/usr/share/julia/test/math.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 | # This file is a part of Julia. License is MIT: http://julialang.org/license
@test clamp(0, 1, 3) == 1
@test clamp(1, 1, 3) == 1
@test clamp(2, 1, 3) == 2
@test clamp(3, 1, 3) == 3
@test clamp(4, 1, 3) == 3
@test clamp(0.0, 1, 3) == 1.0
@test clamp(1.0, 1, 3) == 1.0
@test clamp(2.0, 1, 3) == 2.0
@test clamp(3.0, 1, 3) == 3.0
@test clamp(4.0, 1, 3) == 3.0
@test clamp([0, 1, 2, 3, 4], 1.0, 3.0) == [1.0, 1.0, 2.0, 3.0, 3.0]
@test !(pi == e)
@test !(e == 1//2)
@test 1//2 <= e
@test big(1//2) < e
@test e < big(20//6)
@test e^pi == exp(pi)
@test e^2 == exp(2)
@test e^2.4 == exp(2.4)
@test e^(2//3) == exp(2//3)
begin
x = [0.0, 1.0, 2.0, 3.0, 4.0]
clamp!(x, 1, 3)
@test x == [1.0, 1.0, 2.0, 3.0, 3.0]
end
# frexp,ldexp,significand,exponent
for T in (Float16,Float32,Float64)
for z in (zero(T),-zero(T))
frexp(z) === (z,0)
significand(z) === z
@test_throws DomainError exponent(z)
end
for (a,b) in [(T(12.8),T(0.8)),
(prevfloat(realmin(T)), nextfloat(one(T),-2)),
(nextfloat(zero(T),3), T(0.75)),
(nextfloat(zero(T)), T(0.5))]
n = Int(log2(a/b))
@test frexp(a) == (b,n)
@test ldexp(b,n) == a
@test ldexp(a,-n) == b
@test significand(a) == 2b
@test exponent(a) == n-1
@test frexp(-a) == (-b,n)
@test ldexp(-b,n) == -a
@test ldexp(-a,-n) == -b
@test significand(-a) == -2b
@test exponent(-a) == n-1
end
@test_throws DomainError exponent(convert(T,NaN))
@test isnan(significand(convert(T,NaN)))
x,y = frexp(convert(T,NaN))
@test isnan(x)
@test y == 0
end
# Test math functions. We compare to BigFloat instead of hard-coding
# values, assuming that BigFloat has an independent and independently
# tested implementation.
for T in (Float32, Float64)
x = T(1//3)
y = T(1//2)
yi = 4
# Test random values
@test_approx_eq x^y big(x)^big(y)
@test_approx_eq x^yi big(x)^yi
@test_approx_eq acos(x) acos(big(x))
@test_approx_eq acosh(1+x) acosh(big(1+x))
@test_approx_eq asin(x) asin(big(x))
@test_approx_eq asinh(x) asinh(big(x))
@test_approx_eq atan(x) atan(big(x))
@test_approx_eq atan2(x,y) atan2(big(x),big(y))
@test_approx_eq atanh(x) atanh(big(x))
@test_approx_eq cbrt(x) cbrt(big(x))
@test_approx_eq cos(x) cos(big(x))
@test_approx_eq cosh(x) cosh(big(x))
@test_approx_eq exp(x) exp(big(x))
@test_approx_eq exp10(x) exp10(big(x))
@test_approx_eq exp2(x) exp2(big(x))
@test_approx_eq expm1(x) expm1(big(x))
@test_approx_eq hypot(x,y) hypot(big(x),big(y))
@test_approx_eq log(x) log(big(x))
@test_approx_eq log10(x) log10(big(x))
@test_approx_eq log1p(x) log1p(big(x))
@test_approx_eq log2(x) log2(big(x))
@test_approx_eq sin(x) sin(big(x))
@test_approx_eq sinh(x) sinh(big(x))
