This file is indexed.

/usr/share/julia/test/sparsedir/cholmod.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
# This file is a part of Julia. License is MIT: http://julialang.org/license

srand(123)
using Base.Test

using Base.SparseMatrix.CHOLMOD

# based on deps/SuiteSparse-4.0.2/CHOLMOD/Demo/

# chm_rdsp(joinpath(JULIA_HOME, "../../deps/SuiteSparse-4.0.2/CHOLMOD/Demo/Matrix/bcsstk01.tri"))
# because the file may not exist in binary distributions and when a system suitesparse library
# is used

## Result from C program
## ---------------------------------- cholmod_demo:
## norm (A,inf) = 3.57095e+09
## norm (A,1)   = 3.57095e+09
## CHOLMOD sparse:  A:  48-by-48, nz 224, upper.  OK
## CHOLMOD dense:   B:  48-by-1,   OK
## bnorm 1.97917
## Analyze: flop 6009 lnz 489
## Factorizing A
## CHOLMOD factor:  L:  48-by-48  simplicial, LDL'. nzmax 489.  nz 489  OK
## Ordering: AMD     fl/lnz       12.3  lnz/anz        2.2
## ints in L: 782, doubles in L: 489
## factor flops 6009 nnz(L)             489 (w/no amalgamation)
## nnz(A*A'):             224
## flops / nnz(L):      12.3
## nnz(L) / nnz(A):      2.2
## analyze cputime:        0.0000
## factor  cputime:         0.0000 mflop:      0.0
## solve   cputime:         0.0000 mflop:      0.0
## overall cputime:         0.0000 mflop:      0.0
## peak memory usage:            0 (MB)
## residual  2.5e-19 (|Ax-b|/(|A||x|+|b|))
## residual  1.3e-19 (|Ax-b|/(|A||x|+|b|)) after iterative refinement
## rcond     9.5e-06

