This file is indexed.

/usr/share/julia/test/random.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
# This file is a part of Julia. License is MIT: http://julialang.org/license

# Issue #6573
srand(0); rand(); x = rand(384);
@test find(x .== rand()) == []

@test rand() != rand()
@test 0.0 <= rand() < 1.0
@test rand(UInt32) >= 0
@test -10 <= rand(-10:-5) <= -5
@test -10 <= rand(-10:5) <= 5
@test minimum([rand(Int32(1):Int32(7^7)) for i = 1:100000]) > 0
@test(typeof(rand(false:true)) === Bool)
@test(typeof(rand(Char)) === Char)
@test length(randn(4, 5)) == 20
@test length(bitrand(4, 5)) == 20

@test rand(MersenneTwister()) == 0.8236475079774124
@test rand(MersenneTwister(0)) == 0.8236475079774124
@test rand(MersenneTwister(42)) == 0.5331830160438613
# Try a seed larger than 2^32
@test rand(MersenneTwister(5294967296)) == 0.3498809918210497

# Test array filling, Issues #7643, #8360
@test rand(MersenneTwister(0), 1) == [0.8236475079774124]
A = zeros(2, 2)
rand!(MersenneTwister(0), A)
@test A == [0.8236475079774124  0.16456579813368521;
            0.9103565379264364  0.17732884646626457]
A = zeros(2, 2)
@test_throws BoundsError rand!(MersenneTwister(0), A, 5)
@test rand(MersenneTwister(0), Int64, 1) == [4439861565447045202]
A = zeros(Int64, 2, 2)
rand!(MersenneTwister(0), A)
@test A == [858542123778948672  5715075217119798169;
            8690327730555225005 8435109092665372532]
A = zeros(UInt128, 2, 2)
@test_throws BoundsError rand!(MersenneTwister(0), A, 5)

# rand from AbstractArray
let mt = MersenneTwister()
    srand(mt)
    @test rand(mt, 0:3:1000) in 0:3:1000
    @test issubset(rand!(mt, Array(Int, 100), 0:3:1000), 0:3:1000)
    coll = Any[2, UInt128(128), big(619), "string", 'c']
    @test rand(mt, coll) in coll
    @test issubset(rand(mt, coll, 2, 3), coll)

    # check API with default RNG:
    rand(0:3:1000)
    rand!(Array(Int, 100), 0:3:1000)
    rand(coll)
    rand(coll, 2, 3)
end

# randn
@test randn(MersenneTwister(42)) == -0.5560268761463861
A = zeros(2, 2)
randn!(MersenneTwister(42), A)
@test A == [-0.5560268761463861  0.027155338009193845;
            -0.444383357109696  -0.29948409035891055]

for T in (Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128, BigInt,
          Float16, Float32, Float64, Rational{Int})
    r = rand(convert(T, 97):convert(T, 122))
    @test typeof(r) == T
    @test 97 <= r <= 122
    r = rand(convert(T, 97):convert(T,2):convert(T, 122),2)[1]
    @test typeof(r) == T
    @test 97 <= r <= 122
    @test mod(r,2)==1

    if T<:Integer && !(T===BigInt)
        x = rand(typemin(T):typemax(T))
        @test isa(x,T)
        @test typemin(T) <= x <= typemax(T)
    end
end

@test !any([(Base.Random.maxmultiple(i)+i) > 0xFF for i in 0x00:0xFF])
@test all([(Base.Random.maxmultiple(i)+1) % i for i in 0x01:0xFF] .== 0)
@test all([(Base.Random.maxmultiple(i)+1+i) > 0xFF for i in 0x00:0xFF])
@test length(0x00:0xFF)== Base.Random.maxmultiple(0x0)+1


if sizeof(Int32) < sizeof(Int)
    r = rand(Int32(-1):typemax(Int32))
    @test typeof(r) == Int32
    @test -1 <= r <= typemax(Int32)
    @test all([div(0x00010000000000000000,k)*k - 1 == Base.Random.RangeGenerator(map(UInt64,1:k)).u for k in 13 .+ Int64(2).^(32:62)])
    @test all([div(0x00010000000000000000,k)*k - 1 == Base.Random.RangeGenerator(map(Int64,1:k)).u for k in 13 .+ Int64(2).^(32:61)])

    @test Base.Random.maxmultiplemix(0x000100000000) === 0xffffffffffffffff
    @test Base.Random.maxmultiplemix(0x0000FFFFFFFF) === 0x00000000fffffffe
    @test Base.Random.maxmultiplemix(0x000000000000) === 0xffffffffffffffff
end

