This file is indexed.

/usr/share/julia/test/math.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
# This file is a part of Julia. License is MIT: http://julialang.org/license

@test clamp(0, 1, 3) == 1
@test clamp(1, 1, 3) == 1
@test clamp(2, 1, 3) == 2
@test clamp(3, 1, 3) == 3
@test clamp(4, 1, 3) == 3

@test clamp(0.0, 1, 3) == 1.0
@test clamp(1.0, 1, 3) == 1.0
@test clamp(2.0, 1, 3) == 2.0
@test clamp(3.0, 1, 3) == 3.0
@test clamp(4.0, 1, 3) == 3.0

@test clamp([0, 1, 2, 3, 4], 1.0, 3.0) == [1.0, 1.0, 2.0, 3.0, 3.0]

@test !(pi == e)
@test !(e == 1//2)
@test 1//2 <= e
@test big(1//2) < e
@test e < big(20//6)
@test e^pi == exp(pi)
@test e^2 == exp(2)
@test e^2.4 == exp(2.4)
@test e^(2//3) == exp(2//3)

begin
    x = [0.0, 1.0, 2.0, 3.0, 4.0]
    clamp!(x, 1, 3)
    @test x == [1.0, 1.0, 2.0, 3.0, 3.0]
end

# frexp,ldexp,significand,exponent
for T in (Float16,Float32,Float64)
    for z in (zero(T),-zero(T))
        frexp(z) === (z,0)
        significand(z) === z
        @test_throws DomainError exponent(z)
    end

    for (a,b) in [(T(12.8),T(0.8)),
                  (prevfloat(realmin(T)), nextfloat(one(T),-2)),
                  (nextfloat(zero(T),3), T(0.75)),
                  (nextfloat(zero(T)), T(0.5))]

        n = Int(log2(a/b))
        @test frexp(a) == (b,n)
        @test ldexp(b,n) == a
        @test ldexp(a,-n) == b
        @test significand(a) == 2b
        @test exponent(a) == n-1

        @test frexp(-a) == (-b,n)
        @test ldexp(-b,n) == -a
        @test ldexp(-a,-n) == -b
        @test significand(-a) == -2b
        @test exponent(-a) == n-1
    end
    @test_throws DomainError exponent(convert(T,NaN))
    @test isnan(significand(convert(T,NaN)))
    x,y = frexp(convert(T,NaN))
    @test isnan(x)
    @test y == 0
end