A = CHOLMOD.Sparse(48, 48,
    CHOLMOD.SuiteSparse_long[0,1,2,3,6,9,12,15,18,20,25,30,34,36,39,43,47,52,58,
    62,67,71,77,84,90,93,95,98,103,106,110,115,119,123,130,136,142,146,150,155,
    161,167,174,182,189,197,207,215,224], # zero-based column pointers
    CHOLMOD.SuiteSparse_long[0,1,2,1,2,3,0,2,4,0,1,5,0,4,6,1,3,7,2,8,1,3,7,8,9,
    0,4,6,8,10,5,6,7,11,6,12,7,11,13,8,10,13,14,9,13,14,15,8,10,12,14,16,7,11,
    12,13,16,17,0,12,16,18,1,5,13,15,19,2,4,14,20,3,13,15,19,20,21,2,4,12,16,18,
    20,22,1,5,17,18,19,23,0,5,24,1,25,2,3,26,2,3,25,26,27,4,24,28,0,5,24,29,6,
    11,24,28,30,7,25,27,31,8,9,26,32,8,9,25,27,31,32,33,10,24,28,30,32,34,6,11,
    29,30,31,35,12,17,30,36,13,31,35,37,14,15,32,34,38,14,15,33,37,38,39,16,32,
    34,36,38,40,12,17,31,35,36,37,41,12,16,17,18,23,36,40,42,13,14,15,19,37,39,
    43,13,14,15,20,21,38,43,44,13,14,15,20,21,37,39,43,44,45,12,16,17,22,36,40,
    42,46,12,16,17,18,23,41,42,46,47],
    [2.83226851852e6,1.63544753086e6,1.72436728395e6,-2.0e6,-2.08333333333e6,
    1.00333333333e9,1.0e6,-2.77777777778e6,1.0675e9,2.08333333333e6,
    5.55555555555e6,1.53533333333e9,-3333.33333333,-1.0e6,2.83226851852e6,
    -6666.66666667,2.0e6,1.63544753086e6,-1.68e6,1.72436728395e6,-2.0e6,4.0e8,
    2.0e6,-2.08333333333e6,1.00333333333e9,1.0e6,2.0e8,-1.0e6,-2.77777777778e6,
    1.0675e9,-2.0e6,2.08333333333e6,5.55555555555e6,1.53533333333e9,-2.8e6,
    2.8360994695e6,-30864.1975309,-5.55555555555e6,1.76741074446e6,
    -15432.0987654,2.77777777778e6,517922.131816,3.89003806848e6,
    -3.33333333333e6,4.29857058902e6,-2.6349902747e6,1.97572063531e9,
    -2.77777777778e6,3.33333333333e8,-2.14928529451e6,2.77777777778e6,
    1.52734651547e9,5.55555555555e6,6.66666666667e8,2.35916180402e6,
    -5.55555555555e6,-1.09779731332e8,1.56411143711e9,-2.8e6,-3333.33333333,
    1.0e6,2.83226851852e6,-30864.1975309,-5.55555555555e6,-6666.66666667,
    -2.0e6,1.63544753086e6,-15432.0987654,2.77777777778e6,-1.68e6,
    1.72436728395e6,-3.33333333333e6,2.0e6,4.0e8,-2.0e6,-2.08333333333e6,
    1.00333333333e9,-2.77777777778e6,3.33333333333e8,-1.0e6,2.0e8,1.0e6,
    2.77777777778e6,1.0675e9,5.55555555555e6,6.66666666667e8,-2.0e6,
    2.08333333333e6,-5.55555555555e6,1.53533333333e9,-28935.1851852,
    -2.08333333333e6,60879.6296296,-1.59791666667e6,3.37291666667e6,
    -28935.1851852,2.08333333333e6,2.41171296296e6,-2.08333333333e6,
    1.0e8,-2.5e6,-416666.666667,1.5e9,-833333.333333,1.25e6,5.01833333333e8,
    2.08333333333e6,1.0e8,416666.666667,5.025e8,-28935.1851852,
    -2.08333333333e6,-4166.66666667,-1.25e6,3.98587962963e6,-1.59791666667e6,
    -8333.33333333,2.5e6,3.41149691358e6,-28935.1851852,2.08333333333e6,
    -2.355e6,2.43100308642e6,-2.08333333333e6,1.0e8,-2.5e6,5.0e8,2.5e6,
    -416666.666667,1.50416666667e9,-833333.333333,1.25e6,2.5e8,-1.25e6,
    -3.47222222222e6,1.33516666667e9,2.08333333333e6,1.0e8,-2.5e6,
    416666.666667,6.94444444444e6,2.16916666667e9,-28935.1851852,
    -2.08333333333e6,-3.925e6,3.98587962963e6,-1.59791666667e6,
    -38580.2469136,-6.94444444444e6,3.41149691358e6,-28935.1851852,
    2.08333333333e6,-19290.1234568,3.47222222222e6,2.43100308642e6,
    -2.08333333333e6,1.0e8,-4.16666666667e6,2.5e6,-416666.666667,
    1.50416666667e9,-833333.333333,-3.47222222222e6,4.16666666667e8,
    -1.25e6,3.47222222222e6,1.33516666667e9,2.08333333333e6,1.0e8,
    6.94444444445e6,8.33333333333e8,416666.666667,-6.94444444445e6,
    2.16916666667e9,-3830.95098171,1.14928529451e6,-275828.470683,
    -28935.1851852,-2.08333333333e6,-4166.66666667,1.25e6,64710.5806113,
    -131963.213599,-517922.131816,-2.29857058902e6,-1.59791666667e6,
    -8333.33333333,-2.5e6,3.50487988027e6,-517922.131816,-2.16567078453e6,
    551656.941366,-28935.1851852,2.08333333333e6,-2.355e6,517922.131816,
    4.57738374749e6,2.29857058902e6,-551656.941367,4.8619365099e8,
    -2.08333333333e6,1.0e8,2.5e6,5.0e8,-4.79857058902e6,134990.2747,
    2.47238730198e9,-1.14928529451e6,2.29724661236e8,-5.57173510779e7,
    -833333.333333,-1.25e6,2.5e8,2.39928529451e6,9.61679848804e8,275828.470683,
    -5.57173510779e7,1.09411960038e7,2.08333333333e6,1.0e8,-2.5e6,
    140838.195984,-1.09779731332e8,5.31278103775e8], 1)
@test_approx_eq CHOLMOD.norm_sparse(A, 0) 3.570948074697437e9
@test_approx_eq CHOLMOD.norm_sparse(A, 1) 3.570948074697437e9
@test_throws ArgumentError CHOLMOD.norm_sparse(A, 2)
@test CHOLMOD.isvalid(A)

B = A * ones(size(A,2))
chma = ldltfact(A)                      # LDL' form
@test CHOLMOD.isvalid(chma)
@test unsafe_load(chma.p).is_ll == 0    # check that it is in fact an LDLt
x = chma\B
@test_approx_eq x ones(size(x))
@test nnz(ldltfact(A, perm=1:size(A,1))) > nnz(chma)

chma = cholfact(A)                      # LL' form
@test CHOLMOD.isvalid(chma)
@test unsafe_load(chma.p).is_ll == 1    # check that it is in fact an LLt
x = chma\B
@test_approx_eq x ones(size(x))
@test nnz(chma) == 489
@test nnz(cholfact(A, perm=1:size(A,1))) > nnz(chma)