# BigInt specific
for T in [UInt32, UInt64, UInt128, Int128]
    s = big(typemax(T)-1000) : big(typemax(T)) + 10000
    @test rand(s) != rand(s)
    @test big(typemax(T)-1000) <= rand(s) <= big(typemax(T)) + 10000
    r = rand(s, 1, 2)
    @test size(r) == (1, 2)
    @test typeof(r) == Matrix{BigInt}

    srand(0)
    r = rand(s)
    srand(0)
    @test rand(s) == r
end

# Test ziggurat tables
ziggurat_table_size = 256
nmantissa           = Int64(2)^51 # one bit for the sign
ziggurat_nor_r      = parse(BigFloat,"3.65415288536100879635194725185604664812733315920964488827246397029393565706474")
nor_section_area    = ziggurat_nor_r*exp(-ziggurat_nor_r^2/2) + erfc(ziggurat_nor_r/sqrt(BigFloat(2)))*sqrt(big(π)/2)
emantissa           = Int64(2)^52
ziggurat_exp_r      = parse(BigFloat,"7.69711747013104971404462804811408952334296818528283253278834867283241051210533")
exp_section_area    = (ziggurat_exp_r + 1)*exp(-ziggurat_exp_r)

ki = Array(UInt64, ziggurat_table_size)
wi = Array(Float64, ziggurat_table_size)
fi = Array(Float64, ziggurat_table_size)
# Tables for exponential variates
ke = Array(UInt64, ziggurat_table_size)
we = Array(Float64, ziggurat_table_size)
fe = Array(Float64, ziggurat_table_size)
function randmtzig_fill_ziggurat_tables() # Operates on the global arrays
    wib = big(wi)
    fib = big(fi)
    web = big(we)
    feb = big(fe)
    # Ziggurat tables for the normal distribution
    x1 = ziggurat_nor_r
    wib[256] = x1/nmantissa
    fib[256] = exp(-0.5*x1*x1)
    # Index zero is special for tail strip, where Marsaglia and Tsang
    # defines this as
    # k_0 = 2^31 * r * f(r) / v, w_0 = 0.5^31 * v / f(r), f_0 = 1,
    # where v is the area of each strip of the ziggurat.
    ki[1] = trunc(UInt64,x1*fib[256]/nor_section_area*nmantissa)
    wib[1] = nor_section_area/fib[256]/nmantissa
    fib[1] = one(BigFloat)

    for i = 255:-1:2
        # New x is given by x = f^{-1}(v/x_{i+1} + f(x_{i+1})), thus
        # need inverse operator of y = exp(-0.5*x*x) -> x = sqrt(-2*ln(y))
        x = sqrt(-2.0*log(nor_section_area/x1 + fib[i+1]))
        ki[i+1] = trunc(UInt64,x/x1*nmantissa)
        wib[i] = x/nmantissa
        fib[i] = exp(-0.5*x*x)
        x1 = x
    end

    ki[2] = UInt64(0)

    # Zigurrat tables for the exponential distribution
    x1 = ziggurat_exp_r
    web[256] = x1/emantissa
    feb[256] = exp(-x1)

    # Index zero is special for tail strip, where Marsaglia and Tsang
    # defines this as
    # k_0 = 2^32 * r * f(r) / v, w_0 = 0.5^32 * v / f(r), f_0 = 1,
    # where v is the area of each strip of the ziggurat.
    ke[1] = trunc(UInt64,x1*feb[256]/exp_section_area*emantissa)
    web[1] = exp_section_area/feb[256]/emantissa
    feb[1] = one(BigFloat)

    for i = 255:-1:2
        # New x is given by x = f^{-1}(v/x_{i+1} + f(x_{i+1})), thus
        # need inverse operator of y = exp(-x) -> x = -ln(y)
        x = -log(exp_section_area/x1 + feb[i+1])
        ke[i+1] = trunc(UInt64,x/x1*emantissa)
        web[i] = x/emantissa
        feb[i] = exp(-x)
        x1 = x
    end
    ke[2] = zero(UInt64)

    wi[:] = wib
    fi[:] = fib
    we[:] = web
    fe[:] = feb
    return nothing
end
randmtzig_fill_ziggurat_tables()
@test all(ki == Base.Random.ki)
@test all(wi == Base.Random.wi)
@test all(fi == Base.Random.fi)
@test all(ke == Base.Random.ke)
@test all(we == Base.Random.we)
@test all(fe == Base.Random.fe)