@test_approx_eq sqrt(x) sqrt(big(x))
@test_approx_eq tan(x) tan(big(x))
@test_approx_eq tanh(x) tanh(big(x))
# Test special values
@test isequal(T(1//4)^T(1//2), T(1//2))
@test isequal(T(1//4)^2, T(1//16))
@test isequal(acos(T(1)), T(0))
@test isequal(acosh(T(1)), T(0))
@test_approx_eq_eps asin(T(1)) T(pi)/2 eps(T)
@test_approx_eq_eps atan(T(1)) T(pi)/4 eps(T)
@test_approx_eq_eps atan2(T(1),T(1)) T(pi)/4 eps(T)
@test isequal(cbrt(T(0)), T(0))
@test isequal(cbrt(T(1)), T(1))
@test isequal(cbrt(T(1000000000)), T(1000))
@test isequal(cos(T(0)), T(1))
@test_approx_eq_eps cos(T(pi)/2) T(0) eps(T)
@test isequal(cos(T(pi)), T(-1))
@test_approx_eq_eps exp(T(1)) T(e) 10*eps(T)
@test isequal(exp10(T(1)), T(10))
@test isequal(exp2(T(1)), T(2))
@test isequal(expm1(T(0)), T(0))
@test_approx_eq_eps expm1(T(1)) T(e)-1 10*eps(T)
@test isequal(hypot(T(3),T(4)), T(5))
@test isequal(log(T(1)), T(0))
@test isequal(log(e,T(1)), T(0))
@test_approx_eq_eps log(T(e)) T(1) eps(T)
@test isequal(log10(T(1)), T(0))
@test isequal(log10(T(10)), T(1))
@test isequal(log1p(T(0)), T(0))
@test_approx_eq_eps log1p(T(e)-1) T(1) eps(T)
@test isequal(log2(T(1)), T(0))
@test isequal(log2(T(2)), T(1))
@test isequal(sin(T(0)), T(0))
@test isequal(sin(T(pi)/2), T(1))
@test_approx_eq_eps sin(T(pi)) T(0) eps(T)
@test isequal(sqrt(T(0)), T(0))
@test isequal(sqrt(T(1)), T(1))
@test isequal(sqrt(T(100000000)), T(10000))
@test isequal(tan(T(0)), T(0))
@test_approx_eq_eps tan(T(pi)/4) T(1) eps(T)
# Test inverses
@test_approx_eq acos(cos(x)) x
@test_approx_eq acosh(cosh(x)) x
@test_approx_eq asin(sin(x)) x
@test_approx_eq cbrt(x)^3 x
@test_approx_eq cbrt(x^3) x
@test_approx_eq asinh(sinh(x)) x
@test_approx_eq atan(tan(x)) x
@test_approx_eq atan2(x,y) atan(x/y)
@test_approx_eq atanh(tanh(x)) x
@test_approx_eq cos(acos(x)) x
@test_approx_eq cosh(acosh(1+x)) 1+x
@test_approx_eq exp(log(x)) x
@test_approx_eq exp10(log10(x)) x
@test_approx_eq exp2(log2(x)) x
@test_approx_eq expm1(log1p(x)) x
@test_approx_eq log(exp(x)) x
@test_approx_eq log10(exp10(x)) x
@test_approx_eq log1p(expm1(x)) x
@test_approx_eq log2(exp2(x)) x
@test_approx_eq sin(asin(x)) x
@test_approx_eq sinh(asinh(x)) x
@test_approx_eq sqrt(x)^2 x
@test_approx_eq sqrt(x^2) x
@test_approx_eq tan(atan(x)) x
@test_approx_eq tanh(atanh(x)) x
# Test some properties
@test_approx_eq cosh(x) (exp(x)+exp(-x))/2
@test_approx_eq cosh(x)^2-sinh(x)^2 1
@test_approx_eq hypot(x,y) sqrt(x^2+y^2)
@test_approx_eq sin(x)^2+cos(x)^2 1
@test_approx_eq sinh(x) (exp(x)-exp(-x))/2
@test_approx_eq tan(x) sin(x)/cos(x)
@test_approx_eq tanh(x) sinh(x)/cosh(x)
#Edge cases
@test isinf(log(zero(T)))
@test isnan(log(convert(T,NaN)))