#lp_afiro example
afiro = CHOLMOD.Sparse(27, 51,
    CHOLMOD.SuiteSparse_long[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,
    23,25,27,29,33,37,41,45,47,49,51,53,55,57,59,63,65,67,69,71,75,79,83,87,89,
    91,93,95,97,99,101,102],
    CHOLMOD.SuiteSparse_long[2,3,6,7,8,9,12,13,16,17,18,19,20,21,22,23,24,25,26,
    0,1,2,23,0,3,0,21,1,25,4,5,6,24,4,5,7,24,4,5,8,24,4,5,9,24,6,20,7,20,8,20,9,
    20,3,4,4,22,5,26,10,11,12,21,10,13,10,23,10,20,11,25,14,15,16,22,14,15,17,
    22,14,15,18,22,14,15,19,22,16,20,17,20,18,20,19,20,13,15,15,24,14,26,15],
    [1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,
    1.0,-1.0,-1.06,1.0,0.301,1.0,-1.0,1.0,-1.0,1.0,1.0,-1.0,-1.06,1.0,0.301,
    -1.0,-1.06,1.0,0.313,-1.0,-0.96,1.0,0.313,-1.0,-0.86,1.0,0.326,-1.0,2.364,
    -1.0,2.386,-1.0,2.408,-1.0,2.429,1.4,1.0,1.0,-1.0,1.0,1.0,-1.0,-0.43,1.0,
    0.109,1.0,-1.0,1.0,-1.0,1.0,-1.0,1.0,1.0,-0.43,1.0,1.0,0.109,-0.43,1.0,1.0,
    0.108,-0.39,1.0,1.0,0.108,-0.37,1.0,1.0,0.107,-1.0,2.191,-1.0,2.219,-1.0,
    2.249,-1.0,2.279,1.4,-1.0,1.0,-1.0,1.0,1.0,1.0], 0)
afiro2 = CHOLMOD.aat(afiro, CHOLMOD.SuiteSparse_long[0:50;], CHOLMOD.SuiteSparse_long(1))
CHOLMOD.change_stype!(afiro2, -1)
chmaf = cholfact(afiro2)
y = afiro'*ones(size(afiro,1))
sol = chmaf\(afiro*y) # least squares solution
@test CHOLMOD.isvalid(sol)
pred = afiro'*sol
@test norm(afiro * (convert(Matrix, y) - convert(Matrix, pred))) < 1e-8

let # Issue 9160

    for Ti in CHOLMOD.ITypes.types
        for elty in CHOLMOD.VRealTypes.types

            A = sprand(10,10,0.1)
            A = convert(SparseMatrixCSC{elty,Ti},A)
            cmA = CHOLMOD.Sparse(A)

            B = sprand(10,10,0.1)
            B = convert(SparseMatrixCSC{elty,Ti},B)
            cmB = CHOLMOD.Sparse(B)

            # Ac_mul_B
            @test_approx_eq sparse(cmA'*cmB) A'*B

            # A_mul_Bc
            @test_approx_eq sparse(cmA*cmB') A*B'

            # A_mul_Ac
            @test_approx_eq sparse(cmA*cmA') A*A'

            # Ac_mul_A
            @test_approx_eq sparse(cmA'*cmA) A'*A

            # A_mul_Ac for symmetric A
            A = 0.5*(A + A')
            cmA = CHOLMOD.Sparse(A)
            @test_approx_eq sparse(cmA*cmA') A*A'
        end
    end
end


# Issue #9915
@test speye(2)\speye(2) == eye(2)

# test eltype
@test eltype(Dense(ones(3))) == Float64
@test eltype(A) == Float64
@test eltype(chma) == Float64

# test Sparse constructor Symmetric and Hermitian input (and issym and ishermitian)
ACSC = sprandn(10, 10, 0.3) + I
@test issym(Sparse(Symmetric(ACSC, :L)))
@test issym(Sparse(Symmetric(ACSC, :U)))
@test ishermitian(Sparse(Hermitian(complex(ACSC), :L)))
@test ishermitian(Sparse(Hermitian(complex(ACSC), :U)))