# Test math functions. We compare to BigFloat instead of hard-coding
# values, assuming that BigFloat has an independent and independently
# tested implementation.
for T in (Float32, Float64)
    x = T(1//3)
    y = T(1//2)
    yi = 4
    # Test random values
    @test_approx_eq x^y big(x)^big(y)
    @test_approx_eq x^yi big(x)^yi
    @test_approx_eq acos(x) acos(big(x))
    @test_approx_eq acosh(1+x) acosh(big(1+x))
    @test_approx_eq asin(x) asin(big(x))
    @test_approx_eq asinh(x) asinh(big(x))
    @test_approx_eq atan(x) atan(big(x))
    @test_approx_eq atan2(x,y) atan2(big(x),big(y))
    @test_approx_eq atanh(x) atanh(big(x))
    @test_approx_eq cbrt(x) cbrt(big(x))
    @test_approx_eq cos(x) cos(big(x))
    @test_approx_eq cosh(x) cosh(big(x))
    @test_approx_eq exp(x) exp(big(x))
    @test_approx_eq exp10(x) exp10(big(x))
    @test_approx_eq exp2(x) exp2(big(x))
    @test_approx_eq expm1(x) expm1(big(x))
    @test_approx_eq hypot(x,y) hypot(big(x),big(y))
    @test_approx_eq log(x) log(big(x))
    @test_approx_eq log10(x) log10(big(x))
    @test_approx_eq log1p(x) log1p(big(x))
    @test_approx_eq log2(x) log2(big(x))
    @test_approx_eq sin(x) sin(big(x))
    @test_approx_eq sinh(x) sinh(big(x))
    @test_approx_eq sqrt(x) sqrt(big(x))
    @test_approx_eq tan(x) tan(big(x))
    @test_approx_eq tanh(x) tanh(big(x))
    # Test special values
    @test isequal(T(1//4)^T(1//2), T(1//2))
    @test isequal(T(1//4)^2, T(1//16))
    @test isequal(acos(T(1)), T(0))
    @test isequal(acosh(T(1)), T(0))
    @test_approx_eq_eps asin(T(1)) T(pi)/2 eps(T)
    @test_approx_eq_eps atan(T(1)) T(pi)/4 eps(T)
    @test_approx_eq_eps atan2(T(1),T(1)) T(pi)/4 eps(T)
    @test isequal(cbrt(T(0)), T(0))
    @test isequal(cbrt(T(1)), T(1))
    @test isequal(cbrt(T(1000000000)), T(1000))
    @test isequal(cos(T(0)), T(1))
    @test_approx_eq_eps cos(T(pi)/2) T(0) eps(T)
    @test isequal(cos(T(pi)), T(-1))
    @test_approx_eq_eps exp(T(1)) T(e) 10*eps(T)
    @test isequal(exp10(T(1)), T(10))
    @test isequal(exp2(T(1)), T(2))
    @test isequal(expm1(T(0)), T(0))
    @test_approx_eq_eps expm1(T(1)) T(e)-1 10*eps(T)
    @test isequal(hypot(T(3),T(4)), T(5))
    @test isequal(log(T(1)), T(0))
    @test isequal(log(e,T(1)), T(0))
    @test_approx_eq_eps log(T(e)) T(1) eps(T)
    @test isequal(log10(T(1)), T(0))
    @test isequal(log10(T(10)), T(1))
    @test isequal(log1p(T(0)), T(0))
    @test_approx_eq_eps log1p(T(e)-1) T(1) eps(T)
    @test isequal(log2(T(1)), T(0))
    @test isequal(log2(T(2)), T(1))
    @test isequal(sin(T(0)), T(0))
    @test isequal(sin(T(pi)/2), T(1))
    @test_approx_eq_eps sin(T(pi)) T(0) eps(T)
    @test isequal(sqrt(T(0)), T(0))
    @test isequal(sqrt(T(1)), T(1))
    @test isequal(sqrt(T(100000000)), T(10000))
    @test isequal(tan(T(0)), T(0))
    @test_approx_eq_eps tan(T(pi)/4) T(1) eps(T)
    # Test inverses
    @test_approx_eq acos(cos(x)) x
    @test_approx_eq acosh(cosh(x)) x
    @test_approx_eq asin(sin(x)) x
    @test_approx_eq cbrt(x)^3 x
    @test_approx_eq cbrt(x^3) x
    @test_approx_eq asinh(sinh(x)) x
    @test_approx_eq atan(tan(x)) x
    @test_approx_eq atan2(x,y) atan(x/y)
    @test_approx_eq atanh(tanh(x)) x
    @test_approx_eq cos(acos(x)) x
    @test_approx_eq cosh(acosh(1+x)) 1+x
    @test_approx_eq exp(log(x)) x
    @test_approx_eq exp10(log10(x)) x
    @test_approx_eq exp2(log2(x)) x
    @test_approx_eq expm1(log1p(x)) x
    @test_approx_eq log(exp(x)) x
    @test_approx_eq log10(exp10(x)) x
    @test_approx_eq log1p(expm1(x)) x
    @test_approx_eq log2(exp2(x)) x
    @test_approx_eq sin(asin(x)) x
    @test_approx_eq sinh(asinh(x)) x
    @test_approx_eq sqrt(x)^2 x
    @test_approx_eq sqrt(x^2) x
    @test_approx_eq tan(atan(x)) x
    @test_approx_eq tanh(atanh(x)) x
    # Test some properties
    @test_approx_eq cosh(x) (exp(x)+exp(-x))/2
    @test_approx_eq cosh(x)^2-sinh(x)^2 1
    @test_approx_eq hypot(x,y) sqrt(x^2+y^2)
    @test_approx_eq sin(x)^2+cos(x)^2 1
    @test_approx_eq sinh(x) (exp(x)-exp(-x))/2
    @test_approx_eq tan(x) sin(x)/cos(x)
    @test_approx_eq tanh(x) sinh(x)/cosh(x)

    #Edge cases
    @test isinf(log(zero(T)))
    @test isnan(log(convert(T,NaN)))
    @test_throws DomainError log(-one(T))
    @test isinf(log1p(-one(T)))
    @test isnan(log1p(convert(T,NaN)))
    @test_throws DomainError log1p(convert(T,-2.0))
end
@test_approx_eq exp10(5) exp10(5.0)
@test log(e) == 1

for T in (Int, Float64, BigFloat)
    @test_approx_eq deg2rad(T(180)) 1pi
    @test_approx_eq deg2rad(T[45, 60]) [pi/T(4), pi/T(3)]
    @test_approx_eq rad2deg([pi/T(4), pi/T(3)]) [45, 60]
    @test_approx_eq rad2deg(T(1)*pi) 180
    @test_approx_eq rad2deg(T(1)) rad2deg(true)
    @test_approx_eq deg2rad(T(1)) deg2rad(true)
end

# degree-based trig functions
for T = (Float32,Float64,Rational{Int})
    fT = typeof(float(one(T)))
    for x = -400:40:400
        @test_approx_eq_eps sind(convert(T,x))::fT convert(fT,sin(pi/180*x)) eps(deg2rad(convert(fT,x)))
        @test_approx_eq_eps cosd(convert(T,x))::fT convert(fT,cos(pi/180*x)) eps(deg2rad(convert(fT,x)))
    end

    @test sind(convert(T,0.0))::fT === zero(fT)
    @test sind(convert(T,180.0))::fT === zero(fT)
    @test sind(convert(T,360.0))::fT === zero(fT)
    T != Rational{Int} && @test sind(convert(T,-0.0))::fT === -zero(fT)
    @test sind(convert(T,-180.0))::fT === -zero(fT)
    @test sind(convert(T,-360.0))::fT === -zero(fT)