@test_throws DomainError log(-one(T))
@test isinf(log1p(-one(T)))
@test isnan(log1p(convert(T,NaN)))
@test_throws DomainError log1p(convert(T,-2.0))
end
@test_approx_eq exp10(5) exp10(5.0)
@test log(e) == 1
for T in (Int, Float64, BigFloat)
@test_approx_eq deg2rad(T(180)) 1pi
@test_approx_eq deg2rad(T[45, 60]) [pi/T(4), pi/T(3)]
@test_approx_eq rad2deg([pi/T(4), pi/T(3)]) [45, 60]
@test_approx_eq rad2deg(T(1)*pi) 180
@test_approx_eq rad2deg(T(1)) rad2deg(true)
@test_approx_eq deg2rad(T(1)) deg2rad(true)
end
# degree-based trig functions
for T = (Float32,Float64,Rational{Int})
fT = typeof(float(one(T)))
for x = -400:40:400
@test_approx_eq_eps sind(convert(T,x))::fT convert(fT,sin(pi/180*x)) eps(deg2rad(convert(fT,x)))
@test_approx_eq_eps cosd(convert(T,x))::fT convert(fT,cos(pi/180*x)) eps(deg2rad(convert(fT,x)))
end
@test sind(convert(T,0.0))::fT === zero(fT)
@test sind(convert(T,180.0))::fT === zero(fT)
@test sind(convert(T,360.0))::fT === zero(fT)
T != Rational{Int} && @test sind(convert(T,-0.0))::fT === -zero(fT)
@test sind(convert(T,-180.0))::fT === -zero(fT)
@test sind(convert(T,-360.0))::fT === -zero(fT)
@test cosd(convert(T,90))::fT === zero(fT)
@test cosd(convert(T,270))::fT === zero(fT)
@test cosd(convert(T,-90))::fT === zero(fT)
@test cosd(convert(T,-270))::fT === zero(fT)
for x = -3:0.3:3
@test_approx_eq_eps sinpi(convert(T,x))::fT convert(fT,sin(pi*x)) eps(pi*convert(fT,x))
@test_approx_eq_eps cospi(convert(T,x))::fT convert(fT,cos(pi*x)) eps(pi*convert(fT,x))
end
@test sinpi(convert(T,0.0))::fT === zero(fT)
@test sinpi(convert(T,1.0))::fT === zero(fT)
@test sinpi(convert(T,2.0))::fT === zero(fT)
T != Rational{Int} && @test sinpi(convert(T,-0.0))::fT === -zero(fT)
@test sinpi(convert(T,-1.0))::fT === -zero(fT)
@test sinpi(convert(T,-2.0))::fT === -zero(fT)
@test_throws DomainError sinpi(convert(T,Inf))
@test cospi(convert(T,0.5))::fT === zero(fT)
@test cospi(convert(T,1.5))::fT === zero(fT)
@test cospi(convert(T,-0.5))::fT === zero(fT)
@test cospi(convert(T,-1.5))::fT === zero(fT)
@test_throws DomainError cospi(convert(T,Inf))
# check exact values
@test sind(convert(T,30)) == 0.5
@test cosd(convert(T,60)) == 0.5
@test sind(convert(T,150)) == 0.5
@test sinpi(one(T)/convert(T,6)) == 0.5
@test_throws DomainError sind(convert(T,Inf))
@test_throws DomainError cosd(convert(T,Inf))
T != Float32 && @test cospi(one(T)/convert(T,3)) == 0.5
T == Rational{Int} && @test sinpi(5//6) == 0.5
end
@test sinpi(1) == 0
@test sinpi(-1) == -0
@test cospi(1) == -1
@test cospi(2) == 1
@test sinc(1) == 0
@test sinc(complex(1,0)) == 0
@test sinc(0) == 1
@test cosc(1) == -1
@test cosc(0) == 0
@test cosc(complex(1,0)) == -1