# test Sparse constructor for c_SparseVoid (and read_sparse)
let testfile = joinpath(tempdir(), "tmp.mtx")
    try
        writedlm(testfile, ["%%MatrixMarket matrix coordinate real symmetric","3 3 4","1 1 1","2 2 1","3 2 0.5","3 3 1"])
        @test sparse(CHOLMOD.Sparse(testfile)) == [1 0 0;0 1 0.5;0 0.5 1]
    finally
        rm(testfile)
    end
end
let testfile = joinpath(tempdir(), "tmp.mtx")
    try
        writedlm(testfile, ["%%MatrixMarket matrix coordinate complex Hermitian",
                 "3 3 4","1 1 1.0 0.0","2 2 1.0 0.0","3 2 0.5 0.5","3 3 1.0 0.0"])
        @test sparse(CHOLMOD.Sparse(testfile)) == [1 0 0;0 1 0.5-0.5im;0 0.5+0.5im 1]
    finally
        rm(testfile)
    end
end
let testfile = joinpath(tempdir(), "tmp.mtx")
    try
        writedlm(testfile, ["%%MatrixMarket matrix coordinate real symmetric","%3 3 4","1 1 1","2 2 1","3 2 0.5","3 3 1"])
        @test_throws ArgumentError sparse(CHOLMOD.Sparse(testfile))
    finally
        rm(testfile)
    end
end

# test that Sparse(Ptr) constructor throws the right places
@test_throws ArgumentError CHOLMOD.Sparse(convert(Ptr{CHOLMOD.C_Sparse{Float64}}, C_NULL))
@test_throws ArgumentError CHOLMOD.Sparse(convert(Ptr{CHOLMOD.C_SparseVoid}, C_NULL))

## The struct pointer must be constructed by the library constructor and then modified afterwards to checks that the method throws
### illegal dtype (for now but should be supported at some point)
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
    (Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
    1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, CHOLMOD.SINGLE, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 4)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)

### illegal dtype
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
    (Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
    1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, 5, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 4)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)

### illegal xtype
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
    (Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
    1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, 3, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 3)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)

### illegal itype
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
    (Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
    1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint, CHOLMOD.INTLONG, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 2)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)

### illegal itype
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_SparseVoid},
    (Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
    1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
puint = convert(Ptr{UInt32}, p)
unsafe_store!(puint,  5, 3*div(sizeof(Csize_t), 4) + 5*div(sizeof(Ptr{Void}), 4) + 2)
@test_throws CHOLMOD.CHOLMODException CHOLMOD.Sparse(p)

# Test Dense wrappers (only Float64 supported a present)

## High level interface
for elty in (Float64, Complex{Float64})
    if elty == Float64
        A = randn(5, 5)
        b = randn(5)
    else
        A = complex(randn(5, 5), randn(5, 5))
        b = complex(randn(5), randn(5))
    end
    ADense = CHOLMOD.Dense(A)
    bDense = CHOLMOD.Dense(b)

    @test_throws BoundsError ADense[6, 1]
    @test_throws BoundsError ADense[1, 6]
    @test copy(ADense) == ADense
    @test_approx_eq CHOLMOD.norm_dense(ADense, 1) norm(A, 1)
    @test_approx_eq CHOLMOD.norm_dense(ADense, 0) norm(A, Inf)
    @test_throws ArgumentError CHOLMOD.norm_dense(ADense, 2)
    @test_throws ArgumentError CHOLMOD.norm_dense(ADense, 3)

    @test_approx_eq CHOLMOD.norm_dense(bDense, 2) norm(b)
    @test CHOLMOD.check_dense(bDense)

    AA = CHOLMOD.eye(3)
    unsafe_store!(convert(Ptr{Csize_t}, AA.p), 2, 1) # change size, but not stride, of Dense
    @test convert(Matrix, AA) == eye(2, 3)
end

## Low level interface
@test isa(CHOLMOD.zeros(3, 3, Float64), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.zeros(3, 3), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.zeros(3, 3, Float64), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.ones(3, 3), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.eye(3, 4, Float64), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.eye(3, 4), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.eye(3), CHOLMOD.Dense{Float64})
@test isa(CHOLMOD.copy_dense(CHOLMOD.eye(3)), CHOLMOD.Dense{Float64})

# Test Sparse and Factor
## test free_sparse!
p = ccall((:cholmod_l_allocate_sparse, :libcholmod), Ptr{CHOLMOD.C_Sparse{Float64}},
    (Csize_t, Csize_t, Csize_t, Cint, Cint, Cint, Cint, Ptr{Void}),
    1, 1, 1, true, true, 0, CHOLMOD.REAL, CHOLMOD.common())
@test CHOLMOD.free_sparse!(p)

for elty in (Float64, Complex{Float64})
    A1 = sparse([1:5, 1;], [1:5, 2;], elty == Float64 ? randn(6) : complex(randn(6), randn(6)))
    A2 = sparse([1:5, 1;], [1:5, 2;], elty == Float64 ? randn(6) : complex(randn(6), randn(6)))
    A1pd = A1'A1
    A1Sparse = CHOLMOD.Sparse(A1)
    A2Sparse = CHOLMOD.Sparse(A2)
    A1pdSparse = CHOLMOD.Sparse(
        A1pd.m,
        A1pd.n,
        Base.SparseMatrix.decrement(A1pd.colptr),
        Base.SparseMatrix.decrement(A1pd.rowval),
        A1pd.nzval)

