/usr/share/julia/test/subarray.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 | # This file is a part of Julia. License is MIT: http://julialang.org/license
using Base.Test
# import Base: ViewIndex, nextLD, dimsizeexpr, rangetype, merge_indexes, first_index, stride1expr, tailsize, subarray_linearindexing_dim
using Base.Cartesian
print_underestimates = false
######## Utilities ###########
# Generate an array similar to A[indx1, indx2, ...], but only call
# getindex with scalar-valued indexes. This will be safe even after
# getindex starts calling sub/slice.
# The "nodrop" variant is similar to current getindex/sub, except it
# doesn't drop any dimensions (not even trailing ones)
function Agen_nodrop(A::AbstractArray, I...)
irep = replace_colon(A, I)
_Agen(A, irep...)
end
# This does the same thing as slice
function Agen_slice(A::AbstractArray, I...)
irep = replace_colon(A, I)
B = _Agen(A, irep...)
sd = Int[]
for i = 1:length(I)
if isa(I[i], Real)
push!(sd, i)
end
end
squeeze(B, sd)
end
_Agen(A, i1) = [A[j1] for j1 in i1]
_Agen(A, i1, i2) = [A[j1,j2] for j1 in i1, j2 in i2]
_Agen(A, i1, i2, i3) = [A[j1,j2,j3] for j1 in i1, j2 in i2, j3 in i3]
_Agen(A, i1, i2, i3, i4) = [A[j1,j2,j3,j4] for j1 in i1, j2 in i2, j3 in i3, j4 in i4]
function replace_colon(A::AbstractArray, I)
Iout = Array(Any, length(I))
for d = 1:length(I)-1
Iout[d] = isa(I[d], Colon) ? (1:size(A,d)) : I[d]
end
d = length(I)
Iout[d] = isa(I[d], Colon) ? (1:prod(size(A)[d:end])) : I[d]
Iout
end
# To avoid getting confused by manipulations that are implemented for SubArrays,
# it's good to copy the contents to an Array. This version protects against
# `similar` ever changing its meaning.
function copy_to_array(A::AbstractArray)
Ac = Array(eltype(A), size(A))
copy!(Ac, A)
end
# Discover the highest dimension along which the values in A are
# separated by a single increment. If A was extracted via getindex
# from reshape(1:N, ...), this is equivalent to finding the highest
# dimension of the SubArray consistent with a single stride in the
# parent array.
function single_stride_dim(A::Array)
ld = 0
while ld < ndims(A)
# Collapse all dimensions up to & including ld+1 into the first dimension
shp = [prod(size(A)[1:ld+1])]
for j = ld+2:ndims(A)
push!(shp, size(A,j))
end
Ar = reshape(A, shp...)
# Compute the diff along dimension 1
if size(Ar, 1) > 1
indexes = map(d->1:size(Ar,d), [1:ndims(Ar);])
indexesp = copy(indexes); indexesp[1] = 2:size(Ar,1)
indexesm = copy(indexes); indexesm[1] = 1:size(Ar,1)-1
dA = Ar[indexesp...] - Ar[indexesm...]
ustride = unique(dA[:])
if length(ustride) == 1 # is it a single stride?
ld += 1
else
break
end
else
ld += 1
end
end
ld
end
single_stride_dim(A::AbstractArray) = single_stride_dim(copy_to_array(A))
# Extract the "linear indexing dimension" from a SubArray
getLD{T,N,P,I,LD}(::SubArray{T,N,P,I,LD}) = LD
# Compare the linear indexing dimension of a SubArray
# to a direct computation of strides
function cmpLD(Atest::SubArray, Acomp)
# Compute ld, skipping over dropped dimensions
LD = getLD(Atest)
ld = LD
for i = 1:LD
if isa(Atest.indexes[i], Real)
ld -= 1
end
end
ld, single_stride_dim(Acomp)
end
# Testing linear dimension inference for views-of-views
for N = 1:4
@eval begin
function test_viewview{T}(SB, A::Array{T,$N}, f, vindex)
local SSB
@nloops $N j d->(1:length(vindex)) d->(i_d = vindex[j_d]) begin
I = @ntuple $N d->i_d
try
SSB = f(SB, I...)