#same random numbers on for small ranges on all systems

seed = rand(UInt) #leave state nondeterministic as above
srand(seed)
r = map(Int64,rand(map(Int32,97:122)))
srand(seed)
@test r == rand(map(Int64,97:122))

srand(seed)
r = map(UInt64,rand(map(UInt32,97:122)))
srand(seed)
@test r == rand(map(UInt64,97:122))

@test all([div(0x000100000000,k)*k - 1 == Base.Random.RangeGenerator(map(UInt64,1:k)).u for k in 13 .+ Int64(2).^(1:30)])
@test all([div(0x000100000000,k)*k - 1 == Base.Random.RangeGenerator(map(Int64,1:k)).u for k in 13 .+ Int64(2).^(1:30)])

import Base.Random: uuid1, uuid4, UUID, uuid_version

# UUID
u1 = uuid1()
u4 = uuid4()
@test uuid_version(u1) == 1
@test uuid_version(u4) == 4
@test u1 == UUID(string(u1)) == UUID(utf16(string(u1))) == UUID(utf32(string(u1)))
@test u4 == UUID(string(u4)) == UUID(utf16(string(u4))) == UUID(utf32(string(u4)))
@test u1 == UUID(UInt128(u1))
@test u4 == UUID(UInt128(u4))
@test uuid4(MersenneTwister()) == uuid4(MersenneTwister())
@test_throws ArgumentError UUID("550e8400e29b-41d4-a716-446655440000")
@test_throws ArgumentError UUID("550e8400e29b-41d4-a716-44665544000098")
@test_throws ArgumentError UUID("z50e8400-e29b-41d4-a716-446655440000")

#issue 8257
i8257 = 1:1/3:100
for i = 1:100
    @test rand(i8257) in i8257
end

# test code paths of rand!

let mt = MersenneTwister(0)
    A128 = Array(UInt128, 0)
    @test length(rand!(mt, A128)) == 0
    for (i,n) in enumerate([1, 3, 5, 6, 10, 11, 30])
        resize!(A128, n)
        rand!(mt, A128)
        @test length(A128) == n
        @test A128[end] == UInt128[0x15de6b23025813ad129841f537a04e40,
                                   0xcfa4db38a2c65bc4f18c07dc91125edf,
                                   0x33bec08136f19b54290982449b3900d5,
                                   0xde41af3463e74cb830dad4add353ca20,
                                   0x066d8695ebf85f833427c93416193e1f,
                                   0x48fab49cc9fcee1c920d6dae629af446,
                                   0x4b54632b4619f4eca22675166784d229][i]
    end

    srand(mt,0)
    for (i,T) in enumerate([Int8, UInt8, Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, Float16, Float32])
        A = Array(T, 16)
        B = Array(T, 31)
        rand!(mt, A)
        rand!(mt, B)
        @test A[end] == Any[21,0x7b,17385,0x3086,-1574090021,0xadcb4460,6797283068698303107,0x4e91c9c4d4f5f759,
                            -3482609696641744459568613291754091152,Float16(0.03125),0.68733835f0][i]

        @test B[end] == Any[49,0x65,-3725,0x719d,814246081,0xdf61843a,-3010919637398300844,0x61b367cf8810985d,
                            -33032345278809823492812856023466859769,Float16(0.95),0.51829386f0][i]
    end

    srand(mt,0)
    AF64 = Array(Float64, Base.Random.dsfmt_get_min_array_size()-1)
    @test rand!(mt, AF64)[end] == 0.957735065345398
    @test rand!(mt, AF64)[end] == 0.6492481059865669
    resize!(AF64, 2*length(mt.vals))
    @test Base.Random.rand_AbstractArray_Float64!(mt, AF64)[end]  == 0.432757268470779
end

