This file is indexed.

/usr/share/julia/test/reducedim.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
# This file is a part of Julia. License is MIT: http://julialang.org/license

# main tests

function safe_mapslices(op, A, region)
    newregion = intersect(region, 1:ndims(A))
    return isempty(newregion) ? A : mapslices(op, A, newregion)
end
safe_sum{T}(A::Array{T}, region) = safe_mapslices(sum, A, region)
safe_prod{T}(A::Array{T}, region) = safe_mapslices(prod, A, region)
safe_maximum{T}(A::Array{T}, region) = safe_mapslices(maximum, A, region)
safe_minimum{T}(A::Array{T}, region) = safe_mapslices(minimum, A, region)
safe_sumabs{T}(A::Array{T}, region) = safe_mapslices(sum, abs(A), region)
safe_sumabs2{T}(A::Array{T}, region) = safe_mapslices(sum, abs2(A), region)
safe_maxabs{T}(A::Array{T}, region) = safe_mapslices(maximum, abs(A), region)
safe_minabs{T}(A::Array{T}, region) = safe_mapslices(minimum, abs(A), region)

Areduc = rand(3, 4, 5, 6)
for region in Any[
    1, 2, 3, 4, 5, (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4),
    (1, 2, 3), (1, 3, 4), (2, 3, 4), (1, 2, 3, 4)]
    # println("region = $region")
    r = fill(NaN, Base.reduced_dims(size(Areduc), region))
    @test_approx_eq sum!(r, Areduc) safe_sum(Areduc, region)
    @test_approx_eq prod!(r, Areduc) safe_prod(Areduc, region)
    @test_approx_eq maximum!(r, Areduc) safe_maximum(Areduc, region)
    @test_approx_eq minimum!(r, Areduc) safe_minimum(Areduc, region)
    @test_approx_eq sumabs!(r, Areduc) safe_sumabs(Areduc, region)
    @test_approx_eq sumabs2!(r, Areduc) safe_sumabs2(Areduc, region)
    @test_approx_eq maxabs!(r, Areduc) safe_maxabs(Areduc, region)
    @test_approx_eq minabs!(r, Areduc) safe_minabs(Areduc, region)

    # With init=false
    r2 = similar(r)
    fill!(r, 1)
    @test_approx_eq sum!(r, Areduc, init=false) safe_sum(Areduc, region)+1
    fill!(r, 2.2)
    @test_approx_eq prod!(r, Areduc, init=false) safe_prod(Areduc, region)*2.2
    fill!(r, 1.8)
    @test_approx_eq maximum!(r, Areduc, init=false) fill!(r2, 1.8)
    fill!(r, -0.2)
    @test_approx_eq minimum!(r, Areduc, init=false) fill!(r2, -0.2)
    fill!(r, 8.1)
    @test_approx_eq sumabs!(r, Areduc, init=false) safe_sumabs(Areduc, region)+8.1
    fill!(r, 8.1)
    @test_approx_eq sumabs2!(r, Areduc, init=false) safe_sumabs2(Areduc, region)+8.1
    fill!(r, 1.5)
    @test_approx_eq maxabs!(r, Areduc, init=false) fill!(r2, 1.5)
    fill!(r, -1.5)
    @test_approx_eq minabs!(r, Areduc, init=false) fill!(r2, -1.5)

    @test_approx_eq sum(Areduc, region) safe_sum(Areduc, region)
    @test_approx_eq prod(Areduc, region) safe_prod(Areduc, region)
    @test_approx_eq maximum(Areduc, region) safe_maximum(Areduc, region)
    @test_approx_eq minimum(Areduc, region) safe_minimum(Areduc, region)
    @test_approx_eq sumabs(Areduc, region) safe_sumabs(Areduc, region)
    @test_approx_eq sumabs2(Areduc, region) safe_sumabs2(Areduc, region)
    @test_approx_eq maxabs(Areduc, region) safe_maxabs(Areduc, region)
    @test_approx_eq minabs(Areduc, region) safe_minabs(Areduc, region)
end