    @test cosd(convert(T,90))::fT === zero(fT)
    @test cosd(convert(T,270))::fT === zero(fT)
    @test cosd(convert(T,-90))::fT === zero(fT)
    @test cosd(convert(T,-270))::fT === zero(fT)

    for x = -3:0.3:3
        @test_approx_eq_eps sinpi(convert(T,x))::fT convert(fT,sin(pi*x)) eps(pi*convert(fT,x))
        @test_approx_eq_eps cospi(convert(T,x))::fT convert(fT,cos(pi*x)) eps(pi*convert(fT,x))
    end

    @test sinpi(convert(T,0.0))::fT === zero(fT)
    @test sinpi(convert(T,1.0))::fT === zero(fT)
    @test sinpi(convert(T,2.0))::fT === zero(fT)
    T != Rational{Int} && @test sinpi(convert(T,-0.0))::fT === -zero(fT)
    @test sinpi(convert(T,-1.0))::fT === -zero(fT)
    @test sinpi(convert(T,-2.0))::fT === -zero(fT)
    @test_throws DomainError sinpi(convert(T,Inf))

    @test cospi(convert(T,0.5))::fT === zero(fT)
    @test cospi(convert(T,1.5))::fT === zero(fT)
    @test cospi(convert(T,-0.5))::fT === zero(fT)
    @test cospi(convert(T,-1.5))::fT === zero(fT)
    @test_throws DomainError cospi(convert(T,Inf))

    # check exact values
    @test sind(convert(T,30)) == 0.5
    @test cosd(convert(T,60)) == 0.5
    @test sind(convert(T,150)) == 0.5
    @test sinpi(one(T)/convert(T,6)) == 0.5
    @test_throws DomainError sind(convert(T,Inf))
    @test_throws DomainError cosd(convert(T,Inf))
    T != Float32 && @test cospi(one(T)/convert(T,3)) == 0.5
    T == Rational{Int} && @test sinpi(5//6) == 0.5
end

@test sinpi(1) == 0
@test sinpi(-1) == -0
@test cospi(1) == -1
@test cospi(2) == 1

@test sinc(1) == 0
@test sinc(complex(1,0)) == 0
@test sinc(0) == 1
@test cosc(1) == -1
@test cosc(0) == 0
@test cosc(complex(1,0)) == -1

# check type stability
for T = (Float32,Float64,BigFloat)
    for f = (sind,cosd,sinpi,cospi)
        @test Base.return_types(f,Tuple{T}) == [T]
    end
end

# error functions
@test_approx_eq erf(1) 0.84270079294971486934
@test_approx_eq erfc(1) 0.15729920705028513066
@test_approx_eq erfcx(1) 0.42758357615580700442
@test_approx_eq erfcx(Float32(1)) 0.42758357615580700442
@test_approx_eq erfcx(Complex64(1)) 0.42758357615580700442
@test_approx_eq erfi(1) 1.6504257587975428760
@test_approx_eq erfinv(0.84270079294971486934) 1
@test_approx_eq erfcinv(0.15729920705028513066) 1
@test_approx_eq dawson(1) 0.53807950691276841914

@test_approx_eq erf(1+2im) -0.53664356577856503399-5.0491437034470346695im
@test_approx_eq erfc(1+2im) 1.5366435657785650340+5.0491437034470346695im
@test_approx_eq erfcx(1+2im) 0.14023958136627794370-0.22221344017989910261im
@test_approx_eq erfi(1+2im) -0.011259006028815025076+1.0036063427256517509im
@test_approx_eq dawson(1+2im) -13.388927316482919244-11.828715103889593303im

for elty in [Float32,Float64]
    for x in logspace(-200, -0.01)
        @test_approx_eq_eps erf(erfinv(x)) x 1e-12*x
        @test_approx_eq_eps erf(erfinv(-x)) -x 1e-12*x
        @test_approx_eq_eps erfc(erfcinv(2*x)) 2*x 1e-12*x
        if x > 1e-20
            xf = Float32(x)
            @test_approx_eq_eps erf(erfinv(xf)) xf 1e-5*xf
            @test_approx_eq_eps erf(erfinv(-xf)) -xf 1e-5*xf
            @test_approx_eq_eps erfc(erfcinv(2xf)) 2xf 1e-5*xf
        end
    end
    @test erfinv(one(elty)) == Inf
    @test erfinv(-one(elty)) == -Inf
    @test_throws DomainError erfinv(convert(elty,2.0))

    @test erfcinv(zero(elty)) == Inf
    @test_throws DomainError erfcinv(-one(elty))
end

@test erfinv(one(Int)) == erfinv(1.0)
@test erfcinv(one(Int)) == erfcinv(1.0)