# Issue #9037
let mt = MersenneTwister()
    a = Array(Float64, 0)
    resize!(a, 1000) # could be 8-byte aligned
    b = Array(Float64, 1000) # should be 16-byte aligned
    c8 = Array(UInt64, 1001)
    pc8 = pointer(c8)
    if Int(pc8) % 16 == 0
        # Make sure pc8 is not 16-byte aligned since that's what we want to test.
        # It still has to be 8-byte aligned since it is otherwise invalid on
        # certain architectures (e.g. ARM)
        pc8 += 8
    end
    c = pointer_to_array(Ptr{Float64}(pc8), 1000) # Int(pointer(c)) % 16 == 8

    for A in (a, b, c)
        srand(mt, 0)
        rand(mt) # this is to fill mt.vals, cf. #9040
        rand!(mt, A) # must not segfault even if Int(pointer(A)) % 16 != 0
        @test A[end-4:end] == [0.49508297796349776,0.3408340446375888,0.3211229457075784,0.9103565379264364,0.16456579813368521]
    end
end

# make sure reading 128-bit ints from RandomDevice works
let a = [rand(RandomDevice(), UInt128) for i=1:10]
    @test reduce(|, a)>>>64 != 0
end

# test all rand APIs
for rng in ([], [MersenneTwister()], [RandomDevice()])
    for f in [rand, randn, randexp]
        f(rng...)        ::Float64
        f(rng..., 5)     ::Vector{Float64}
        f(rng..., 2, 3)  ::Array{Float64, 2}
    end
    for f! in [randn!, randexp!]
        f!(rng..., Array(Float64, 5))    ::Vector{Float64}
        f!(rng..., Array(Float64, 2, 3)) ::Array{Float64, 2}
    end

    bitrand(rng..., 5)             ::BitArray{1}
    bitrand(rng..., 2, 3)          ::BitArray{2}
    rand!(rng..., BitArray(5))     ::BitArray{1}
    rand!(rng..., BitArray(2, 3))  ::BitArray{2}

    for T in [Base.IntTypes..., Bool, Char, Float16, Float32, Float64]
        a0 = rand(rng..., T)       ::T
        a1 = rand(rng..., T, 5)    ::Vector{T}
        a2 = rand(rng..., T, 2, 3) ::Array{T, 2}
        if T <: AbstractFloat
            for a in [a0, a1..., a2...]
                @test 0.0 <= a < 1.0
            end
        end
        for A in (Array(T, 5), Array(T, 2, 3))
            X = T == Bool ? T[0,1] : T[0,1,2]
            rand!(rng..., A)            ::typeof(A)
            rand!(rng..., A, X)  ::typeof(A)
            rand!(rng..., sparse(A))            ::typeof(sparse(A))
            rand!(rng..., sparse(A), X)  ::typeof(sparse(A))
        end
    end
end

# test uniform distribution of floats
let bins = [prevfloat(0.0):0.25:1.0;]
    for rng in [srand(MersenneTwister()), RandomDevice()]
        for T in [Float16,Float32,Float64]
            # array version
            _, counts = hist(rand(rng, T, 2000), bins)
            @test minimum(counts) > 300 # should fail with proba < 1e-26
            # scalar version
            _, counts = hist([rand(rng, T) for i in 1:2000], bins)
            @test minimum(counts) > 300
        end
    end
end

# test reproducility of methods
let mta = MersenneTwister(42), mtb = MersenneTwister(42)

    @test rand(mta) == rand(mtb)
    @test rand(mta,10) == rand(mtb,10)
    @test randn(mta) == randn(mtb)
    @test randn(mta,10) == randn(mtb,10)
    @test randexp(mta) == randexp(mtb)
    @test randexp(mta,10) == randexp(mtb,10)
    @test rand(mta,1:100) == rand(mtb,1:100)
    @test rand(mta,1:10,10) == rand(mtb,1:10,10)
    @test rand(mta,Bool) == rand(mtb,Bool)
    @test bitrand(mta,10) == bitrand(mtb,10)

    @test randstring(mta) == randstring(mtb)
    @test randstring(mta,10) == randstring(mtb,10)

    @test randsubseq(mta,1:10,0.4) == randsubseq(mtb,1:10,0.4)
    @test randsubseq!(mta,Int[],1:10,0.4) == randsubseq!(mtb,Int[],1:10,0.4)

    @test shuffle(mta,collect(1:10)) == shuffle(mtb,collect(1:10))
    @test shuffle!(mta,collect(1:10)) == shuffle!(mtb,collect(1:10))

    @test randperm(mta,10) == randperm(mtb,10)
    @test randperm(0) == []
    @test_throws ErrorException randperm(-1)

    @test randcycle(mta,10) == randcycle(mtb,10)

    @test sprand(mta,1,1,0.9) == sprand(mtb,1,1,0.9)
    @test sprand(mta,10,10,0.3) == sprand(mtb,10,10,0.3)
end