    ## High level interface
    @test isa(CHOLMOD.Sparse(3, 3, [0,1,3,4], [0,2,1,2], ones(4)), CHOLMOD.Sparse) # Sparse doesn't require columns to be sorted
    @test_throws BoundsError A1Sparse[6, 1]
    @test_throws BoundsError A1Sparse[1, 6]
    @test sparse(A1Sparse) == A1
    for i=1:size(A1, 1) A1[i, i] = real(A1[i, i]) end #Construct Hermitian matrix properly
    @test CHOLMOD.sparse(CHOLMOD.Sparse(Hermitian(A1, :L))) == Hermitian(A1, :L)
    @test CHOLMOD.sparse(CHOLMOD.Sparse(Hermitian(A1, :U))) == Hermitian(A1, :U)
    @test_throws ArgumentError convert(SparseMatrixCSC{elty,Int}, A1pdSparse)
    if elty <: Real
        @test_throws ArgumentError convert(Symmetric{Float64,SparseMatrixCSC{Float64,Int}}, A1Sparse)
    else
        @test_throws ArgumentError convert(Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},Int}}, A1Sparse)
    end
    @test copy(A1Sparse) == A1Sparse
    @test size(A1Sparse, 3) == 1
    if elty <: Real # multiplication only defined for real matrices in CHOLMOD
        @test_approx_eq A1Sparse*A2Sparse A1*A2
        @test_throws DimensionMismatch CHOLMOD.Sparse(A1[:,1:4])*A2Sparse
        @test_approx_eq A1Sparse'A2Sparse A1'A2
        @test_approx_eq A1Sparse*A2Sparse' A1*A2'

        @test_approx_eq A1Sparse*A1Sparse A1*A1
        @test_approx_eq A1Sparse'A1Sparse A1'A1
        @test_approx_eq A1Sparse*A1Sparse' A1*A1'

        @test_approx_eq A1pdSparse*A1pdSparse A1pd*A1pd
        @test_approx_eq A1pdSparse'A1pdSparse A1pd'A1pd
        @test_approx_eq A1pdSparse*A1pdSparse' A1pd*A1pd'

        @test_throws DimensionMismatch A1Sparse*CHOLMOD.eye(4, 5, elty)
    end

    # Factor
    @test_throws ArgumentError cholfact(A1)
    @test_throws Base.LinAlg.PosDefException cholfact(A1 + A1' - 2eigmax(full(A1 + A1'))I)
    @test_throws Base.LinAlg.PosDefException cholfact(A1 + A1', shift=-2eigmax(full(A1 + A1')))
    @test_throws ArgumentError ldltfact(A1 + A1' - 2real(A1[1,1])I)
    @test_throws ArgumentError ldltfact(A1 + A1', shift=-2real(A1[1,1]))
    @test_throws ArgumentError cholfact(A1)
    @test_throws ArgumentError cholfact(A1, shift=1.0)
    @test_throws ArgumentError ldltfact(A1)
    @test_throws ArgumentError ldltfact(A1, shift=1.0)
    F = cholfact(A1pd)
    tmp = IOBuffer()
    show(tmp, F)
    @test tmp.size > 0
    @test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty})
    @test_approx_eq F\CHOLMOD.Sparse(sparse(ones(elty, 5))) A1pd\ones(5)
    @test_throws DimensionMismatch F\CHOLMOD.Dense(ones(elty, 4))
    @test_throws DimensionMismatch F\CHOLMOD.Sparse(sparse(ones(elty, 4)))
    @test_approx_eq F'\ones(elty, 5) full(A1pd)'\ones(5)
    @test_approx_eq F'\sparse(ones(elty, 5)) full(A1pd)'\ones(5)
    @test_approx_eq logdet(F) logdet(full(A1pd))
    @test det(F) == exp(logdet(F))
    let # to test supernodal, we must use a larger matrix
        Ftmp = sprandn(100,100,0.1)
        Ftmp = Ftmp'Ftmp + I
        @test_approx_eq logdet(cholfact(Ftmp)) logdet(full(Ftmp))
    end
    @test_approx_eq logdet(ldltfact(A1pd)) logdet(full(A1pd))
    @test isposdef(A1pd)
    @test !isposdef(A1)
    @test !isposdef(A1 + A1' |> t -> t - 2eigmax(full(t))*I)

