/usr/share/julia/test/sparsedir/cholmod.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 | # This file is a part of Julia. License is MIT: http://julialang.org/license
srand(123)
using Base.Test
using Base.SparseMatrix.CHOLMOD
# based on deps/SuiteSparse-4.0.2/CHOLMOD/Demo/
# chm_rdsp(joinpath(JULIA_HOME, "../../deps/SuiteSparse-4.0.2/CHOLMOD/Demo/Matrix/bcsstk01.tri"))
# because the file may not exist in binary distributions and when a system suitesparse library
# is used
## Result from C program
## ---------------------------------- cholmod_demo:
## norm (A,inf) = 3.57095e+09
## norm (A,1) = 3.57095e+09
## CHOLMOD sparse: A: 48-by-48, nz 224, upper. OK
## CHOLMOD dense: B: 48-by-1, OK
## bnorm 1.97917
## Analyze: flop 6009 lnz 489
## Factorizing A
## CHOLMOD factor: L: 48-by-48 simplicial, LDL'. nzmax 489. nz 489 OK
## Ordering: AMD fl/lnz 12.3 lnz/anz 2.2
## ints in L: 782, doubles in L: 489
## factor flops 6009 nnz(L) 489 (w/no amalgamation)
## nnz(A*A'): 224
## flops / nnz(L): 12.3
## nnz(L) / nnz(A): 2.2
## analyze cputime: 0.0000
## factor cputime: 0.0000 mflop: 0.0
## solve cputime: 0.0000 mflop: 0.0
## overall cputime: 0.0000 mflop: 0.0
## peak memory usage: 0 (MB)
## residual 2.5e-19 (|Ax-b|/(|A||x|+|b|))
## residual 1.3e-19 (|Ax-b|/(|A||x|+|b|)) after iterative refinement
## rcond 9.5e-06
A = CHOLMOD.Sparse(48, 48,
CHOLMOD.SuiteSparse_long[0,1,2,3,6,9,12,15,18,20,25,30,34,36,39,43,47,52,58,
62,67,71,77,84,90,93,95,98,103,106,110,115,119,123,130,136,142,146,150,155,
161,167,174,182,189,197,207,215,224], # zero-based column pointers
CHOLMOD.SuiteSparse_long[0,1,2,1,2,3,0,2,4,0,1,5,0,4,6,1,3,7,2,8,1,3,7,8,9,
0,4,6,8,10,5,6,7,11,6,12,7,11,13,8,10,13,14,9,13,14,15,8,10,12,14,16,7,11,
12,13,16,17,0,12,16,18,1,5,13,15,19,2,4,14,20,3,13,15,19,20,21,2,4,12,16,18,
20,22,1,5,17,18,19,23,0,5,24,1,25,2,3,26,2,3,25,26,27,4,24,28,0,5,24,29,6,
11,24,28,30,7,25,27,31,8,9,26,32,8,9,25,27,31,32,33,10,24,28,30,32,34,6,11,
29,30,31,35,12,17,30,36,13,31,35,37,14,15,32,34,38,14,15,33,37,38,39,16,32,
34,36,38,40,12,17,31,35,36,37,41,12,16,17,18,23,36,40,42,13,14,15,19,37,39,
43,13,14,15,20,21,38,43,44,13,14,15,20,21,37,39,43,44,45,12,16,17,22,36,40,
42,46,12,16,17,18,23,41,42,46,47],
[2.83226851852e6,1.63544753086e6,1.72436728395e6,-2.0e6,-2.08333333333e6,
1.00333333333e9,1.0e6,-2.77777777778e6,1.0675e9,2.08333333333e6,
5.55555555555e6,1.53533333333e9,-3333.33333333,-1.0e6,2.83226851852e6,
-6666.66666667,2.0e6,1.63544753086e6,-1.68e6,1.72436728395e6,-2.0e6,4.0e8,
2.0e6,-2.08333333333e6,1.00333333333e9,1.0e6,2.0e8,-1.0e6,-2.77777777778e6,
1.0675e9,-2.0e6,2.08333333333e6,5.55555555555e6,1.53533333333e9,-2.8e6,
2.8360994695e6,-30864.1975309,-5.55555555555e6,1.76741074446e6,
-15432.0987654,2.77777777778e6,517922.131816,3.89003806848e6,
-3.33333333333e6,4.29857058902e6,-2.6349902747e6,1.97572063531e9,
-2.77777777778e6,3.33333333333e8,-2.14928529451e6,2.77777777778e6,
1.52734651547e9,5.55555555555e6,6.66666666667e8,2.35916180402e6,
-5.55555555555e6,-1.09779731332e8,1.56411143711e9,-2.8e6,-3333.33333333,
1.0e6,2.83226851852e6,-30864.1975309,-5.55555555555e6,-6666.66666667,