# test PRNG jump
let mta = MersenneTwister(seed), mtb = MersenneTwister(seed)
    step = 25000*2
    size = 4
    jump25000  = "35931a4947eeab70a9abbfaca4a79cfcf2610a35a586c6f4e4bdfa826d538cbfb0432c37321fcec4f6c98de3df06685087032988b0ad9a2144562aa82e06f2f6f256b5b412c524e35383a894da7b04e142c4156290585186d8fc06d3141a778220c2519a851b5a9e5947a3f745b71804631988825e21dba40392ff4c036b30d2d013b45e2be94b5e130a9c6424d2e82f48c855c81bd10757fdb5a91e23e9e312e430514ea31631d8897b4cf26eb39b37be0c92706e5637d4b34c1e4046b741e455df195cb512e8e0f8d578175a3da5e00d7ce247d9b92042b1b515d01f7f89fe661ebccb06dfb77bc0fbb99806921b472ccce58f2166ac058d9cf427ad7d74986e60a56d2fee0a8b680e466a8ea4e508a76c058b6f97b99c9aa5b10297b1a1bd6a8e80f3a79e008fa55a4a8915fbdec78b6b117ad67e195311fe79fc084c33f6db546f5b7602d010fa8b830e3f1b00cef00ee16840178fc7e9aa5f1cee625d43de8488bf6c8bd379ea6f97c55c7a9ee091477a23533d5e52e194bd9d4e17b02a64a2736feb3779fabd5777e448ffee0f2d4b38a8e7441822b882fc6df0bde8541e85c0c78a05936cff0c88a50980b7a84971fba3650991fe2cba425ac4b4289e7b06ce2cfabfcc8a553201e8c74b45e4ae74b6d054e37af95e6fd55e029b7c526b85ecfb3be8db670218ee3dda7b2a54ab1ed26eefe4cd1d2a9c589a6e94d0aa3ebe29e40e616aa0b731061c3d6e247ec610024a1a97b7adb7919308b0fb5dd5d51a58aa2f55d77b88037de7c1a74823c96cb09d22dd7f90dba14eefdcffaab34d323c829f24742f6f6b32b0724a26ae4a81130a8a275d30c21e6245fa27cf26d606a49bccba2980697c32d9efe583c4ee2140569025c4f044d744bc40cec1660d9e4d2de3a4de83bae4f0a9fdb34ef4509b2b4e6c37967a485a52d69d1573bb826bc64c966de9c792b7c2f07b645c56a29381911a98928e48516f246a55bcaa78f3c7d1c30127df5f06ba0a2d6a5e54605a20e60fab30c01a9472cb610ca0ef2418a985af00c7e47539111bf539dd554297d0374a7ff627d879600595b442c8dcffcffa3bbb07e5c7882ff0858142be4deac448698f0917fe2b7a9b686a9df1fa929f06a51aff992a6ee0b0605f8b34b87600cfa0af2475333b78625ce1520c793dc5080218247b4e41bbd7d9dab163470fe17a3d2622cdce979cc5565b0bc04eabaf656f21fa072a18ab33c656b665248ef20321407fef263b1c67316f2c6f236951990099e42d4614d8e08b27aa89d9f4548fa321d4b381d2da04fd7f17d6b9a68adfd0e4427196d25dcad869f8a155c6242f7d072baa5e7405ceb65dfaa3eb864bfe679a17df34273fde5037befe9ed5391b932cee271f59128c61ab3f0fc3f7cf8ff051fbda8382c64579efddd494c79850c56bda73bcd39c20c2820d191995b3335253c3b0ac8f5e5373f40c228886e6c526c2c249a5304578ba2a80f591c34ca1eaa84d6cc9399cf3f1207e61c4acada647e4e87ad5fba84aeeff6b6881d35bda77c74384fc5e279a0f495d509bc882c2b8bc790651a6d7a4ecba23a3f05111e1d8be37c03439fbd484668ceab69a52b7d519b169cbbcf634ee5e3bf78a5f8771f95fea03f2cb889e116a9f5de3abeacb8e42475fb5d022484b02d11f1e406332e0a773098fc4f0baa57cda2863c554f291d4eb74e63e4b3d44b0ed156bff1820003d407a3aaa9e6dfaa226ba7ef2fd0eff90a5482926f47f24f67019edccb6fd329eef30b5fb2125276aa1fe75a702b32c907ab133c72a74e77e0a5eb48fc5176b9d65b75b0038e1a9ed74ec2a3dcd2348fa54256f082abc