0_t* e);
  /* Reduce the coefficients (transform intervals into scalars when possible).
     In case of sparse representation, also remove zero coefficients */

void ap_linexpr0_free(ap_linexpr0_t* linexpr);
  /* Free the linear expression */

ap_linexpr0_t* ap_linexpr0_copy(ap_linexpr0_t* a);
  /* Duplication */

void ap_linexpr0_fprint(FILE* stream, ap_linexpr0_t* a, char** name_of_dim);
  /* Printing a linear expression */

/* ====================================================================== */
/* II. Tests */
/* ====================================================================== */

bool ap_linexpr0_is_integer(ap_linexpr0_t* a, size_t intdim);
  /* Does the expression depends only on integer variables ? assuming
     that the first intdim dimensions are integer */
bool ap_linexpr0_is_real(ap_linexpr0_t* a, size_t intdim);
  /* Does the expression depends only on real variables ? assuming
     that the first intdim dimensions are integer */

  /* Expression classification */

ap_linexpr_type_t ap_linexpr0_type(ap_linexpr0_t* a);
  /* Return the type of the linear expression */
bool ap_linexpr0_is_linear(ap_linexpr0_t* a);
  /* Return true iff all involved coefficients are scalars */
bool ap_linexpr0_is_quasilinear(ap_linexpr0_t* a);
  /* Return true iff all involved coefficients but the constant are scalars */

ap_linexpr_type_t ap_linexpr0_array_type(ap_linexpr0_t** texpr, size_t size);
bool ap_linexpr0_array_is_linear(ap_linexpr0_t** texpr, size_t size);
bool ap_linexpr0_array_is_quasilinear(ap_linexpr0_t** texpr, size_t size);
  /* Idem for arrays */

/* ====================================================================== */
/* III. Access */
/* ====================================================================== */

static inline
size_t ap_linexpr0_size(ap_linexpr0_t* expr);
  /* Get the size of the linear expression */

static inline
ap_coeff_t* ap_linexpr0_cstref(ap_linexpr0_t* expr);
  /* Get a reference to the constant. Do not free it. */

ap_coeff_t* ap_linexpr0_coeffref(ap_linexpr0_t* expr, ap_dim_t dim);
  /* Get a reference to the coefficient associated to the dimension.
     Do not free it.
     In case of sparse representation,
     possibly induce the addition of a new linear term.
     Return NULL if:
     In case of dense representation, dim>=expr->size.
     In case of sparse representation, dim==AP_DIM_MAX.
 */

static inline
void ap_linexpr0_get_cst(ap_coeff_t* coeff, ap_linexpr0_t* expr);
  /* Get the constant and assign it to coeff */

bool ap_linexpr0_get_coeff(ap_coeff_t* coeff, ap_linexpr0_t* expr, ap_dim_t dim);
  /* Get coefficient of dimension dim in the expression and assign it to coeff
     Return true in case ap_linexpr0_coeffref returns NULL */

/* Set the constant of the linear expression */
static inline void ap_linexpr0_set_cst(ap_linexpr0_t* expr, ap_coeff_t* cst);
static inline void ap_linexpr0_set_cst_scalar(ap_linexpr0_t* expr, ap_scalar_t* scalar);
static inline void ap_linexpr0_set_cst_scalar_int(ap_linexpr0_t* expr, int num);
static inline void ap_linexpr0_set_cst_scalar_frac(ap_linexpr0_t* expr, int num, unsigned int den);
static inline void ap_linexpr0_set_cst_scalar_double(ap_linexpr0_t* expr, double num);
static inline void ap_linexpr0_set_cst_interval(ap_linexpr0_t* expr, ap_interval_t* itv);
static inline void ap_linexpr0_set_cst_interval_scalar(ap_linexpr0_t* expr, ap_scalar_t* inf, ap_scalar_t* sup);
static inline void ap_linexpr0_set_cst_interval_int(ap_linexpr0_t* expr, int inf, int sup);
static inline void ap_linexpr0_set_cst_interval_frac(ap_linexpr0_t* expr,
							 int numinf, unsigned int deninf,
							 int numsup, unsigned int densup);
static inline void ap_linexpr0_set_cst_interval_double(ap_linexpr0_t* expr, double inf, double sup);