    if elty <: Real
        @test CHOLMOD.issym(Sparse(A1pd, 0))
        @test CHOLMOD.Sparse(cholfact(Symmetric(A1pd, :L))) == CHOLMOD.Sparse(cholfact(A1pd))
        F1 = CHOLMOD.Sparse(cholfact(Symmetric(A1pd, :L), shift=2))
        F2 = CHOLMOD.Sparse(cholfact(A1pd, shift=2))
        @test F1 == F2
        @test CHOLMOD.Sparse(ldltfact(Symmetric(A1pd, :L))) == CHOLMOD.Sparse(ldltfact(A1pd))
        F1 = CHOLMOD.Sparse(ldltfact(Symmetric(A1pd, :L), shift=2))
        F2 = CHOLMOD.Sparse(ldltfact(A1pd, shift=2))
        @test F1 == F2
    else
        @test !CHOLMOD.issym(Sparse(A1pd, 0))
        @test CHOLMOD.ishermitian(Sparse(A1pd, 0))
        @test CHOLMOD.Sparse(cholfact(Hermitian(A1pd, :L))) == CHOLMOD.Sparse(cholfact(A1pd))
        F1 = CHOLMOD.Sparse(cholfact(Hermitian(A1pd, :L), shift=2))
        F2 = CHOLMOD.Sparse(cholfact(A1pd, shift=2))
        @test F1 == F2
        @test CHOLMOD.Sparse(ldltfact(Hermitian(A1pd, :L))) == CHOLMOD.Sparse(ldltfact(A1pd))
        F1 = CHOLMOD.Sparse(ldltfact(Hermitian(A1pd, :L), shift=2))
        F2 = CHOLMOD.Sparse(ldltfact(A1pd, shift=2))
        @test F1 == F2
    end

    ### update!
    F = cholfact(A1pd)
    CHOLMOD.change_factor!(elty, false, false, true, true, F)
    @test unsafe_load(F.p).is_ll == 0
    CHOLMOD.change_factor!(elty, true, false, true, true, F)
    @test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality
    @test size(F, 2) == 5
    @test size(F, 3) == 1
    @test_throws ArgumentError size(F, 0)

    F = cholfact(A1pdSparse, shift=2)
    @test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty})
    @test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd, shift=2.0)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality

    F = ldltfact(A1pd)
    @test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty})
    @test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality

    F = ldltfact(A1pdSparse, shift=2)
    @test isa(CHOLMOD.Sparse(F), CHOLMOD.Sparse{elty})
    @test_approx_eq CHOLMOD.Sparse(CHOLMOD.update!(copy(F), A1pd, shift=2.0)) CHOLMOD.Sparse(F) # surprisingly, this can cause small ulp size changes so we cannot test exact equality

    @test isa(CHOLMOD.factor_to_sparse!(F), CHOLMOD.Sparse)
    @test_throws CHOLMOD.CHOLMODException CHOLMOD.factor_to_sparse!(F)

    ## Low level interface
    @test CHOLMOD.nnz(A1Sparse) == nnz(A1)
    @test CHOLMOD.speye(5, 5, elty) == eye(elty, 5, 5)
    @test CHOLMOD.spzeros(5, 5, 5, elty) == zeros(elty, 5, 5)
    if elty <: Real
        @test CHOLMOD.copy(A1Sparse, 0, 1) == A1Sparse
        @test CHOLMOD.horzcat(A1Sparse, A2Sparse, true) == [A1 A2]
        @test CHOLMOD.vertcat(A1Sparse, A2Sparse, true) == [A1; A2]
        svec = ones(elty, 1)
        @test CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.SCALAR, A1Sparse) == A1Sparse
        svec = ones(elty, 5)
        @test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.SCALAR, A1Sparse)
        @test CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.ROW, A1Sparse) == A1Sparse
        @test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense([svec, 1;]), CHOLMOD.ROW, A1Sparse)
        @test CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.COL, A1Sparse) == A1Sparse
        @test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense([svec, 1;]), CHOLMOD.COL, A1Sparse)
        @test CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.SYM, A1Sparse) == A1Sparse
        @test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense([svec, 1;]), CHOLMOD.SYM, A1Sparse)
        @test_throws DimensionMismatch CHOLMOD.scale!(CHOLMOD.Dense(svec), CHOLMOD.SYM, CHOLMOD.Sparse(A1[:,1:4]))
    else
        @test_throws MethodError CHOLMOD.copy(A1Sparse, 0, 1) == A1Sparse
        @test_throws MethodError CHOLMOD.horzcat(A1Sparse, A2Sparse, true) == [A1 A2]
        @test_throws MethodError CHOLMOD.vertcat(A1Sparse, A2Sparse, true) == [A1; A2]
    end


    if elty <: Real
        @test_approx_eq CHOLMOD.ssmult(A1Sparse, A2Sparse, 0, true, true) A1*A2
        @test_approx_eq CHOLMOD.aat(A1Sparse, [0:size(A1,2)-1;], 1) A1*A1'
        @test_approx_eq CHOLMOD.aat(A1Sparse, [0:1;], 1) A1[:,1:2]*A1[:,1:2]'
        @test CHOLMOD.copy(A1Sparse, 0, 1) == A1Sparse
    end