# check type stability
for T = (Float32,Float64,BigFloat)
for f = (sind,cosd,sinpi,cospi)
@test Base.return_types(f,Tuple{T}) == [T]
end
end
# error functions
@test_approx_eq erf(1) 0.84270079294971486934
@test_approx_eq erfc(1) 0.15729920705028513066
@test_approx_eq erfcx(1) 0.42758357615580700442
@test_approx_eq erfcx(Float32(1)) 0.42758357615580700442
@test_approx_eq erfcx(Complex64(1)) 0.42758357615580700442
@test_approx_eq erfi(1) 1.6504257587975428760
@test_approx_eq erfinv(0.84270079294971486934) 1
@test_approx_eq erfcinv(0.15729920705028513066) 1
@test_approx_eq dawson(1) 0.53807950691276841914
@test_approx_eq erf(1+2im) -0.53664356577856503399-5.0491437034470346695im
@test_approx_eq erfc(1+2im) 1.5366435657785650340+5.0491437034470346695im
@test_approx_eq erfcx(1+2im) 0.14023958136627794370-0.22221344017989910261im
@test_approx_eq erfi(1+2im) -0.011259006028815025076+1.0036063427256517509im
@test_approx_eq dawson(1+2im) -13.388927316482919244-11.828715103889593303im
for elty in [Float32,Float64]
for x in logspace(-200, -0.01)
@test_approx_eq_eps erf(erfinv(x)) x 1e-12*x
@test_approx_eq_eps erf(erfinv(-x)) -x 1e-12*x
@test_approx_eq_eps erfc(erfcinv(2*x)) 2*x 1e-12*x
if x > 1e-20
xf = Float32(x)
@test_approx_eq_eps erf(erfinv(xf)) xf 1e-5*xf
@test_approx_eq_eps erf(erfinv(-xf)) -xf 1e-5*xf
@test_approx_eq_eps erfc(erfcinv(2xf)) 2xf 1e-5*xf
end
end
@test erfinv(one(elty)) == Inf
@test erfinv(-one(elty)) == -Inf
@test_throws DomainError erfinv(convert(elty,2.0))
@test erfcinv(zero(elty)) == Inf
@test_throws DomainError erfcinv(-one(elty))
end
@test erfinv(one(Int)) == erfinv(1.0)
@test erfcinv(one(Int)) == erfcinv(1.0)
# airy
@test_approx_eq airy(1.8) airyai(1.8)
@test_approx_eq airyprime(1.8) -0.0685247801186109345638
@test_approx_eq airyaiprime(1.8) airyprime(1.8)
@test_approx_eq airybi(1.8) 2.595869356743906290060
@test_approx_eq airybiprime(1.8) 2.98554005084659907283
@test_throws Base.Math.AmosException airy(200im)
@test_throws Base.Math.AmosException airybi(200)
@test_throws ArgumentError airy(5,one(Complex128))
z = 1.8 + 1.0im
for elty in [Complex64,Complex128, Complex{BigFloat}]
@test_approx_eq airy(convert(elty,1.8)) 0.0470362168668458052247
z = convert(elty,z)
@test_approx_eq airyx(z) airyx(0,z)
@test_approx_eq airyx(0, z) airy(0, z) * exp(2/3 * z * sqrt(z))
@test_approx_eq airyx(1, z) airy(1, z) * exp(2/3 * z * sqrt(z))
@test_approx_eq airyx(2, z) airy(2, z) * exp(-abs(real(2/3 * z * sqrt(z))))
@test_approx_eq airyx(3, z) airy(3, z) * exp(-abs(real(2/3 * z * sqrt(z))))
@test_throws ArgumentError airyx(5,z)
end
# bessely0, bessely1, besselj0, besselj1
@test_approx_eq besselj0(Float32(2.0)) besselj0(Float64(2.0))