/* Set the coefficient of dimension dim in the expression.
   Return true in case ap_linexpr0_coeffref returns NULL */
static inline bool ap_linexpr0_set_coeff(ap_linexpr0_t* expr, ap_dim_t dim, ap_coeff_t* coeff);
static inline bool ap_linexpr0_set_coeff_scalar(ap_linexpr0_t* expr, ap_dim_t dim, ap_scalar_t* scalar);
static inline bool ap_linexpr0_set_coeff_scalar_int(ap_linexpr0_t* expr, ap_dim_t dim, int num);
static inline bool ap_linexpr0_set_coeff_scalar_frac(ap_linexpr0_t* expr, ap_dim_t dim, int num, unsigned int den);
static inline bool ap_linexpr0_set_coeff_scalar_double(ap_linexpr0_t* expr, ap_dim_t dim, double num);
static inline bool ap_linexpr0_set_coeffinterval(ap_linexpr0_t* expr, ap_dim_t dim, ap_interval_t* itv);
static inline bool ap_linexpr0_set_coeff_interval_scalar(ap_linexpr0_t* expr, ap_dim_t dim, ap_scalar_t* inf, ap_scalar_t* sup);
static inline bool ap_linexpr0_set_coeff_interval_int(ap_linexpr0_t* expr, ap_dim_t dim, int inf, int sup);
static inline bool ap_linexpr0_set_coeff_interval_frac(ap_linexpr0_t* expr, ap_dim_t dim,
							   int numinf, unsigned int deninf,
							   int numsup, unsigned int densup);
static inline bool ap_linexpr0_set_coeff_interval_double(ap_linexpr0_t* expr, ap_dim_t dim, double inf, double sup);

/*
bool ap_linexpr0_set_format_generic(ap_coeff_t* (*get_pcoeff)(char*,va_list*,void*,bool*),
				 void* expr, char* fmt, va_list* ap);

bool ap_linexpr0_set_format(ap_linexpr0_t* expr, char* fmt, ...);
*/

typedef enum ap_coefftag_t {
  AP_COEFF,          /* waiting for a coeff_t* object and a dimension */
  AP_COEFF_S,        /* waiting for a scalar_t* object and a dimension */
  AP_COEFF_S_MPQ,    /* waiting for a mpq_t object and a dimension */
  AP_COEFF_S_MPFR,   /* waiting for a mpfr_t object and a dimension */
  AP_COEFF_S_INT,    /* waiting for a int object and a dimension */
  AP_COEFF_S_FRAC,   /* waiting for 2 int objects and a dimension */
  AP_COEFF_S_DOUBLE, /* waiting for a double object and a dimension */
  AP_COEFF_I,        /* waiting for a interval_t* object and a dimension */
  AP_COEFF_I_SCALAR, /* waiting for 2 scalar_t* objects and a dimension */
  AP_COEFF_I_MPQ,    /* waiting for 2 mpq_t objects and a dimension */
  AP_COEFF_I_MPFR,   /* waiting for 2 mpfr_t objects and a dimension */
  AP_COEFF_I_INT,    /* waiting for 2 int objects and a dimension */
  AP_COEFF_I_FRAC,   /* waiting for 4 int objects and a dimension */
  AP_COEFF_I_DOUBLE, /* waiting for 2 double objects and a dimension */
  AP_CST,            /* waiting for a coeff_t* object */
  AP_CST_S,          /* waiting for a scalar_t* object */
  AP_CST_S_MPQ,      /* waiting for a mpq_t object */
  AP_CST_S_MPFR,     /* waiting for a mpfr_t object */
  AP_CST_S_INT,      /* waiting for a int object */
  AP_CST_S_FRAC,     /* waiting for 2 int objects */
  AP_CST_S_DOUBLE,   /* waiting for a double object */
  AP_CST_I,          /* waiting for a interval_t* object */
  AP_CST_I_SCALAR,   /* waiting for 2 scalar_t* objects */
  AP_CST_I_MPQ,      /* waiting for 2 mpq_t objects */
  AP_CST_I_MPFR,     /* waiting for 2 mpfr_t objects */
  AP_CST_I_INT,      /* waiting for 2 int objects */
  AP_CST_I_FRAC,     /* waiting for 4 int objects */
  AP_CST_I_DOUBLE,   /* waiting for 2 double objects */
  AP_END
} ap_coefftag_t;

bool ap_linexpr0_set_list_generic(ap_coeff_t* (*get_pcoeff)(void* expr, bool cst, va_list* va),
				  void* expr, va_list* va);

bool ap_linexpr0_set_list(ap_linexpr0_t* expr, ...);