catch err
println(summary(SB))
println(I)
rethrow(err)
end
SA = f(A, I...)
ld, ldc = cmpLD(SSB, SA)
if ld == ldc
elseif ld <= ldc
if print_underestimates
println("Underestimate f = ", f, " on ", summary(SB), " with I = ", I, ", producing ", summary(SSB))
end
else
println(summary(SB))
println(summary(SSB))
error("failed on ", I)
end
end
end
end
end
# Testing equality of AbstractArrays, using several different methods to access values
function test_cartesian(A, B)
isgood = true
for (IA, IB) in zip(eachindex(A), eachindex(B))
if A[IA] != B[IB]
isgood = false
break
end
end
if !isgood
@show A
@show B
error("Mismatch")
end
end
function test_linear(A, B)
length(A) == length(B) || error("length mismatch")
isgood = true
for (iA, iB) in zip(1:length(A), 1:length(B))
if A[iA] != B[iB]
isgood = false
break
end
end
if !isgood
@show A
@show A.indexes
@show B
error("Mismatch")
end
end
# "mixed" means 2 indexes even for N-dimensional arrays
test_mixed{T}(::AbstractArray{T,1}, ::Array) = nothing
test_mixed{T}(::AbstractArray{T,2}, ::Array) = nothing
test_mixed(A, B::Array) = _test_mixed(A, reshape(B, size(A)))
function _test_mixed(A, B)
L = length(A)
m = size(A, 1)
n = div(L, m)
isgood = true
for j = 1:n, i = 1:m
if A[i,j] != B[i,j]
isgood = false
break
end
end
if !isgood
@show A
@show B
error("Mismatch")
end
nothing
end
function err_li(I::Tuple, ld::Int, ldc::Int)
@show I
@show ld, ldc
error("Linear indexing inference mismatch")
end
function err_li(S::SubArray, ld::Int, szC)
println(summary(S))
@show S.indexes
@show ld
@show szC
error("Linear indexing inference mismatch")
end
function runsubarraytests(A::Array, I...)
# Direct test of linear indexing inference
C = Agen_nodrop(A, I...)
ld = single_stride_dim(C)
ldc = Base.subarray_linearindexing_dim(typeof(A), typeof(I))
ld == ldc || err_li(I, ld, ldc)
# sub
S = sub(A, I...)
getLD(S) == ldc || err_li(S, ldc)
if Base.iscontiguous(S)
@test S.stride1 == 1
end
test_linear(S, C)
test_cartesian(S, C)
test_mixed(S, C)
# slice
S = slice(A, I...)
getLD(S) == ldc || err_li(S, ldc)
test_linear(S, C)
test_cartesian(S, C)
test_mixed(S, C)
end
function runsubarraytests(A::SubArray, I...)
# When A was created with sub, we have to check bounds, since some
# of the "residual" dimensions have size 1. It's possible that we
# need dedicated tests for sub.
for d = 1:length(I)-1
if !isa(I[d], Colon) && any(I[d] .> size(A,d))
return nothing
end
end
if !isa(I[end], Colon) && any(I[end] .> prod(size(A)[length(I):end]))
return nothing
end
AA = copy_to_array(A)
# Direct test of linear indexing inference
C = Agen_nodrop(AA, I...)
Cld = ld = single_stride_dim(C)
Cdim = AIindex = 0
while Cdim <= Cld && AIindex < length(A.indexes)
AIindex += 1
if isa(A.indexes[AIindex], Real)
ld += 1
else
Cdim += 1
end
end
# sub
local S
try
S = sub(A, I...)
catch err
@show typeof(A)
@show A.indexes
@show I
rethrow(err)
end
ldc = getLD(S)
ldc <= ld || err_li(S, ld, size(C))
test_linear(S, C)
test_cartesian(S, C)
test_mixed(S, C)
# slice
try
S = slice(A, I...)