# airy
@test_approx_eq airy(1.8) airyai(1.8)
@test_approx_eq airyprime(1.8) -0.0685247801186109345638
@test_approx_eq airyaiprime(1.8) airyprime(1.8)
@test_approx_eq airybi(1.8) 2.595869356743906290060
@test_approx_eq airybiprime(1.8) 2.98554005084659907283
@test_throws Base.Math.AmosException airy(200im)
@test_throws Base.Math.AmosException airybi(200)
@test_throws ArgumentError airy(5,one(Complex128))
z = 1.8 + 1.0im
for elty in [Complex64,Complex128, Complex{BigFloat}]
    @test_approx_eq airy(convert(elty,1.8)) 0.0470362168668458052247
    z = convert(elty,z)
    @test_approx_eq airyx(z) airyx(0,z)
    @test_approx_eq airyx(0, z) airy(0, z) * exp(2/3 * z * sqrt(z))
    @test_approx_eq airyx(1, z) airy(1, z) * exp(2/3 * z * sqrt(z))
    @test_approx_eq airyx(2, z) airy(2, z) * exp(-abs(real(2/3 * z * sqrt(z))))
    @test_approx_eq airyx(3, z) airy(3, z) * exp(-abs(real(2/3 * z * sqrt(z))))
    @test_throws ArgumentError airyx(5,z)
end

# bessely0, bessely1, besselj0, besselj1
@test_approx_eq besselj0(Float32(2.0)) besselj0(Float64(2.0))
@test_approx_eq besselj1(Float32(2.0)) besselj1(Float64(2.0))
@test_approx_eq bessely0(Float32(2.0)) bessely0(Float64(2.0))
@test_approx_eq bessely1(Float32(2.0)) bessely1(Float64(2.0))
@test_approx_eq besselj0(2) besselj0(2.0)
@test_approx_eq besselj1(2) besselj1(2.0)
@test_approx_eq bessely0(2) bessely0(2.0)
@test_approx_eq bessely1(2) bessely1(2.0)
@test_approx_eq besselj0(2.0 + im) besselj(0, 2.0 + im)
@test_approx_eq besselj1(2.0 + im) besselj(1, 2.0 + im)
@test_approx_eq bessely0(2.0 + im) bessely(0, 2.0 + im)
@test_approx_eq bessely1(2.0 + im) bessely(1, 2.0 + im)

# besselh
true_h133 = 0.30906272225525164362 - 0.53854161610503161800im
@test_approx_eq besselh(3,1,3) true_h133
@test_approx_eq besselh(-3,1,3) -true_h133
@test_approx_eq besselh(3,2,3) conj(true_h133)
@test_approx_eq besselh(-3,2,3) -conj(true_h133)
@test_throws Base.Math.AmosException besselh(1,0)


# besseli
true_i33 = 0.95975362949600785698
@test_approx_eq besseli(3,3) true_i33
@test_approx_eq besseli(-3,3) true_i33
@test_approx_eq besseli(3,-3) -true_i33
@test_approx_eq besseli(-3,-3) -true_i33
@test_throws Base.Math.AmosException besseli(1,1000)
@test_throws DomainError besseli(0.4,-1.0)

# besselj
@test besselj(0,0) == 1
for i = 1:5
    @test besselj(i,0) == 0
    @test besselj(-i,0) == 0
    @test besselj(-i,Float32(0)) == 0
    @test besselj(-i,Float32(0)) == 0
end

j33 = besselj(3,3.)
@test besselj(3,3) == j33
@test besselj(-3,-3) == j33
@test besselj(-3,3) == -j33
@test besselj(3,-3) == -j33

j43 = besselj(4,3.)
@test besselj(4,3) == j43
@test besselj(-4,-3) == j43
@test besselj(-4,3) == j43
@test besselj(4,-3) == j43

@test_approx_eq j33 0.30906272225525164362
@test_approx_eq j43 0.13203418392461221033
@test_throws DomainError    besselj(0.1, -0.4)
@test_approx_eq besselj(0.1, complex(-0.4)) 0.820421842809028916 + 0.266571215948350899im
@test_approx_eq besselj(3.2, 1.3+0.6im) 0.01135309305831220201 + 0.03927719044393515275im
@test_approx_eq besselj(1, 3im) 3.953370217402609396im
@test_approx_eq besselj(1.0,3im) besselj(1,3im)
@test besselj(big(1.0),3im) ≈ besselj(1,3im)
@test besselj(big(0.1), complex(-0.4)) ≈ 0.820421842809028916 + 0.266571215948350899im
@test_throws Base.Math.AmosException besselj(20,1000im)

# besselk
true_k33 = 0.12217037575718356792
@test_approx_eq besselk(3,3) true_k33
@test_approx_eq besselk(-3,3) true_k33
true_k3m3 = -0.1221703757571835679 - 3.0151549516807985776im
@test_throws DomainError besselk(3,-3)
@test_approx_eq besselk(3,complex(-3)) true_k3m3
@test_approx_eq besselk(-3,complex(-3)) true_k3m3
@test_throws Base.Math.AmosException besselk(200,0.01)
# issue #6564
@test besselk(1.0,0.0) == Inf