-2.0e6,1.63544753086e6,-15432.0987654,2.77777777778e6,-1.68e6,
1.72436728395e6,-3.33333333333e6,2.0e6,4.0e8,-2.0e6,-2.08333333333e6,
1.00333333333e9,-2.77777777778e6,3.33333333333e8,-1.0e6,2.0e8,1.0e6,
2.77777777778e6,1.0675e9,5.55555555555e6,6.66666666667e8,-2.0e6,
2.08333333333e6,-5.55555555555e6,1.53533333333e9,-28935.1851852,
-2.08333333333e6,60879.6296296,-1.59791666667e6,3.37291666667e6,
-28935.1851852,2.08333333333e6,2.41171296296e6,-2.08333333333e6,
1.0e8,-2.5e6,-416666.666667,1.5e9,-833333.333333,1.25e6,5.01833333333e8,
2.08333333333e6,1.0e8,416666.666667,5.025e8,-28935.1851852,
-2.08333333333e6,-4166.66666667,-1.25e6,3.98587962963e6,-1.59791666667e6,
-8333.33333333,2.5e6,3.41149691358e6,-28935.1851852,2.08333333333e6,
-2.355e6,2.43100308642e6,-2.08333333333e6,1.0e8,-2.5e6,5.0e8,2.5e6,
-416666.666667,1.50416666667e9,-833333.333333,1.25e6,2.5e8,-1.25e6,
-3.47222222222e6,1.33516666667e9,2.08333333333e6,1.0e8,-2.5e6,
416666.666667,6.94444444444e6,2.16916666667e9,-28935.1851852,
-2.08333333333e6,-3.925e6,3.98587962963e6,-1.59791666667e6,
-38580.2469136,-6.94444444444e6,3.41149691358e6,-28935.1851852,
2.08333333333e6,-19290.1234568,3.47222222222e6,2.43100308642e6,
-2.08333333333e6,1.0e8,-4.16666666667e6,2.5e6,-416666.666667,
1.50416666667e9,-833333.333333,-3.47222222222e6,4.16666666667e8,
-1.25e6,3.47222222222e6,1.33516666667e9,2.08333333333e6,1.0e8,
6.94444444445e6,8.33333333333e8,416666.666667,-6.94444444445e6,
2.16916666667e9,-3830.95098171,1.14928529451e6,-275828.470683,
-28935.1851852,-2.08333333333e6,-4166.66666667,1.25e6,64710.5806113,
-131963.213599,-517922.131816,-2.29857058902e6,-1.59791666667e6,
-8333.33333333,-2.5e6,3.50487988027e6,-517922.131816,-2.16567078453e6,
551656.941366,-28935.1851852,2.08333333333e6,-2.355e6,517922.131816,
4.57738374749e6,2.29857058902e6,-551656.941367,4.8619365099e8,
-2.08333333333e6,1.0e8,2.5e6,5.0e8,-4.79857058902e6,134990.2747,
2.47238730198e9,-1.14928529451e6,2.29724661236e8,-5.57173510779e7,
-833333.333333,-1.25e6,2.5e8,2.39928529451e6,9.61679848804e8,275828.470683,
-5.57173510779e7,1.09411960038e7,2.08333333333e6,1.0e8,-2.5e6,
140838.195984,-1.09779731332e8,5.31278103775e8], 1)
@test_approx_eq CHOLMOD.norm_sparse(A, 0) 3.570948074697437e9
@test_approx_eq CHOLMOD.norm_sparse(A, 1) 3.570948074697437e9
@test_throws ArgumentError CHOLMOD.norm_sparse(A, 2)
@test CHOLMOD.isvalid(A)
B = A * ones(size(A,2))
chma = ldltfact(A) # LDL' form
@test CHOLMOD.isvalid(chma)
@test unsafe_load(chma.p).is_ll == 0 # check that it is in fact an LDLt
x = chma\B
@test_approx_eq x ones(size(x))
@test nnz(ldltfact(A, perm=1:size(A,1))) > nnz(chma)
chma = cholfact(A) # LL' form
@test CHOLMOD.isvalid(chma)
@test unsafe_load(chma.p).is_ll == 1 # check that it is in fact an LLt
x = chma\B
@test_approx_eq x ones(size(x))
@test nnz(chma) == 489
@test nnz(cholfact(A, perm=1:size(A,1))) > nnz(chma)
#lp_afiro example
afiro = CHOLMOD.Sparse(27, 51,
CHOLMOD.SuiteSparse_long[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
23,25,27,29,33,37,41,45,47,49,51,53,55,57,59,63,65,67,69,71,75,79,83,87,89,