catch err
@show typeof(A)
@show A.indexes
@show I
rethrow(err)
end
ldc = getLD(S)
ldc <= ld || err_li(S, ld, size(C))
test_linear(S, C)
test_cartesian(S, C)
test_mixed(S, C)
end
# indexN is a cartesian index, indexNN is a linear index for 2 dimensions, and indexNNN is a linear index for 3 dimensions
function runviews{T}(SB::AbstractArray{T,3}, indexN, indexNN, indexNNN)
for i3 in indexN, i2 in indexN, i1 in indexN
runsubarraytests(SB, i1, i2, i3)
end
for i2 in indexNN, i1 in indexN
runsubarraytests(SB, i1, i2)
end
for i1 in indexNNN
runsubarraytests(SB, i1)
end
end
function runviews{T}(SB::AbstractArray{T,2}, indexN, indexNN, indexNNN)
for i2 in indexN, i1 in indexN
runsubarraytests(SB, i1, i2)
end
for i1 in indexNN
runsubarraytests(SB, i1)
end
end
function runviews{T}(SB::AbstractArray{T,1}, indexN, indexNN, indexNNN)
for i1 in indexN
runsubarraytests(SB, i1)
end
end
runviews{T}(SB::AbstractArray{T,0}, indexN, indexNN, indexNNN) = nothing
######### Tests #########
testfull = Bool(parse(Int,(get(ENV, "JULIA_TESTFULL", "0"))))
### Views from Arrays ###
index5 = (1, 2, :, 2:5, 1:2:5, [1], [4,1,5], sub(1:5,[2,1,5])) # all work with at least size 5
index25 = (3, 8, :, 2:11, 12:3:22, [4,1,5,9], sub(1:25,[13,22,24]))
index125 = (113, :, 85:121, 2:15:92, [99,14,103], sub(1:125,[66,18,59]))
if testfull
let A = reshape(1:5*7*11, 11, 7, 5)
runviews(A, index5, index25, index125)
end
end
### Views from views ###
# "outer" indexes create snips that have at least size 5 along each dimension,
# with the exception of Int-slicing
oindex = (:, 6, 3:7, 13:-2:1, [8,4,6,12,5,7])
if testfull
let B = reshape(1:13^3, 13, 13, 13)
for o3 in oindex, o2 in oindex, o1 in oindex
sliceB = slice(B, o1, o2, o3)
runviews(sliceB, index5, index25, index125)
subB = sub(B, o1, o2, o3)
runviews(subB, index5, index25, index125)
end
end
end
if !testfull
let B = reshape(1:13^3, 13, 13, 13)
for oind in ((:,:,:),
(:,:,6),
(:,6,:),
(6,:,:),
(:,3:7,:),
(3:7,:,:),
(3:7,6,:),
(3:7,6,6),
(6,3:7,3:7),
(13:-2:1,:,:),
([8,4,6,12,5,7],:,3:7),
(6,6,[8,4,6,12,5,7]),
(1,:,sub(1:13,[9,12,4,13,1])),
(sub(1:13,[9,12,4,13,1]),2:6,4))
runsubarraytests(B, oind...)