@test_approx_eq besselj1(Float32(2.0)) besselj1(Float64(2.0))
@test_approx_eq bessely0(Float32(2.0)) bessely0(Float64(2.0))
@test_approx_eq bessely1(Float32(2.0)) bessely1(Float64(2.0))
@test_approx_eq besselj0(2) besselj0(2.0)
@test_approx_eq besselj1(2) besselj1(2.0)
@test_approx_eq bessely0(2) bessely0(2.0)
@test_approx_eq bessely1(2) bessely1(2.0)
@test_approx_eq besselj0(2.0 + im) besselj(0, 2.0 + im)
@test_approx_eq besselj1(2.0 + im) besselj(1, 2.0 + im)
@test_approx_eq bessely0(2.0 + im) bessely(0, 2.0 + im)
@test_approx_eq bessely1(2.0 + im) bessely(1, 2.0 + im)
# besselh
true_h133 = 0.30906272225525164362 - 0.53854161610503161800im
@test_approx_eq besselh(3,1,3) true_h133
@test_approx_eq besselh(-3,1,3) -true_h133
@test_approx_eq besselh(3,2,3) conj(true_h133)
@test_approx_eq besselh(-3,2,3) -conj(true_h133)
@test_throws Base.Math.AmosException besselh(1,0)
# besseli
true_i33 = 0.95975362949600785698
@test_approx_eq besseli(3,3) true_i33
@test_approx_eq besseli(-3,3) true_i33
@test_approx_eq besseli(3,-3) -true_i33
@test_approx_eq besseli(-3,-3) -true_i33
@test_throws Base.Math.AmosException besseli(1,1000)
@test_throws DomainError besseli(0.4,-1.0)
# besselj
@test besselj(0,0) == 1
for i = 1:5
@test besselj(i,0) == 0
@test besselj(-i,0) == 0
@test besselj(-i,Float32(0)) == 0
@test besselj(-i,Float32(0)) == 0
end
j33 = besselj(3,3.)
@test besselj(3,3) == j33
@test besselj(-3,-3) == j33
@test besselj(-3,3) == -j33
@test besselj(3,-3) == -j33
j43 = besselj(4,3.)
@test besselj(4,3) == j43
@test besselj(-4,-3) == j43
@test besselj(-4,3) == j43
@test besselj(4,-3) == j43
@test_approx_eq j33 0.30906272225525164362
@test_approx_eq j43 0.13203418392461221033
@test_throws DomainError besselj(0.1, -0.4)
@test_approx_eq besselj(0.1, complex(-0.4)) 0.820421842809028916 + 0.266571215948350899im
@test_approx_eq besselj(3.2, 1.3+0.6im) 0.01135309305831220201 + 0.03927719044393515275im
@test_approx_eq besselj(1, 3im) 3.953370217402609396im
@test_approx_eq besselj(1.0,3im) besselj(1,3im)
@test besselj(big(1.0),3im) ≈ besselj(1,3im)
@test besselj(big(0.1), complex(-0.4)) ≈ 0.820421842809028916 + 0.266571215948350899im
@test_throws Base.Math.AmosException besselj(20,1000im)
# besselk
true_k33 = 0.12217037575718356792
@test_approx_eq besselk(3,3) true_k33
@test_approx_eq besselk(-3,3) true_k33
true_k3m3 = -0.1221703757571835679 - 3.0151549516807985776im
@test_throws DomainError besselk(3,-3)
@test_approx_eq besselk(3,complex(-3)) true_k3m3
@test_approx_eq besselk(-3,complex(-3)) true_k3m3
@test_throws Base.Math.AmosException besselk(200,0.01)
# issue #6564
@test besselk(1.0,0.0) == Inf
# bessely
y33 = bessely(3,3.)