/* Iterator (Macro): use:
   ap_linexpr0_ForeachLinterm(ap_linexpr0_t* e, size_t i, ap_dim_t d, ap_coeff_t* coeff){
     ..
   }
   where
   - e is the inspected expression,
   - i is the internal iterator (of type size_t or int)
   - dim is the dimension of one linear term
   - coeff is a pointer to the corresponding coefficient

   AP_DIM_MAX dimensions are filtered out.

*/
#define ap_linexpr0_ForeachLinterm(_p_e_, _p_i_, _p_dim_, _p_ap_coeff) \
  for ((_p_i_)=0; \
       (_p_i_)<(_p_e_)->size ? \
	 ((_p_e_)->discr==AP_LINEXPR_DENSE ? \
	  ((_p_dim_) = (_p_i_), \
	   (_p_ap_coeff) = &(_p_e_)->p.coeff[_p_i_], \
	   true) :				\
	  ((_p_dim_) = (_p_e_)->p.linterm[_p_i_].dim, \
	   (_p_ap_coeff) = &(_p_e_)->p.linterm[_p_i_].coeff, \
	   (_p_dim_)!=AP_DIM_MAX)) :			   \
	 false; \
       (_p_i_)++)

/* ====================================================================== */
/* IV. Change of dimensions and permutations */
/* ====================================================================== */

/* These two functions add dimensions to the expressions, following the
   semantics of dimchange (see the type definition of dimchange).  */
void ap_linexpr0_add_dimensions_with(ap_linexpr0_t* expr,
				  ap_dimchange_t* dimchange);
ap_linexpr0_t* ap_linexpr0_add_dimensions(ap_linexpr0_t* expr,
					  ap_dimchange_t* dimchange);

/* These two functions apply the given permutation to the dimensions. If dense
   representation, the size of the permutation should be expr->size. If sparse
   representation, the dimensions present in the expression should just be less
   than the size of the permutation. */
void ap_linexpr0_permute_dimensions_with(ap_linexpr0_t* expr,
					 ap_dimperm_t* perm);
ap_linexpr0_t* ap_linexpr0_permute_dimensions(ap_linexpr0_t* expr,
					      ap_dimperm_t* perm);

/* ====================================================================== */
/* V. Hashing, comparison */
/* ====================================================================== */

/* Induces reduction of the coefficients */

long ap_linexpr0_hash(ap_linexpr0_t* expr);
bool ap_linexpr0_equal(ap_linexpr0_t* expr1,
		    ap_linexpr0_t* expr2);

/* Lexicographic ordering, terminating by constant coefficients */
int ap_linexpr0_compare(ap_linexpr0_t* expr1,
		     ap_linexpr0_t* expr2);

/* ====================================================================== */
/* Vb. Array of expressions */
/* ====================================================================== */

/* Free the array of expressions of size size */
void ap_linexpr0_array_free(ap_linexpr0_t** texpr, size_t size);

/* ====================================================================== */
/* VI. Inline function definitions */
/* ====================================================================== */

static inline
size_t ap_linexpr0_size(ap_linexpr0_t* expr)
  { return expr->size; }

static inline
ap_coeff_t* ap_linexpr0_cstref(ap_linexpr0_t* expr)
  { return &expr->cst; }

static inline
void ap_linexpr0_get_cst(ap_coeff_t* coeff, ap_linexpr0_t* expr)
  { ap_coeff_set(coeff,&expr->cst); }

static inline
void ap_linexpr0_set_cst(ap_linexpr0_t* expr, ap_coeff_t* cst)
  { ap_coeff_set(&expr->cst,cst); }

static inline
void ap_linexpr0_set_cst_scalar(ap_linexpr0_t* expr, ap_scalar_t* scalar)
  { ap_coeff_set_scalar(&expr->cst, scalar); }