91,93,95,97,99,101,102],
CHOLMOD.SuiteSparse_long[2,3,6,7,8,9,12,13,16,17,18,19,20,21,22,23,24,25,26,
0,1,2,23,0,3,0,21,1,25,4,5,6,24,4,5,7,24,4,5,8,24,4,5,9,24,6,20,7,20,8,20,9,
20,3,4,4,22,5,26,10,11,12,21,10,13,10,23,10,20,11,25,14,15,16,22,14,15,17,
22,14,15,18,22,14,15,19,22,16,20,17,20,18,20,19,20,13,15,15,24,14,26,15],
[1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
1.0,-1.0,-1.06,1.0,0.301,1.0,-1.0,1.0,-1.0,1.0,1.0,-1.0,-1.06,1.0,0.301,
-1.0,-1.06,1.0,0.313,-1.0,-0.96,1.0,0.313,-1.0,-0.86,1.0,0.326,-1.0,2.364,
-1.0,2.386,-1.0,2.408,-1.0,2.429,1.4,1.0,1.0,-1.0,1.0,1.0,-1.0,-0.43,1.0,
0.109,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,1.0,-0.43,1.0,1.0,0.109,-0.43,1.0,1.0,
0.108,-0.39,1.0,1.0,0.108,-0.37,1.0,1.0,0.107,-1.0,2.191,-1.0,2.219,-1.0,
2.249,-1.0,2.279,1.4,-1.0,1.0,-1.0,1.0,1.0,1.0], 0)
afiro2 = CHOLMOD.aat(afiro, CHOLMOD.SuiteSparse_long[0:50;], CHOLMOD.SuiteSparse_long(1))
CHOLMOD.change_stype!(afiro2, -1)
chmaf = cholfact(afiro2)
y = afiro'*ones(size(afiro,1))
sol = chmaf\(afiro*y) # least squares solution
@test CHOLMOD.isvalid(sol)
pred = afiro'*sol
@test norm(afiro * (convert(Matrix, y) - convert(Matrix, pred))) < 1e-8
let # Issue 9160
for Ti in CHOLMOD.ITypes.types
for elty in CHOLMOD.VRealTypes.types
A = sprand(10,10,0.1)
A = convert(SparseMatrixCSC{elty,Ti},A)
cmA = CHOLMOD.Sparse(A)
B = sprand(10,10,0.1)
B = convert(SparseMatrixCSC{elty,Ti},B)
cmB = CHOLMOD.Sparse(B)
# Ac_mul_B
@test_approx_eq sparse(cmA'*cmB) A'*B
# A_mul_Bc
@test_approx_eq sparse(cmA*cmB') A*B'
# A_mul_Ac
@test_approx_eq sparse(cmA*cmA') A*A'
# Ac_mul_A
@test_approx_eq sparse(cmA'*cmA) A'*A
# A_mul_Ac for symmetric A
A = 0.5*(A + A')
cmA = CHOLMOD.Sparse(A)
@test_approx_eq sparse(cmA*cmA') A*A'
end
end
end
# Issue #9915
@test speye(2)\speye(2) == eye(2)
# test eltype
@test eltype(Dense(ones(3))) == Float64
@test eltype(A) == Float64
@test eltype(chma) == Float64
# test Sparse constructor Symmetric and Hermitian input (and issym and ishermitian)
ACSC = sprandn(10, 10, 0.3) + I
@test issym(Sparse(Symmetric(ACSC, :L)))
@test issym(Sparse(Symmetric(ACSC, :U)))
@test ishermitian(Sparse(Hermitian(complex(ACSC), :L)))
@test ishermitian(Sparse(Hermitian(complex(ACSC), :U)))
# test Sparse constructor for c_SparseVoid (and read_sparse)
let testfile = joinpath(tempdir(), "tmp.mtx")
try
writedlm(testfile, ["%%MatrixMarket matrix coordinate real symmetric","3 3 4","1 1 1","2 2 1","3 2 0.5","3 3 1"])
@test sparse(CHOLMOD.Sparse(testfile)) == [1 0 0;0 1 0.5;0 0.5 1]
finally
rm(testfile)
end
end
let testfile = joinpath(tempdir(), "tmp.mtx")
try
writedlm(testfile, ["%%MatrixMarket matrix coordinate complex Hermitian",
"3 3 4","1 1 1.0 0.0","2 2 1.0 0.0","3 2 0.5 0.5","3 3 1.0 0.0"])
@test sparse(CHOLMOD.Sparse(testfile)) == [1 0 0;0 1 0.5-0.5im;0 0.5+0.5im 1]
finally
rm(testfile)
end
end
let testfile = joinpath(tempdir(), "tmp.mtx")
try
writedlm(testfile, ["%%MatrixMarket matrix coordinate real symmetric","%3 3 4","1 1 1","2 2 1","3 2 0.5","3 3 1"])
@test_throws ArgumentError sparse(CHOLMOD.Sparse(testfile))
finally
rm(testfile)
end
end