# Test reduction along first dimension; this is special-cased for
# size(A, 1) >= 16
Breduc = rand(64, 3)
r = fill(NaN, Base.reduced_dims(size(Breduc), 1))
@test_approx_eq sum!(r, Breduc) safe_sum(Breduc, 1)
@test_approx_eq sumabs!(r, Breduc) safe_sumabs(Breduc, 1)
@test_approx_eq sumabs2!(r, Breduc) safe_sumabs2(Breduc, 1)
@test_approx_eq sum(Breduc, 1) safe_sum(Breduc, 1)
@test_approx_eq sumabs(Breduc, 1) safe_sumabs(Breduc, 1)
@test_approx_eq sumabs2(Breduc, 1) safe_sumabs2(Breduc, 1)

fill!(r, 4.2)
@test_approx_eq sum!(r, Breduc, init=false) safe_sum(Breduc, 1)+4.2
fill!(r, -6.3)
@test_approx_eq sumabs!(r, Breduc, init=false) safe_sumabs(Breduc, 1)-6.3
fill!(r, -1.1)
@test_approx_eq sumabs2!(r, Breduc, init=false) safe_sumabs2(Breduc, 1)-1.1

# Small arrays with init=false
A = reshape(1:15, 3, 5)
R = ones(Int, 3)
@test sum!(R, A, init=false) == [36,41,46]
R = ones(Int, 1, 5)
@test sum!(R, A, init=false) == [7 16 25 34 43]
R = [2]
A = reshape(1:6, 3, 2)
@test prod!(R, A, init=false) == [1440]

# Small integers
@test @inferred(sum(Int8[1], 1)) == [1]
@test @inferred(sum(UInt8[1], 1)) == [1]

# Complex types
@test typeof(@inferred(sum([1.0+1.0im], 1))) == Vector{Complex128}
@test typeof(@inferred(Base.sumabs([1.0+1.0im], 1))) == Vector{Float64}
@test typeof(@inferred(Base.sumabs2([1.0+1.0im], 1))) == Vector{Float64}
@test typeof(@inferred(prod([1.0+1.0im], 1))) == Vector{Complex128}
@test typeof(@inferred(Base.prod(Base.AbsFun(), [1.0+1.0im], 1))) == Vector{Float64}
@test typeof(@inferred(Base.prod(Base.Abs2Fun(), [1.0+1.0im], 1))) == Vector{Float64}

# Heterogeneously typed arrays
@test sum(Union{Float32, Float64}[1.0], 1) == [1.0]
@test prod(Union{Float32, Float64}[1.0], 1) == [1.0]

@test reducedim((a,b) -> a|b, [true false; false false], 1, false) == [true false]
R = reducedim((a,b) -> a+b, [1 2; 3 4], 2, 0.0)
@test eltype(R) == Float64
@test_approx_eq R [3,7]
@test reducedim((a,b) -> a+b, [1 2; 3 4], 1, 0) == [4 6]

# inferred return types
rt = Base.return_types(reducedim, Tuple{Function, Array{Float64, 3}, Int, Float64})
@test length(rt) == 1 && rt[1] == Array{Float64, 3}


## findmin/findmax
A = [1.0 3.0 6.0;
     5.0 2.0 4.0]
for (tup, rval, rind) in [((1,), [1.0 2.0 4.0], [1 4 6]),
                          ((2,), reshape([1.0,2.0], 2, 1), reshape([1,4], 2, 1)),
                          ((1,2), fill(1.0,1,1),fill(1,1,1))]
    @test findmin(A, tup) == (rval, rind)
    @test Base.findmin!(similar(rval), similar(rind), A) == (rval, rind)
end

for (tup, rval, rind) in [((1,), [5.0 3.0 6.0], [2 3 5]),
                          ((2,), reshape([6.0,5.0], 2, 1), reshape([5,2], 2, 1)),
                          ((1,2), fill(6.0,1,1),fill(5,1,1))]
    @test findmax(A, tup) == (rval, rind)
    @test Base.findmax!(similar(rval), similar(rind), A) == (rval, rind)
end

# issue #6672
@test sum(Real[1 2 3; 4 5.3 7.1], 2) == reshape([6, 16.4], 2, 1)
@test std(AbstractFloat[1,2,3], 1) == [1.0]
@test sum(Any[1 2;3 4],1) == [4 6]
@test sum(Vector{Int}[[1,2],[4,3]], 1)[1] == [5,5]

# issue #10461
Areduc = rand(3, 4, 5, 6)
for region in Any[-1, 0, (-1, 2), [0, 1], (1,-2,3), [0 1;
                                                     2 3], "hello"]
    @test_throws ArgumentError sum(Areduc, region)
    @test_throws ArgumentError prod(Areduc, region)
    @test_throws ArgumentError maximum(Areduc, region)
    @test_throws ArgumentError minimum(Areduc, region)
    @test_throws ArgumentError sumabs(Areduc, region)
    @test_throws ArgumentError sumabs2(Areduc, region)
    @test_throws ArgumentError maxabs(Areduc, region)
    @test_throws ArgumentError minabs(Areduc, region)
end