@test bessely(3,3) == y33
@test bessely(3.,3.) == y33
@test_approx_eq bessely(3,Float32(3.)) y33
@test_approx_eq bessely(-3,3) -y33
@test_approx_eq y33 -0.53854161610503161800
@test_throws DomainError bessely(3,-3)
@test_approx_eq bessely(3,complex(-3)) 0.53854161610503161800 - 0.61812544451050328724im
@test_throws Base.Math.AmosException bessely(200.5,0.1)
@test_throws DomainError bessely(0.4,-1.0)
@test_throws DomainError bessely(0.4,Float32(-1.0))
@test_throws DomainError bessely(1,Float32(-1.0))
#besselhx
for elty in [Complex64,Complex128, Complex{BigFloat}]
z = convert(elty, 1.0 + 1.9im)
@test_approx_eq besselhx(1.0, 1, z) convert(elty,-0.5949634147786144 - 0.18451272807835967im)
end
# issue #6653
for f in (besselj,bessely,besseli,besselk,hankelh1,hankelh2)
@test_approx_eq f(0,1) f(0,Complex128(1))
@test_approx_eq f(0,1) f(0,Complex64(1))
end
# scaled bessel[ijky] and hankelh[12]
for x in (1.0, 0.0, -1.0), y in (1.0, 0.0, -1.0), nu in (1.0, 0.0, -1.0)
z = Complex128(x + y * im)
z == zero(z) || @test_approx_eq hankelh1x(nu, z) hankelh1(nu, z) * exp(-z * im)
z == zero(z) || @test_approx_eq hankelh2x(nu, z) hankelh2(nu, z) * exp(z * im)
(nu < 0 && z == zero(z)) || @test_approx_eq besselix(nu, z) besseli(nu, z) * exp(-abs(real(z)))
(nu < 0 && z == zero(z)) || @test_approx_eq besseljx(nu, z) besselj(nu, z) * exp(-abs(imag(z)))
z == zero(z) || @test_approx_eq besselkx(nu, z) besselk(nu, z) * exp(z)
z == zero(z) || @test_approx_eq besselyx(nu, z) bessely(nu, z) * exp(-abs(imag(z)))
end
@test_throws Base.Math.AmosException hankelh1x(1, 0)
@test_throws Base.Math.AmosException hankelh2x(1, 0)
@test_throws Base.Math.AmosException besselix(-1, 0)
@test_throws Base.Math.AmosException besseljx(-1, 0)
@test besselkx(1, 0) == Inf
@test_throws Base.Math.AmosException besselyx(1, 0)
@test_throws DomainError besselix(0.4,-1.0)
@test_throws DomainError besseljx(0.4, -1.0)
@test_throws DomainError besselkx(0.4,-1.0)
@test_throws DomainError besselyx(0.4,-1.0)
# beta, lbeta
@test_approx_eq beta(3/2,7/2) 5π/128
@test_approx_eq beta(3,5) 1/105
@test_approx_eq lbeta(5,4) log(beta(5,4))
@test_approx_eq beta(5,4) beta(4,5)
@test_approx_eq beta(-1/2, 3) -16/3
@test_approx_eq lbeta(-1/2, 3) log(16/3)
@test beta(Float32(5),Float32(4)) == beta(Float32(4),Float32(5))
# gamma, lgamma (complex argument)
if Base.Math.libm == "libopenlibm"
@test gamma(Float64[1:25;]) == gamma(1:25)
else
@test_approx_eq gamma(Float64[1:25;]) gamma(1:25)
end
for elty in (Float32, Float64)
@test_approx_eq gamma(convert(elty,1/2)) convert(elty,sqrt(π))
@test_approx_eq gamma(convert(elty,-1/2)) convert(elty,-2sqrt(π))
@test_approx_eq lgamma(convert(elty,-1/2)) convert(elty,log(abs(gamma(-1/2))))
end
@test_approx_eq lgamma(1.4+3.7im) -3.7094025330996841898 + 2.4568090502768651184im
@test_approx_eq lgamma(1.4+3.7im) log(gamma(1.4+3.7im))