    @test CHOLMOD.Sparse(CHOLMOD.Dense(A1Sparse)) == A1Sparse
end

Af = float([4 12 -16; 12 37 -43; -16 -43 98])
As = sparse(Af)
Lf = float([2 0 0; 6 1 0; -8 5 3])
LDf = float([4 0 0; 3 1 0; -4 5 9])  # D is stored along the diagonal
L_f = float([1 0 0; 3 1 0; -4 5 1])  # L by itself in LDLt of Af
D_f = float([4 0 0; 0 1 0; 0 0 9])

# cholfact, no permutation
Fs = cholfact(As, perm=[1:3;])
@test Fs[:p] == [1:3;]
@test_approx_eq sparse(Fs[:L]) Lf
@test_approx_eq sparse(Fs) As
b = rand(3)
@test_approx_eq Fs\b Af\b
@test_approx_eq Fs[:UP]\(Fs[:PtL]\b) Af\b
@test_approx_eq Fs[:L]\b Lf\b
@test_approx_eq Fs[:U]\b Lf'\b
@test_approx_eq Fs[:L]'\b Lf'\b
@test_approx_eq Fs[:U]'\b Lf\b
@test_approx_eq Fs[:PtL]\b Lf\b
@test_approx_eq Fs[:UP]\b Lf'\b
@test_approx_eq Fs[:PtL]'\b Lf'\b
@test_approx_eq Fs[:UP]'\b Lf\b
@test_throws CHOLMOD.CHOLMODException Fs[:D]
@test_throws CHOLMOD.CHOLMODException Fs[:LD]
@test_throws CHOLMOD.CHOLMODException Fs[:DU]
@test_throws CHOLMOD.CHOLMODException Fs[:PLD]
@test_throws CHOLMOD.CHOLMODException Fs[:DUPt]

# cholfact, with permutation
p = [2,3,1]
p_inv = [3,1,2]
Fs = cholfact(As, perm=p)
@test Fs[:p] == p
Afp = Af[p,p]
Lfp = cholfact(Afp)[:L]
@test_approx_eq sparse(Fs[:L]) Lfp
@test_approx_eq sparse(Fs) As
b = rand(3)
@test_approx_eq Fs\b Af\b
@test_approx_eq Fs[:UP]\(Fs[:PtL]\b) Af\b
@test_approx_eq Fs[:L]\b Lfp\b
@test_approx_eq Fs[:U]'\b Lfp\b
@test_approx_eq Fs[:U]\b Lfp'\b
@test_approx_eq Fs[:L]'\b Lfp'\b
@test_approx_eq Fs[:PtL]\b Lfp\b[p]
@test_approx_eq Fs[:UP]\b (Lfp'\b)[p_inv]
@test_approx_eq Fs[:PtL]'\b (Lfp'\b)[p_inv]
@test_approx_eq Fs[:UP]'\b Lfp\b[p]
@test_throws CHOLMOD.CHOLMODException Fs[:PL]
@test_throws CHOLMOD.CHOLMODException Fs[:UPt]
@test_throws CHOLMOD.CHOLMODException Fs[:D]
@test_throws CHOLMOD.CHOLMODException Fs[:LD]
@test_throws CHOLMOD.CHOLMODException Fs[:DU]
@test_throws CHOLMOD.CHOLMODException Fs[:PLD]
@test_throws CHOLMOD.CHOLMODException Fs[:DUPt]

# ldltfact, no permutation
Fs = ldltfact(As, perm=[1:3;])
@test Fs[:p] == [1:3;]
@test_approx_eq sparse(Fs[:LD]) LDf
@test_approx_eq sparse(Fs) As
b = rand(3)
@test_approx_eq Fs\b Af\b
@test_approx_eq Fs[:UP]\(Fs[:PtLD]\b) Af\b
@test_approx_eq Fs[:DUP]\(Fs[:PtL]\b) Af\b
@test_approx_eq Fs[:L]\b L_f\b
@test_approx_eq Fs[:U]\b L_f'\b
@test_approx_eq Fs[:L]'\b L_f'\b
@test_approx_eq Fs[:U]'\b L_f\b
@test_approx_eq Fs[:PtL]\b L_f\b
@test_approx_eq Fs[:UP]\b L_f'\b
@test_approx_eq Fs[:PtL]'\b L_f'\b
@test_approx_eq Fs[:UP]'\b L_f\b
@test_approx_eq Fs[:D]\b D_f\b
@test_approx_eq Fs[:D]'\b D_f\b
@test_approx_eq Fs[:LD]\b D_f\(L_f\b)
@test_approx_eq Fs[:DU]'\b D_f\(L_f\b)
@test_approx_eq Fs[:LD]'\b L_f'\(D_f\b)
@test_approx_eq Fs[:DU]\b L_f'\(D_f\b)
@test_approx_eq Fs[:PtLD]\b D_f\(L_f\b)
@test_approx_eq Fs[:DUP]'\b D_f\(L_f\b)
@test_approx_eq Fs[:PtLD]'\b L_f'\(D_f\b)
@test_approx_eq Fs[:DUP]\b L_f'\(D_f\b)