# test that Sparse(Ptr) constructor throws the right places
@test_throws ArgumentError CHOLMOD.Sparse(convert(Ptr{CHOLMOD.C_Sparse{Float64}}, C_NULL))
@test_throws ArgumentError CHOLMOD.Sparse(convert(Ptr{CHOLMOD.C_SparseVoid}, C_NULL))
## The struct pointer must be constructed by the library constructor and then modified afterwards to checks that the method throws
### illegal dtype (for now but should be supported at some point)
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
(Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, CHOLMOD.SINGLE, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 4)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)
### illegal dtype
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
(Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, 5, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 4)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)
### illegal xtype
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
(Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, 3, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 3)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)
### illegal itype
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
(Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, CHOLMOD.INTLONG, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 2)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)
### illegal itype
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
(Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, 5, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 2)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)
# Test Dense wrappers (only Float64 supported a present)
## High level interface
for elty in (Float64, Complex{Float64})
if elty == Float64
A = randn(5, 5)
b = randn(5)
else
A = complex(randn(5, 5), randn(5, 5))
b = complex(randn(5), randn(5))
end
ADense = CHOLMOD.Dense(A)
bDense = CHOLMOD.Dense(b)
@test_throws BoundsError ADense[6, 1]
@test_throws BoundsError ADense[1, 6]
@test copy(ADense) == ADense
@test_approx_eq CHOLMOD.norm_dense(ADense, 1) norm(A, 1)
@test_approx_eq CHOLMOD.norm_dense(ADense, 0) norm(A, Inf)
@test_throws ArgumentError CHOLMOD.norm_dense(ADense, 2)
@test_throws ArgumentError CHOLMOD.norm_dense(ADense, 3)
@test_approx_eq CHOLMOD.norm_dense(bDense, 2) norm(b)
@test CHOLMOD.check_dense(bDense)
AA = CHOLMOD.eye(3)
unsafe_store!(convert(Ptr{Csize_t}, AA.p), 2, 1) # change size, but not stride, of Dense
@test convert(Matrix, AA) == eye(2, 3)
end
## Low level interface
@test isa(CHOLMOD.zeros(3, 3, Float64), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.zeros(3, 3), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.zeros(3, 3, Float64), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.ones(3, 3), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.eye(3, 4, Float64), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.eye(3, 4), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.eye(3), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.copy_dense(CHOLMOD.eye(3)), CHOLMOD.Dense{Float64})