# bessely
y33 = bessely(3,3.)
@test bessely(3,3) == y33
@test bessely(3.,3.) == y33
@test_approx_eq bessely(3,Float32(3.)) y33
@test_approx_eq bessely(-3,3) -y33
@test_approx_eq y33 -0.53854161610503161800
@test_throws DomainError bessely(3,-3)
@test_approx_eq bessely(3,complex(-3)) 0.53854161610503161800 - 0.61812544451050328724im
@test_throws Base.Math.AmosException bessely(200.5,0.1)
@test_throws DomainError bessely(0.4,-1.0)
@test_throws DomainError bessely(0.4,Float32(-1.0))
@test_throws DomainError bessely(1,Float32(-1.0))

#besselhx
for elty in [Complex64,Complex128, Complex{BigFloat}]
    z = convert(elty, 1.0 + 1.9im)
    @test_approx_eq besselhx(1.0, 1, z) convert(elty,-0.5949634147786144 - 0.18451272807835967im)
end

# issue #6653
for f in (besselj,bessely,besseli,besselk,hankelh1,hankelh2)
    @test_approx_eq f(0,1) f(0,Complex128(1))
    @test_approx_eq f(0,1) f(0,Complex64(1))
end

# scaled bessel[ijky] and hankelh[12]
for x in (1.0, 0.0, -1.0), y in (1.0, 0.0, -1.0), nu in (1.0, 0.0, -1.0)
    z = Complex128(x + y * im)
    z == zero(z) || @test_approx_eq hankelh1x(nu, z) hankelh1(nu, z) * exp(-z * im)
    z == zero(z) || @test_approx_eq hankelh2x(nu, z) hankelh2(nu, z) * exp(z * im)
    (nu < 0 && z == zero(z)) || @test_approx_eq besselix(nu, z) besseli(nu, z) * exp(-abs(real(z)))
    (nu < 0 && z == zero(z)) || @test_approx_eq besseljx(nu, z) besselj(nu, z) * exp(-abs(imag(z)))
    z == zero(z) || @test_approx_eq besselkx(nu, z) besselk(nu, z) * exp(z)
    z == zero(z) || @test_approx_eq besselyx(nu, z) bessely(nu, z) * exp(-abs(imag(z)))
end
@test_throws Base.Math.AmosException hankelh1x(1, 0)
@test_throws Base.Math.AmosException hankelh2x(1, 0)
@test_throws Base.Math.AmosException besselix(-1, 0)
@test_throws Base.Math.AmosException besseljx(-1, 0)
@test besselkx(1, 0) == Inf
@test_throws Base.Math.AmosException besselyx(1, 0)
@test_throws DomainError besselix(0.4,-1.0)
@test_throws DomainError besseljx(0.4, -1.0)
@test_throws DomainError besselkx(0.4,-1.0)
@test_throws DomainError besselyx(0.4,-1.0)

# beta, lbeta
@test_approx_eq beta(3/2,7/2) 5π/128
@test_approx_eq beta(3,5) 1/105
@test_approx_eq lbeta(5,4) log(beta(5,4))
@test_approx_eq beta(5,4) beta(4,5)
@test_approx_eq beta(-1/2, 3) -16/3
@test_approx_eq lbeta(-1/2, 3) log(16/3)
@test beta(Float32(5),Float32(4)) == beta(Float32(4),Float32(5))

# gamma, lgamma (complex argument)
if Base.Math.libm == "libopenlibm"
    @test gamma(Float64[1:25;]) == gamma(1:25)
else
    @test_approx_eq gamma(Float64[1:25;]) gamma(1:25)
end
for elty in (Float32, Float64)
    @test_approx_eq gamma(convert(elty,1/2)) convert(elty,sqrt(π))
    @test_approx_eq gamma(convert(elty,-1/2)) convert(elty,-2sqrt(π))
    @test_approx_eq lgamma(convert(elty,-1/2)) convert(elty,log(abs(gamma(-1/2))))
end
@test_approx_eq lgamma(1.4+3.7im) -3.7094025330996841898 + 2.4568090502768651184im
@test_approx_eq lgamma(1.4+3.7im) log(gamma(1.4+3.7im))
@test_approx_eq lgamma(-4.2+0im) lgamma(-4.2)-pi*im
@test factorial(3.0) == gamma(4.0) == factorial(3)
for x in (3.2, 2+1im, 3//2, 3.2+0.1im)
    @test factorial(x) == gamma(1+x)
end
@test lfact(1) == 0
@test lfact(2) == lgamma(3)

# digamma
for elty in (Float32, Float64)

    @test_approx_eq digamma(convert(elty, 9)) convert(elty, 2.140641477955609996536345)
    @test_approx_eq digamma(convert(elty, 2.5)) convert(elty, 0.7031566406452431872257)
    @test_approx_eq digamma(convert(elty, 0.1)) convert(elty, -10.42375494041107679516822)
    @test_approx_eq digamma(convert(elty, 7e-4)) convert(elty, -1429.147493371120205005198)
    @test_approx_eq digamma(convert(elty, 7e-5)) convert(elty, -14286.29138623969227538398)
    @test_approx_eq digamma(convert(elty, 7e-6)) convert(elty, -142857.7200612932791081972)
    @test_approx_eq digamma(convert(elty, 2e-6)) convert(elty, -500000.5772123750382073831)
    @test_approx_eq digamma(convert(elty, 1e-6)) convert(elty, -1000000.577214019968668068)
    @test_approx_eq digamma(convert(elty, 7e-7)) convert(elty, -1428572.005785942019703646)
    @test_approx_eq digamma(convert(elty, -0.5)) convert(elty, .03648997397857652055902367)
    @test_approx_eq digamma(convert(elty, -1.1)) convert(elty,  10.15416395914385769902271)