# ldltfact, with permutation
Fs = ldltfact(As, perm=p)
@test Fs[:p] == p
@test_approx_eq sparse(Fs) As
b = rand(3)
Asp = As[p,p]
LDp = sparse(ldltfact(Asp, perm=[1,2,3])[:LD])
# LDp = sparse(Fs[:LD])
Lp, dp = Base.SparseMatrix.CHOLMOD.getLd!(copy(LDp))
Dp = spdiagm(dp)
@test_approx_eq Fs\b Af\b
@test_approx_eq Fs[:UP]\(Fs[:PtLD]\b) Af\b
@test_approx_eq Fs[:DUP]\(Fs[:PtL]\b) Af\b
@test_approx_eq Fs[:L]\b Lp\b
@test_approx_eq Fs[:U]\b Lp'\b
@test_approx_eq Fs[:L]'\b Lp'\b
@test_approx_eq Fs[:U]'\b Lp\b
@test_approx_eq Fs[:PtL]\b Lp\b[p]
@test_approx_eq Fs[:UP]\b (Lp'\b)[p_inv]
@test_approx_eq Fs[:PtL]'\b (Lp'\b)[p_inv]
@test_approx_eq Fs[:UP]'\b Lp\b[p]
@test_approx_eq Fs[:LD]\b Dp\(Lp\b)
@test_approx_eq Fs[:DU]'\b Dp\(Lp\b)
@test_approx_eq Fs[:LD]'\b Lp'\(Dp\b)
@test_approx_eq Fs[:DU]\b Lp'\(Dp\b)
@test_approx_eq Fs[:PtLD]\b Dp\(Lp\b[p])
@test_approx_eq Fs[:DUP]'\b Dp\(Lp\b[p])
@test_approx_eq Fs[:PtLD]'\b (Lp'\(Dp\b))[p_inv]
@test_approx_eq Fs[:DUP]\b (Lp'\(Dp\b))[p_inv]
@test_throws CHOLMOD.CHOLMODException Fs[:DUPt]
@test_throws CHOLMOD.CHOLMODException Fs[:PLD]

# Issue 11745 - row and column pointers were not sorted in sparse(Factor)
sparse(cholfact(sparse(Float64[ 10 1 1 1; 1 10 0 0; 1 0 10 0; 1 0 0 10]))); gc()

# Issue 11747 - Wrong show method defined for FactorComponent
Base.writemime(IOBuffer(), MIME"text/plain"(), cholfact(sparse(Float64[ 10 1 1 1; 1 10 0 0; 1 0 10 0; 1 0 0 10]))[:L])

# Element promotion and type inference
@inferred cholfact(As)\ones(Int, size(As, 1))
@inferred ldltfact(As)\ones(Int, size(As, 1))

# Issue 14076
@test cholfact(sparse([1,2,3,4], [1,2,3,4], Float32[1,4,16,64]))\[1,4,16,64] == ones(4)

# Issue 14134
A = CHOLMOD.Sparse(sprandn(10,5,0.1) + I |> t -> t't)
b = IOBuffer()
serialize(b, A)
seekstart(b)
Anew = deserialize(b)
@test_throws ArgumentError show(Anew)
@test_throws ArgumentError size(Anew)
@test_throws ArgumentError Anew[1]
@test_throws ArgumentError Anew[2,1]
F = cholfact(A)
serialize(b, F)
seekstart(b)
Fnew = deserialize(b)
@test_throws ArgumentError Fnew\ones(5)
@test_throws ArgumentError show(Fnew)
@test_throws ArgumentError size(Fnew)
@test_throws ArgumentError diag(Fnew)
@test_throws ArgumentError logdet(Fnew)

# Issue with promotion during conversion to CHOLMOD.Dense
@test SparseMatrix.CHOLMOD.Dense(ones(Float32, 5)) == ones(5, 1)
@test SparseMatrix.CHOLMOD.Dense(ones(Int, 5)) == ones(5, 1)
@test SparseMatrix.CHOLMOD.Dense(ones(Complex{Float32}, 5, 2)) == ones(5, 2)