# Test Sparse and Factor
## test free_sparse!
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_Sparse{Float64}},
(Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
@test CHOLMOD.free_sparse!(p)
for elty in (Float64, Complex{Float64})
A1 = sparse([1:5, 1;], [1:5, 2;], elty == Float64 ? randn(6) : complex(randn(6), randn(6)))
A2 = sparse([1:5, 1;], [1:5, 2;], elty == Float64 ? randn(6) : complex(randn(6), randn(6)))
A1pd = A1'A1
A1Sparse = CHOLMOD.Sparse(A1)
A2Sparse = CHOLMOD.Sparse(A2)
A1pdSparse = CHOLMOD.Sparse(
A1pd.m,
A1pd.n,
Base.SparseMatrix.decrement(A1pd.colptr),
Base.SparseMatrix.decrement(A1pd.rowval),
A1pd.nzval)
## High level interface
@test isa(CHOLMOD.Sparse(3, 3, [0,1,3,4], [0,2,1,2], ones(4)), CHOLMOD.Sparse) # Sparse doesn't require columns to be sorted
@test_throws BoundsError A1Sparse[6, 1]
@test_throws BoundsError A1Sparse[1, 6]
@test sparse(A1Sparse) == A1
for i=1:size(A1, 1) A1[i, i] = real(A1[i, i]) end #Construct Hermitian matrix properly
@test CHOLMOD.sparse(CHOLMOD.Sparse(Hermitian(A1, :L))) == Hermitian(A1, :L)
@test CHOLMOD.sparse(CHOLMOD.Sparse(Hermitian(A1, :U))) == Hermitian(A1, :U)
@test_throws ArgumentError convert(SparseMatrixCSC{elty,Int}, A1pdSparse)
if elty <: Real
@test_throws ArgumentError convert(Symmetric{Float64,SparseMatrixCSC{Float64,Int}}, A1Sparse)
else
@test_throws ArgumentError convert(Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},Int}}, A1Sparse)
end
@test copy(A1Sparse) == A1Sparse
@test size(A1Sparse, 3) == 1
if elty <: Real # multiplication only defined for real matrices in CHOLMOD
@test_approx_eq A1Sparse*A2Sparse A1*A2
@test_throws DimensionMismatch CHOLMOD.Sparse(A1[:,1:4])*A2Sparse
@test_approx_eq A1Sparse'A2Sparse A1'A2
@test_approx_eq A1Sparse*A2Sparse' A1*A2'
@test_approx_eq A1Sparse*A1Sparse A1*A1
@test_approx_eq A1Sparse'A1Sparse A1'A1
@test_approx_eq A1Sparse*A1Sparse' A1*A1'
@test_approx_eq A1pdSparse*A1pdSparse A1pd*A1pd
@test_approx_eq A1pdSparse'A1pdSparse A1pd'A1pd
@test_approx_eq A1pdSparse*A1pdSparse' A1pd*A1pd'
@test_throws DimensionMismatch A1Sparse*CHOLMOD.eye(4, 5, elty)
end
# Factor
@test_throws ArgumentError cholfact(A1)
@test_throws Base.LinAlg.PosDefException cholfact(A1 + A1' - 2eigmax(full(A1 + A1'))I)
@test_throws Base.LinAlg.PosDefException cholfact(A1 + A1', shift=-2eigmax(full(A1 + A1')))
@test_throws ArgumentError ldltfact(A1 + A1' - 2real(A1[1,1])I)
@test_throws ArgumentError ldltfact(A1 + A1', shift=-2real(A1[1,1]))
@test_throws ArgumentError cholfact(A1)
@test_throws ArgumentError cholfact(A1, shift=1.0)
@test_throws ArgumentError ldltfact(A1)
@test_throws ArgumentError ldltfact(A1, shift=1.0)
F = cholfact(A1pd)
tmp = IOBuffer()
show(tmp, F)
@test tmp.size > 0
@test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty})
@test_approx_eq F\CHOLMOD.Sparse(sparse(ones(elty, 5))) A1pd\ones(5)
@test_throws DimensionMismatch F\CHOLMOD.Dense(ones(elty, 4))
@test_throws DimensionMismatch F\CHOLMOD.Sparse(sparse(ones(elty, 4)))
@test_approx_eq F'\ones(elty, 5) full(A1pd)'\ones(5)
@test_approx_eq F'\sparse(ones(elty, 5)) full(A1pd)'\ones(5)
@test_approx_eq logdet(F) logdet(full(A1pd))
@test det(F) == exp(logdet(F))
let # to test supernodal, we must use a larger matrix
Ftmp = sprandn(100,100,0.1)
Ftmp = Ftmp'Ftmp + I
@test_approx_eq logdet(cholfact(Ftmp)) logdet(full(Ftmp))
end
@test_approx_eq logdet(ldltfact(A1pd)) logdet(full(A1pd))
@test isposdef(A1pd)
@test !isposdef(A1)
@test !isposdef(A1 + A1' |> t -> t - 2eigmax(full(t))*I)
if elty <: Real
@test CHOLMOD.issym(Sparse(A1pd, 0))
@test CHOLMOD.Sparse(cholfact(Symmetric(A1pd, :L))) == CHOLMOD.Sparse(cholfact(A1pd))
F1 = CHOLMOD.Sparse(cholfact(Symmetric(A1pd, :L), shift=2))
F2 = CHOLMOD.Sparse(cholfact(A1pd, shift=2))
@test F1 == F2
@test CHOLMOD.Sparse(ldltfact(Symmetric(A1pd, :L))) == CHOLMOD.Sparse(ldltfact(A1pd))
F1 = CHOLMOD.Sparse(ldltfact(Symmetric(A1pd, :L), shift=2))
F2 = CHOLMOD.Sparse(ldltfact(A1pd, shift=2))
@test F1 == F2
else
@test !CHOLMOD.issym(Sparse(A1pd, 0))
@test CHOLMOD.ishermitian(Sparse(A1pd, 0))
@test CHOLMOD.Sparse(cholfact(Hermitian(A1pd, :L))) == CHOLMOD.Sparse(cholfact(A1pd))
F1 = CHOLMOD.Sparse(cholfact(Hermitian(A1pd, :L), shift=2))
F2 = CHOLMOD.Sparse(cholfact(A1pd, shift=2))
@test F1 == F2
@test CHOLMOD.Sparse(ldltfact(Hermitian(A1pd, :L))) == CHOLMOD.Sparse(ldltfact(A1pd))
F1 = CHOLMOD.Sparse(ldltfact(Hermitian(A1pd, :L), shift=2))
F2 = CHOLMOD.Sparse(ldltfact(A1pd, shift=2))