    @test_approx_eq digamma(convert(elty, 0.1)) convert(elty, -10.42375494041108)
    @test_approx_eq digamma(convert(elty, 1/2)) convert(elty, -γ - log(4))
    @test_approx_eq digamma(convert(elty, 1)) convert(elty, -γ)
    @test_approx_eq digamma(convert(elty, 2)) convert(elty, 1 - γ)
    @test_approx_eq digamma(convert(elty, 3)) convert(elty, 3/2 - γ)
    @test_approx_eq digamma(convert(elty, 4)) convert(elty, 11/6 - γ)
    @test_approx_eq digamma(convert(elty, 5)) convert(elty, 25/12 - γ)
    @test_approx_eq digamma(convert(elty, 10)) convert(elty, 7129/2520 - γ)
end

# trigamma
for elty in (Float32, Float64)
    @test_approx_eq trigamma(convert(elty, 0.1)) convert(elty, 101.433299150792758817)
    @test_approx_eq trigamma(convert(elty, 1/2)) convert(elty, π^2/2)
    @test_approx_eq trigamma(convert(elty, 1)) convert(elty, π^2/6)
    @test_approx_eq trigamma(convert(elty, 2)) convert(elty, π^2/6 - 1)
    @test_approx_eq trigamma(convert(elty, 3)) convert(elty, π^2/6 - 5/4)
    @test_approx_eq trigamma(convert(elty, 4)) convert(elty, π^2/6 - 49/36)
    @test_approx_eq trigamma(convert(elty, 5)) convert(elty, π^2/6 - 205/144)
    @test_approx_eq trigamma(convert(elty, 10)) convert(elty, π^2/6 - 9778141/6350400)
end

# invdigamma
for elty in (Float32, Float64)
    for val in [0.001, 0.01, 0.1, 1.0, 10.0]
        @test abs(invdigamma(digamma(convert(elty, val))) - convert(elty, val)) < 1e-8
    end
end
@test abs(invdigamma(2)) == abs(invdigamma(2.))

@test_approx_eq polygamma(20, 7.) -4.644616027240543262561198814998587152547

# eta, zeta
@test_approx_eq eta(1) log(2)
@test_approx_eq eta(2) pi^2/12
@test_approx_eq eta(Float32(2)) eta(2)
@test_approx_eq eta(Complex64(2)) eta(2)
@test_approx_eq zeta(0) -0.5
@test_approx_eq zeta(2) pi^2/6
@test_approx_eq zeta(Complex64(2)) zeta(2)
@test_approx_eq zeta(4) pi^4/90
@test_approx_eq zeta(one(Float32)) Float32(zeta(one(Float64)))
@test isnan(zeta(NaN))
@test isnan(zeta(complex(0,Inf)))
@test isnan(zeta(complex(-Inf,0)))

# quadgk
@test_approx_eq quadgk(cos, 0,0.7,1)[1] sin(1)
@test_approx_eq quadgk(x -> exp(im*x), 0,0.7,1)[1] (exp(1im)-1)/im
@test_approx_eq quadgk(x -> exp(im*x), 0,1im)[1] -1im*expm1(-1)
@test_approx_eq_eps quadgk(cos, 0,BigFloat(1),order=40)[1] sin(BigFloat(1)) 1000*eps(BigFloat)
@test_approx_eq quadgk(x -> exp(-x), 0,0.7,Inf)[1] 1.0
@test_approx_eq quadgk(x -> exp(x), -Inf,0)[1] 1.0
@test_approx_eq quadgk(x -> exp(-x^2), -Inf,Inf)[1] sqrt(pi)
@test_approx_eq quadgk(x -> [exp(-x), exp(-2x)], 0, Inf)[1] [1,0.5]
@test_approx_eq quadgk(cos, 0,0.7,1, norm=abs)[1] sin(1)

# Ensure subnormal flags functions don't segfault
@test any(set_zero_subnormals(true) .== [false,true])
@test any(get_zero_subnormals() .== [false,true])
@test set_zero_subnormals(false)
@test !get_zero_subnormals()