sliceB = slice(B, oind)
runviews(sliceB, index5, index25, index125)
subB = sub(B, oind)
runviews(subB, index5, index25, index125)
end
end
end
# issue #11289
x11289 = randn(5,5)
@test isempty(sub(x11289, Int[], :))
@test isempty(sub(x11289, [2,5], Int[]))
@test isempty(sub(x11289, Int[], 2))
####### "Classical" tests #######
# sub
A = reshape(1:120, 3, 5, 8)
sA = sub(A, 2, 1:5, :)
@test parent(sA) == A
@test parentindexes(sA) == (2:2, 1:5, :)
@test Base.parentdims(sA) == [1:3;]
@test size(sA) == (1, 5, 8)
@test sA[1, 2, 1:8][:] == [5:15:120;]
sA[2:5:end] = -1
@test all(sA[2:5:end] .== -1)
@test all(A[5:15:120] .== -1)
@test strides(sA) == (1,3,15)
@test stride(sA,3) == 15
@test stride(sA,4) == 120
sA = sub(A, 1:3, 1:5, 5)
@test Base.parentdims(sA) == [1:2;]
sA[1:3,1:5] = -2
@test all(A[:,:,5] .== -2)
sA[:] = -3
@test all(A[:,:,5] .== -3)
@test strides(sA) == (1,3)
sA = sub(A, 1:3, 3, 2:5)
@test Base.parentdims(sA) == [1:3;]
@test size(sA) == (3,1,4)
@test sA == A[1:3,3,2:5]
@test sA[:] == A[1:3,3,2:5][:]
sA = sub(A, 1:2:3, 1:3:5, 1:2:8)
@test Base.parentdims(sA) == [1:3;]
@test strides(sA) == (2,9,30)
@test sA[:] == A[1:2:3, 1:3:5, 1:2:8][:]
# issue #8807
@test sub(sub([1:5;], 1:5), 1:5) == [1:5;]
# Test with mixed types
@test sA[:, Int16[1,2], big(2)] == [31 40; 33 42]
# sub logical indexing #4763
A = sub([1:10;], 5:8)
@test A[A.<7] == [5, 6]
@test Base.unsafe_getindex(A, A.<7) == [5, 6]
B = reshape(1:16, 4, 4)
sB = sub(B, 2:3, 2:3)
@test sB[sB.>8] == [10, 11]
@test Base.unsafe_getindex(sB, sB.>8) == [10, 11]
# slice
A = reshape(1:120, 3, 5, 8)
sA = slice(A, 2, :, 1:8)
@test parent(sA) == A
@test parentindexes(sA) == (2, :, 1:8)
@test Base.parentdims(sA) == [2:3;]
@test size(sA) == (5, 8)
@test strides(sA) == (3,15)
@test sA[2, 1:8][:] == [5:15:120;]
@test sA[:,1] == [2:3:14;]
@test sA[2:5:end] == [5:15:110;]
sA[2:5:end] = -1
@test all(sA[2:5:end] .== -1)
@test all(A[5:15:120] .== -1)
sA = slice(A, 1:3, 1:5, 5)
@test Base.parentdims(sA) == [1:2;]
@test size(sA) == (3,5)
@test strides(sA) == (1,3)
sA = slice(A, 1:2:3, 3, 1:2:8)
@test Base.parentdims(sA) == [1,3]
@test size(sA) == (2,4)
@test strides(sA) == (2,30)
@test sA[:] == A[sA.indexes...][:]
a = [5:8;]
@test parent(a) == a
@test parentindexes(a) == (1:4,)
# issue #6218 - logical indexing
A = rand(2, 2, 3)
msk = ones(Bool, 2, 2)
msk[2,1] = false
sA = sub(A, :, :, 1)
sA[msk] = 1.0
@test sA[msk] == ones(countnz(msk))
# bounds checking upon construction; see #4044, #10296
@test_throws BoundsError sub(1:10, 8:11)
A = reshape(1:20, 5, 4)
sA = sub(A, 1:2, 1:3)
@test_throws BoundsError sub(sA, 1:3, 1:3)
@test_throws BoundsError sub(sA, 1:2, 1:4)
sub(sA, 1:2, 1:2)
@test_throws BoundsError sub(A, 17:23)
sub(A, 17:20)
# Linear indexing by one multidimensional array:
A = reshape(1:120, 3, 5, 8)
sA = sub(A, :, :, :)
@test sA[[72 17; 107 117]] == [72 17; 107 117]
@test sA[[99 38 119 14 76 81]] == [99 38 119 14 76 81]
@test sA[[ones(Int, 2, 2, 2); 2ones(Int, 2, 2, 2)]] == [ones(Int, 2, 2, 2); 2ones(Int, 2, 2, 2)]
sA = sub(A, 1:2, 2:3, 3:4)
@test sA[(1:8)'] == [34 35 37 38 49 50 52 53]
@test sA[[1 2 4 4; 6 1 1 4]] == [34 35 38 38; 50 34 34 38]
# issue #11871
let a = ones(Float64, (2,2)),
b = sub(a, 1:2, 1:2)
b[2] = 2
@test b[2] === 2.0
end
|