@test F1 == F2
end
### update!
F = cholfact(A1pd)
CHOLMOD.change_factor!(elty, false, false, true, true, F)
@test unsafe_load(F.p).is_ll == 0
CHOLMOD.change_factor!(elty, true, false, true, true, F)
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality
@test size(F, 2) == 5
@test size(F, 3) == 1
@test_throws ArgumentError size(F, 0)
F = cholfact(A1pdSparse, shift=2)
@test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty})
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd, shift=2.0)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality
F = ldltfact(A1pd)
@test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty})
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality
F = ldltfact(A1pdSparse, shift=2)
@test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty})
@test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd, shift=2.0)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality
@test isa(CHOLMOD.factor_to_sparse!(F), CHOLMOD.Sparse)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.factor_to_sparse!(F)
## Low level interface
@test CHOLMOD.nnz(A1Sparse) == nnz(A1)
@test CHOLMOD.speye(5, 5, elty) == eye(elty, 5, 5)
@test CHOLMOD.spzeros(5, 5, 5, elty) == zeros(elty, 5, 5)
if elty <: Real
@test CHOLMOD.copy(A1Sparse, 0, 1) == A1Sparse
@test CHOLMOD.horzcat(A1Sparse, A2Sparse, true) == [A1 A2]
@test CHOLMOD.vertcat(A1Sparse, A2Sparse, true) == [A1; A2]
svec = ones(elty, 1)
@test CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.SCALAR, A1Sparse) == A1Sparse
svec = ones(elty, 5)
@test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.SCALAR, A1Sparse)
@test CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.ROW, A1Sparse) == A1Sparse
@test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense([svec, 1;]), CHOLMOD.ROW, A1Sparse)
@test CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.COL, A1Sparse) == A1Sparse
@test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense([svec, 1;]), CHOLMOD.COL, A1Sparse)
@test CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.SYM, A1Sparse) == A1Sparse
@test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense([svec, 1;]), CHOLMOD.SYM, A1Sparse)
@test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.SYM, CHOLMOD.Sparse(A1[:,1:4]))
else
@test_throws MethodError CHOLMOD.copy(A1Sparse, 0, 1) == A1Sparse
@test_throws MethodError CHOLMOD.horzcat(A1Sparse, A2Sparse, true) == [A1 A2]
@test_throws MethodError CHOLMOD.vertcat(A1Sparse, A2Sparse, true) == [A1; A2]
end
if elty <: Real
@test_approx_eq CHOLMOD.ssmult(A1Sparse, A2Sparse, 0, true, true) A1*A2
@test_approx_eq CHOLMOD.aat(A1Sparse, [0:size(A1,2)-1;], 1) A1*A1'