# useful test functions for relative error
err(z, x) = abs(z - x) / abs(x)
errc(z, x) = max(err(real(z),real(x)), err(imag(z),imag(x)))

for x in -10.2:0.3456:50
    @test 1e-12 > err(digamma(x+0im), digamma(x))
end

# digamma, trigamma, polygamma & zeta test cases (compared to Wolfram Alpha)
@test 1e-13 > err(digamma(7+0im), 1.872784335098467139393487909917597568957840664060076401194232)
@test 1e-13 > errc(digamma(7im), 1.94761433458434866917623737015561385331974500663251349960124 + 1.642224898223468048051567761191050945700191089100087841536im)
@test 1e-13 > errc(digamma(-3.2+0.1im), 4.65022505497781398615943030397508454861261537905047116427511+2.32676364843128349629415011622322040021960602904363963042380im)
@test 1e-13 > err(trigamma(8+0im), 0.133137014694031425134546685920401606452509991909746283540546)
@test 1e-13 > errc(trigamma(8im), -0.0078125000000000000029194973110119898029284994355721719150 - 0.12467345030312762782439017882063360876391046513966063947im)
@test 1e-13 > errc(trigamma(-3.2+0.1im), 15.2073506449733631753218003030676132587307964766963426965699+15.7081038855113567966903832015076316497656334265029416039199im)
@test 1e-13 > err(polygamma(2, 8.1+0im), -0.01723882695611191078960494454602091934457319791968308929600)
@test 1e-13 > errc(polygamma(30, 8.1+2im), -2722.8895150799704384107961215752996280795801958784600407589+6935.8508929338093162407666304759101854270641674671634631058im)
@test 1e-13 > errc(polygamma(3, 2.1+1im), 0.00083328137020421819513475400319288216246978855356531898998-0.27776110819632285785222411186352713789967528250214937861im)
@test 1e-11 > err(polygamma(3, -4.2 + 2im),-0.0037752884324358856340054736472407163991189965406070325067-0.018937868838708874282432870292420046797798431078848805822im)
@test 1e-13 > err(polygamma(13, 5.2 - 2im), 0.08087519202975913804697004241042171828113370070289754772448-0.2300264043021038366901951197725318713469156789541415899307im)
@test 1e-11 > err(polygamma(123, -47.2 + 0im), 5.7111648667225422758966364116222590509254011308116701029e291)
@test 1e-13 > errc(zeta(4.1+0.3im, -3.2+0.1im), -461.95403678374488506025596495576748255121001107881278765917+926.02552636148651929560277856510991293536052745360005500774im)
@test 1e-13 > errc(zeta(4.1+0.3im, 3.2+0.1im), 0.0121197525131633219465301571139288562254218365173899270675-0.00687228692565614267981577154948499247518236888933925740902im)
@test 1e-13 > errc(zeta(4.1, 3.2+0.1im),0.0137637451187986846516125754047084829556100290057521276517-0.00152194599531628234517456529686769063828217532350810111482im)
@test 1e-12 > errc(zeta(1.0001, -4.5e2+3.2im), 9993.89099199843392251301993718413132850540848778561412270571-3.13257480938495907945892330398176989805350557816701044268548im)
@test_throws DomainError zeta(3.1,-4.2)
@test 1e-13 > errc(zeta(3.1,-4.2+0im), -138.06320182025311080661516120845508778572835942189570145952+45.586579397698817209431034568162819207622092308850063038062im)
@test 1e-15 > errc(zeta(3.1+0im,-4.2), zeta(3.1,-4.2+0im))
@test 1e-13 > errc(zeta(3.1,4.2), 0.029938344862645948405021260567725078588893266227472565010234)
@test 1e-13 > err(zeta(27, 3.1), 5.413318813037879056337862215066960774064332961282599376e-14)
@test 1e-13 > err(zeta(27, 2), 7.4507117898354294919810041706041194547190318825658299932e-9)
@test 1e-12 > err(zeta(27, -105.3), -1.311372652244914148556295810515903234635727465138859603e14)
@test polygamma(4, -3.1+Inf*im) == polygamma(4, 3.1+Inf*im) == 0
@test polygamma(4, -0.0) == Inf == -polygamma(4, +0.0)
@test zeta(4, +0.0) == Inf == zeta(4, -0.0)
@test zeta(5, +0.0) == Inf == -zeta(5, -0.0)
@test zeta(Inf, 1.) == 1
@test zeta(Inf, 2.) == 0
@test isnan(zeta(NaN, 1.))
@test isa([digamma(x) for x in [1.0]], Vector{Float64})
@test isa([trigamma(x) for x in [1.0]], Vector{Float64})
@test isa([polygamma(3,x) for x in [1.0]], Vector{Float64})
@test 1e-13 > errc(zeta(2 + 1im, -1.1), zeta(2 + 1im, -1.1+0im))
@test 1e-13 > errc(zeta(2 + 1im, -1.1), -1525.8095173321060982383023516086563741006869909580583246557 + 1719.4753293650912305811325486980742946107143330321249869576im)
@test_approx_eq polygamma(3,5) polygamma(3,5.)