01a301bacef7380f20ee0411c08a35dafdaae9f9fc123448da28626ffcc654e9d522bc8b8776b13a3310f7eeb4d27290ef4cbc7492fbcb5409d455748a8a1f087430cf5e6f453e2caa0c5343fcf4374cc38bead49941d8ab59b4d5181716c238aa88dbf1c4a2da3a9a9b9435d5ee1d51d27b0655a4308c1252aaf633cd8f44a351ffc8cec65de0b7e4e2556100e2ae9bc511044351109a6254b2d387b1a72c768f43fa7be6b93806e323b55c3e7925ed627dc708fde0954b299b1ca33bb7fbe33e0f9e4ce5b4f26efaf8e5b9507ada4f8658998eb7167afbd4482ee47cc60f4039d6a77c1fb126033bfc2e7c6162ff7561f22e263325c53a014a4ac9390fe6fab5d433c1e9896fe561f22fc8290f3f4560b676f3dfbfd1fe605343a0685349241b83a28d61cc0292d1f638a36d3d87bfa9f72f9df1cfe90692dfda5bd5e698362f5316984cbe73a132a801acbca76b5f5c23d98a217f2159b6cbbcdf8f52d23ea24c9471a31562a651b20e05cd0300ee500a450cfdaa4d2d83f7e7e27f8b7c793cf80f8067dadef77e49a64c373b97bac4dd472e5145072c73d0fdd68d9646c8a8ed9aec6c40bc915ae44ae27391ca0f1a4d2cb1c3d097be614e6eba807f4549d769a5872f268ccf770f2682d844490348f0b6a0d2b51aadbb5523cf708b66f9928eed12b35a39cf42d283b29f5283e1c8ba1f73457af17b14cdfdf9a85b0589acf1f9504e46b0bab8be848dac5673587035b99f56c41d3195bbba1616b149a22193cfb760d6bf2d84861653cd21be9a2d33187cb25d47fbecdd4626d1d97202f460a39b7128cadb77ddf682feca61fb6de0290df598a565a6361a91d76c0c685046489ed4cb1dcc4f1cea849c12dc4a3d38d3010567f387590532b78927e92f0b718c84e882b3df071a78a011d0fd56d4101dcb009914a16a781b240a6fb2440c72b0ffb365be9d3459d114e665a0d35d7b8bd280101d85d1211d939ba0b15ab528c4f9dd2b001172561d211671b96873010ae3c2b8317f773d735698914228764b831423ae19dd4bbb008b9f1bd1e3ebdd626e629a46a9dd70bdd4bb30e2279e83c12bbbead6479b5f9980b1a9c785395520703a9367d931b45c1566c9d314b1745cafc6d0667cc9bc94d0c53a960c829eb09b768ab6bb2133e4fea1d939f3d3f8e1237210cf3577c830f0493073dc1d189abf27402b8b31b7c172c43dbf331a0828adfe737380e763d0ab0bfaaf94ec04830f94380a83718f340c4eeb20d7eb22b94613be84a9ed332ab364efff6cb37eec35d186185cca725e7a748f6bdb427604fb1628d49a7424a5a62a2e930fe142b035503af332fe748d5e63591b9ac54071ca843d5e474a48837de8b80387f3269ab50d2fd99c08c971e015d13fa02c7c315922ce58bdacbf8ee48827851a61fca59882d7eadcce3166dfe012aa9ec849e698e776a4d384f4755b506a222636942a81bbbffa1ff47e4d81fe68120aebcfd1a7e0000fd0cffdc44e1f0cd69ea2b4936564c78af51fed1cc8e34f0b46d6330b4b50ddee09335b7b0be0bc9f7f8e48415e15d08f811653d21bc6dd152742b086caadcc6dff5e27b40da42c2f1ebf3dd2bd51c418718e499859239317fcab10892eadf1c0ebf7a4246bce4cce3617193032f3e41b977dc8650298ac39631c527460364effea0f0bfd043df72ead0406aba1bcd636d65d7b89979eb8e1";

    mts = randjump(mta, size, jump25000)
    @test length(mts) == 4

    tmp = zeros(Float64, size*step)
    for j in 1:step
        for k in 1:size
            tmp[j + (k-1) * step] = rand(mts[k], Float64)
        end
    end

    for j in 1:(size * step)
        @test rand(mtb, Float64) == tmp[j]
    end
end