@test_approx_eq CHOLMOD.aat(A1Sparse, [0:1;], 1) A1[:,1:2]*A1[:,1:2]'
@test CHOLMOD.copy(A1Sparse, 0, 1) == A1Sparse
end
@test CHOLMOD.Sparse(CHOLMOD.Dense(A1Sparse)) == A1Sparse
end
Af = float([4 12 -16; 12 37 -43; -16 -43 98])
As = sparse(Af)
Lf = float([2 0 0; 6 1 0; -8 5 3])
LDf = float([4 0 0; 3 1 0; -4 5 9]) # D is stored along the diagonal
L_f = float([1 0 0; 3 1 0; -4 5 1]) # L by itself in LDLt of Af
D_f = float([4 0 0; 0 1 0; 0 0 9])
# cholfact, no permutation
Fs = cholfact(As, perm=[1:3;])
@test Fs[:p] == [1:3;]
@test_approx_eq sparse(Fs[:L]) Lf
@test_approx_eq sparse(Fs) As
b = rand(3)
@test_approx_eq Fs\b Af\b
@test_approx_eq Fs[:UP]\(Fs[:PtL]\b) Af\b
@test_approx_eq Fs[:L]\b Lf\b
@test_approx_eq Fs[:U]\b Lf'\b
@test_approx_eq Fs[:L]'\b Lf'\b
@test_approx_eq Fs[:U]'\b Lf\b
@test_approx_eq Fs[:PtL]\b Lf\b
@test_approx_eq Fs[:UP]\b Lf'\b
@test_approx_eq Fs[:PtL]'\b Lf'\b
@test_approx_eq Fs[:UP]'\b Lf\b
@test_throws CHOLMOD.CHOLMODException Fs[:D]
@test_throws CHOLMOD.CHOLMODException Fs[:LD]
@test_throws CHOLMOD.CHOLMODException Fs[:DU]
@test_throws CHOLMOD.CHOLMODException Fs[:PLD]
@test_throws CHOLMOD.CHOLMODException Fs[:DUPt]
# cholfact, with permutation
p = [2,3,1]
p_inv = [3,1,2]
Fs = cholfact(As, perm=p)
@test Fs[:p] == p
Afp = Af[p,p]
Lfp = cholfact(Afp)[:L]
@test_approx_eq sparse(Fs[:L]) Lfp
@test_approx_eq sparse(Fs) As
b = rand(3)
@test_approx_eq Fs\b Af\b
@test_approx_eq Fs[:UP]\(Fs[:PtL]\b) Af\b
@test_approx_eq Fs[:L]\b Lfp\b
@test_approx_eq Fs[:U]'\b Lfp\b
@test_approx_eq Fs[:U]\b Lfp'\b
@test_approx_eq Fs[:L]'\b Lfp'\b
@test_approx_eq Fs[:PtL]\b Lfp\b[p]
@test_approx_eq Fs[:UP]\b (Lfp'\b)[p_inv]
@test_approx_eq Fs[:PtL]'\b (Lfp'\b)[p_inv]
@test_approx_eq Fs[:UP]'\b Lfp\b[p]
@test_throws CHOLMOD.CHOLMODException Fs[:PL]
@test_throws CHOLMOD.CHOLMODException Fs[:UPt]
@test_throws CHOLMOD.CHOLMODException Fs[:D]
@test_throws CHOLMOD.CHOLMODException Fs[:LD]
@test_throws CHOLMOD.CHOLMODException Fs[:DU]
@test_throws CHOLMOD.CHOLMODException Fs[:PLD]
@test_throws CHOLMOD.CHOLMODException Fs[:DUPt]
# ldltfact, no permutation
Fs = ldltfact(As, perm=[1:3;])
@test Fs[:p] == [1:3;]
@test_approx_eq sparse(Fs[:LD]) LDf
@test_approx_eq sparse(Fs) As
b = rand(3)
@test_approx_eq Fs\b Af\b
@test_approx_eq Fs[:UP]\(Fs[:PtLD]\b) Af\b
@test_approx_eq Fs[:DUP]\(Fs[:PtL]\b) Af\b
@test_approx_eq Fs[:L]\b L_f\b
@test_approx_eq Fs[:U]\b L_f'\b
@test_approx_eq Fs[:L]'\b L_f'\b
@test_approx_eq Fs[:U]'\b L_f\b
@test_approx_eq Fs[:PtL]\b L_f\b
@test_approx_eq Fs[:UP]\b L_f'\b
@test_approx_eq Fs[:PtL]'\b L_f'\b
@test_approx_eq Fs[:UP]'\b L_f\b
@test_approx_eq Fs[:D]\b D_f\b
@test_approx_eq Fs[:D]'\b D_f\b
@test_approx_eq Fs[:LD]\b D_f\(L_f\b)
@test_approx_eq Fs[:DU]'\b D_f\(L_f\b)