static inline
void ap_linexpr0_set_cst_scalar_int(ap_linexpr0_t* expr, int num)
  { ap_coeff_set_scalar_int(&expr->cst, num); }

static inline
void ap_linexpr0_set_cst_scalar_frac(ap_linexpr0_t* expr, int num, unsigned int den)
  { ap_coeff_set_scalar_frac(&expr->cst, num, den); }

static inline
void ap_linexpr0_set_cst_scalar_double(ap_linexpr0_t* expr, double num)
  { ap_coeff_set_scalar_double(&expr->cst, num); }

static inline
void ap_linexpr0_set_cst_interval(ap_linexpr0_t* expr, ap_interval_t* itv)
  { ap_coeff_set_interval(&expr->cst, itv); }

static inline
void ap_linexpr0_set_cst_interval_int(ap_linexpr0_t* expr, int inf, int sup)
  { ap_coeff_set_interval_int(&expr->cst, inf,sup); }

static inline
void ap_linexpr0_set_cst_interval_scalar(ap_linexpr0_t* expr, ap_scalar_t* inf, ap_scalar_t* sup)
  { ap_coeff_set_interval_scalar(&expr->cst, inf,sup); }

static inline
void ap_linexpr0_set_cst_interval_frac(ap_linexpr0_t* expr,
				  int numinf, unsigned int deninf,
				  int numsup, unsigned int densup)
  { ap_coeff_set_interval_frac(&expr->cst, numinf,deninf, numsup,densup); }

static inline
void ap_linexpr0_set_cst_interval_double(ap_linexpr0_t* expr, double inf, double sup)
  { ap_coeff_set_interval_double(&expr->cst, inf,sup); }

static inline
bool ap_linexpr0_set_coeff(ap_linexpr0_t* expr, ap_dim_t dim, ap_coeff_t* coeff)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ap_coeff_set(ecoeff,coeff); return false;} else return true; }

static inline
bool ap_linexpr0_set_coeff_scalar(ap_linexpr0_t* expr, ap_dim_t dim, ap_scalar_t* scalar)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_scalar(ecoeff,scalar); return false; } else return true; }

static inline
bool ap_linexpr0_set_coeff_scalar_int(ap_linexpr0_t* expr, ap_dim_t dim, int num)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_scalar_int(ecoeff,num); return false; } else return true; }

static inline
bool ap_linexpr0_set_coeff_scalar_frac(ap_linexpr0_t* expr, ap_dim_t dim, int num, unsigned int den)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_scalar_frac(ecoeff,num, den); return false; } else return true; }

static inline
bool ap_linexpr0_set_coeff_scalar_double(ap_linexpr0_t* expr, ap_dim_t dim, double num)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_scalar_double(ecoeff,num); return false; } else return true; }

static inline
bool ap_linexpr0_set_coeffinterval(ap_linexpr0_t* expr, ap_dim_t dim, ap_interval_t* itv)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_interval(ecoeff,itv); return false; } else return true; }

static inline
bool ap_linexpr0_set_coeff_interval_int(ap_linexpr0_t* expr, ap_dim_t dim, int inf, int sup)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_interval_int(ecoeff,inf,sup); return false; } else return true; }

static inline
bool ap_linexpr0_set_coeff_interval_scalar(ap_linexpr0_t* expr, ap_dim_t dim, ap_scalar_t* inf, ap_scalar_t* sup)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_interval_scalar(ecoeff,inf,sup); return false; } else return true; }

static inline
bool ap_linexpr0_set_coeff_interval_frac(ap_linexpr0_t* expr, ap_dim_t dim,
				  int numinf, unsigned int deninf,
				  int numsup, unsigned int densup)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_interval_frac(ecoeff,numinf,deninf, numsup,densup); return false; } else return true; }

static inline
bool ap_linexpr0_set_coeff_interval_double(ap_linexpr0_t* expr, ap_dim_t dim, double inf, double sup)
  { ap_coeff_t* ecoeff = ap_linexpr0_coeffref(expr,dim); if (ecoeff){ ap_coeff_set_interval_double(ecoeff,inf,sup); return false; } else return true; }



#ifdef __cplusplus
}
#endif

#endif