@test @evalpoly(2,3,4,5,6) == 3+2*(4+2*(5+2*6)) == @evalpoly(2+0im,3,4,5,6)
@test let evalcounts=0
          @evalpoly(begin
                        evalcounts += 1
                        4
                    end, 1,2,3,4,5)
          evalcounts
      end == 1
a0 = 1
a1 = 2
c = 3
@test @evalpoly(c, a0, a1) == 7

@test 1e-14 > err(eta(1+1e-9), 0.693147180719814213126976796937244130533478392539154928250926)
@test 1e-14 > err(eta(1+5e-3), 0.693945708117842473436705502427198307157819636785324430166786)
@test 1e-13 > err(eta(1+7.1e-3), 0.694280602623782381522315484518617968911346216413679911124758)
@test 1e-13 > err(eta(1+8.1e-3), 0.694439974969407464789106040237272613286958025383030083792151)
@test 1e-13 > err(eta(1 - 2.1e-3 + 2e-3 * im), 0.69281144248566007063525513903467244218447562492555491581+0.00032001240133205689782368277733081683574922990400416791019im)
@test 1e-13 > err(eta(1 + 5e-3 + 5e-3 * im), 0.69394652468453741050544512825906295778565788963009705146+0.00079771059614865948716292388790427833787298296229354721960im)
@test 1e-12 > errc(zeta(1e-3+1e-3im), -0.5009189365276307665899456585255302329444338284981610162-0.0009209468912269622649423786878087494828441941303691216750im)
@test 1e-13 > errc(zeta(1e-4 + 2e-4im), -0.5000918637469642920007659467492165281457662206388959645-0.0001838278317660822408234942825686513084009527096442173056im)

# Issue #7169: (TODO: better accuracy should be possible?)
@test 1e-9 > errc(zeta(0 + 99.69im), 4.67192766128949471267133846066040655597942700322077493021802+3.89448062985266025394674304029984849370377607524207984092848im)
@test 1e-12 > errc(zeta(3 + 99.69im), 1.09996958148566565003471336713642736202442134876588828500-0.00948220959478852115901654819402390826992494044787958181148im)
@test 1e-9 > errc(zeta(-3 + 99.69im), 10332.6267578711852982128675093428012860119184786399673520976+13212.8641740351391796168658602382583730208014957452167440726im)
@test 1e-13 > errc(zeta(2 + 99.69im, 1.3), 0.41617652544777996034143623540420694985469543821307918291931-0.74199610821536326325073784018327392143031681111201859489991im)

for z in (1.234, 1.234 + 5.678im, [1.234, 5.678])
    @test_approx_eq cis(z) exp(im*z)
end

# modf
for elty in (Float32, Float64)
    @test_approx_eq modf( convert(elty,1.2) )[1] convert(elty,0.2)
    @test_approx_eq modf( convert(elty,1.2) )[2] convert(elty,1.0)
    @test_approx_eq modf( convert(elty,1.0) )[1] convert(elty,0.0)
    @test_approx_eq modf( convert(elty,1.0) )[2] convert(elty,1.0)
end

# frexp
for elty in (Float32, Float64)
    @test frexp( convert(elty,0.5) ) == (convert(elty,0.5),0)
    @test frexp( convert(elty,4.0) ) == (convert(elty,0.5),3)
    @test_approx_eq frexp( convert(elty,10.5) )[1] convert(elty,0.65625)
    @test frexp( convert(elty,10.5) )[2] == 4
    @test_approx_eq frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[1][1] convert(elty,0.5)
    @test_approx_eq frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[1][2] convert(elty,0.65625)
    @test frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[2] == [ 3 4 ]
end

# log/log1p
# if using Tang's algorithm, should be accurate to within 0.56 ulps
X = rand(100)
for x in X
    for n = -5:5
        xn = ldexp(x,n)

        for T in (Float32,Float64)
            xt = T(x)

            y = Base.Math.JuliaLibm.log(xt)
            yb = log(big(xt))
            @test abs(y-yb) <= 0.56*eps(T(yb))

            y = Base.Math.JuliaLibm.log1p(xt)
            yb = log1p(big(xt))
            @test abs(y-yb) <= 0.56*eps(T(yb))

            if n <= 0
                y = Base.Math.JuliaLibm.log1p(-xt)
                yb = log1p(big(-xt))
                @test abs(y-yb) <= 0.56*eps(T(yb))
            end
        end
    end
end

for n = 0:28
    @test log(2,2^n) == n
end
with_bigfloat_precision(10_000) do
    @test log(2,big(2)^100) == 100
    @test log(2,big(2)^200) == 200
    @test log(2,big(2)^300) == 300
    @test log(2,big(2)^400) == 400
end

for T in (Float32,Float64)
    @test log(zero(T)) == -Inf
    @test isnan(log(NaN))
    @test_throws DomainError log(-one(T))
    @test log1p(-one(T)) == -Inf
    @test isnan(log1p(NaN))
    @test_throws DomainError log1p(-2*one(T))
end
# test vectorization of 2-arg vectorized functions
binary_math_functions = [
    copysign, flipsign, log, atan2, hypot, max, min,
    airy, airyx, besselh, hankelh1, hankelh2, hankelh1x, hankelh2x,
    besseli, besselix, besselj, besseljx, besselk, besselkx, bessely, besselyx,
    polygamma, zeta, beta, lbeta,
]
for f in binary_math_functions
    x = y = 2
    v = [f(x,y)]
    @test f([x],y) == v
    @test f(x,[y]) == v
    @test f([x],[y]) == v
end

# #3024, #12822
@test_throws DomainError 2 ^ -2
@test_throws DomainError (-2)^(2.2)
@test_throws DomainError (-2.0)^(2.2)