@test_approx_eq Fs[:LD]'\b L_f'\(D_f\b)
@test_approx_eq Fs[:DU]\b L_f'\(D_f\b)
@test_approx_eq Fs[:PtLD]\b D_f\(L_f\b)
@test_approx_eq Fs[:DUP]'\b D_f\(L_f\b)
@test_approx_eq Fs[:PtLD]'\b L_f'\(D_f\b)
@test_approx_eq Fs[:DUP]\b L_f'\(D_f\b)
# ldltfact, with permutation
Fs = ldltfact(As, perm=p)
@test Fs[:p] == p
@test_approx_eq sparse(Fs) As
b = rand(3)
Asp = As[p,p]
LDp = sparse(ldltfact(Asp, perm=[1,2,3])[:LD])
# LDp = sparse(Fs[:LD])
Lp, dp = Base.SparseMatrix.CHOLMOD.getLd!(copy(LDp))
Dp = spdiagm(dp)
@test_approx_eq Fs\b Af\b
@test_approx_eq Fs[:UP]\(Fs[:PtLD]\b) Af\b
@test_approx_eq Fs[:DUP]\(Fs[:PtL]\b) Af\b
@test_approx_eq Fs[:L]\b Lp\b
@test_approx_eq Fs[:U]\b Lp'\b
@test_approx_eq Fs[:L]'\b Lp'\b
@test_approx_eq Fs[:U]'\b Lp\b
@test_approx_eq Fs[:PtL]\b Lp\b[p]
@test_approx_eq Fs[:UP]\b (Lp'\b)[p_inv]
@test_approx_eq Fs[:PtL]'\b (Lp'\b)[p_inv]
@test_approx_eq Fs[:UP]'\b Lp\b[p]
@test_approx_eq Fs[:LD]\b Dp\(Lp\b)
@test_approx_eq Fs[:DU]'\b Dp\(Lp\b)
@test_approx_eq Fs[:LD]'\b Lp'\(Dp\b)
@test_approx_eq Fs[:DU]\b Lp'\(Dp\b)
@test_approx_eq Fs[:PtLD]\b Dp\(Lp\b[p])
@test_approx_eq Fs[:DUP]'\b Dp\(Lp\b[p])
@test_approx_eq Fs[:PtLD]'\b (Lp'\(Dp\b))[p_inv]
@test_approx_eq Fs[:DUP]\b (Lp'\(Dp\b))[p_inv]
@test_throws CHOLMOD.CHOLMODException Fs[:DUPt]
@test_throws CHOLMOD.CHOLMODException Fs[:PLD]
# Issue 11745 - row and column pointers were not sorted in sparse(Factor)
sparse(cholfact(sparse(Float64[ 10 1 1 1; 1 10 0 0; 1 0 10 0; 1 0 0 10]))); gc()
# Issue 11747 - Wrong show method defined for FactorComponent
Base.writemime(IOBuffer(), MIME"text/plain"(), cholfact(sparse(Float64[ 10 1 1 1; 1 10 0 0; 1 0 10 0; 1 0 0 10]))[:L])
# Element promotion and type inference
@inferred cholfact(As)\ones(Int, size(As, 1))
@inferred ldltfact(As)\ones(Int, size(As, 1))
# Issue 14076
@test cholfact(sparse([1,2,3,4], [1,2,3,4], Float32[1,4,16,64]))\[1,4,16,64] == ones(4)
# Issue 14134
A = CHOLMOD.Sparse(sprandn(10,5,0.1) + I |> t -> t't)
b = IOBuffer()
serialize(b, A)
seekstart(b)
Anew = deserialize(b)
@test_throws ArgumentError show(Anew)
@test_throws ArgumentError size(Anew)
@test_throws ArgumentError Anew[1]
@test_throws ArgumentError Anew[2,1]
F = cholfact(A)
serialize(b, F)
seekstart(b)
Fnew = deserialize(b)
@test_throws ArgumentError Fnew\ones(5)
@test_throws ArgumentError show(Fnew)
@test_throws ArgumentError size(Fnew)
@test_throws ArgumentError diag(Fnew)
@test_throws ArgumentError logdet(Fnew)
# Issue with promotion during conversion to CHOLMOD.Dense
@test SparseMatrix.CHOLMOD.Dense(ones(Float32, 5)) == ones(5, 1)
@test SparseMatrix.CHOLMOD.Dense(ones(Int, 5)) == ones(5, 1)
@test SparseMatrix.CHOLMOD.Dense(ones(Complex{Float32}, 5, 2)) == ones(5, 2)
|