@test_approx_eq lgamma(-4.2+0im) lgamma(-4.2)-pi*im
@test factorial(3.0) == gamma(4.0) == factorial(3)
for x in (3.2, 2+1im, 3//2, 3.2+0.1im)
@test factorial(x) == gamma(1+x)
end
@test lfact(1) == 0
@test lfact(2) == lgamma(3)
# digamma
for elty in (Float32, Float64)
@test_approx_eq digamma(convert(elty, 9)) convert(elty, 2.140641477955609996536345)
@test_approx_eq digamma(convert(elty, 2.5)) convert(elty, 0.7031566406452431872257)
@test_approx_eq digamma(convert(elty, 0.1)) convert(elty, -10.42375494041107679516822)
@test_approx_eq digamma(convert(elty, 7e-4)) convert(elty, -1429.147493371120205005198)
@test_approx_eq digamma(convert(elty, 7e-5)) convert(elty, -14286.29138623969227538398)
@test_approx_eq digamma(convert(elty, 7e-6)) convert(elty, -142857.7200612932791081972)
@test_approx_eq digamma(convert(elty, 2e-6)) convert(elty, -500000.5772123750382073831)
@test_approx_eq digamma(convert(elty, 1e-6)) convert(elty, -1000000.577214019968668068)
@test_approx_eq digamma(convert(elty, 7e-7)) convert(elty, -1428572.005785942019703646)
@test_approx_eq digamma(convert(elty, -0.5)) convert(elty, .03648997397857652055902367)
@test_approx_eq digamma(convert(elty, -1.1)) convert(elty, 10.15416395914385769902271)
@test_approx_eq digamma(convert(elty, 0.1)) convert(elty, -10.42375494041108)
@test_approx_eq digamma(convert(elty, 1/2)) convert(elty, -γ - log(4))
@test_approx_eq digamma(convert(elty, 1)) convert(elty, -γ)
@test_approx_eq digamma(convert(elty, 2)) convert(elty, 1 - γ)
@test_approx_eq digamma(convert(elty, 3)) convert(elty, 3/2 - γ)
@test_approx_eq digamma(convert(elty, 4)) convert(elty, 11/6 - γ)
@test_approx_eq digamma(convert(elty, 5)) convert(elty, 25/12 - γ)
@test_approx_eq digamma(convert(elty, 10)) convert(elty, 7129/2520 - γ)
end
# trigamma
for elty in (Float32, Float64)
@test_approx_eq trigamma(convert(elty, 0.1)) convert(elty, 101.433299150792758817)
@test_approx_eq trigamma(convert(elty, 1/2)) convert(elty, π^2/2)
@test_approx_eq trigamma(convert(elty, 1)) convert(elty, π^2/6)
@test_approx_eq trigamma(convert(elty, 2)) convert(elty, π^2/6 - 1)
@test_approx_eq trigamma(convert(elty, 3)) convert(elty, π^2/6 - 5/4)
@test_approx_eq trigamma(convert(elty, 4)) convert(elty, π^2/6 - 49/36)
@test_approx_eq trigamma(convert(elty, 5)) convert(elty, π^2/6 - 205/144)
@test_approx_eq trigamma(convert(elty, 10)) convert(elty, π^2/6 - 9778141/6350400)
end
# invdigamma
for elty in (Float32, Float64)
for val in [0.001, 0.01, 0.1, 1.0, 10.0]
@test abs(invdigamma(digamma(convert(elty, val))) - convert(elty, val)) < 1e-8
end
end
@test abs(invdigamma(2)) == abs(invdigamma(2.))
@test_approx_eq polygamma(20, 7.) -4.644616027240543262561198814998587152547
# eta, zeta
@test_approx_eq eta(1) log(2)
@test_approx_eq eta(2) pi^2/12
@test_approx_eq eta(Float32(2)) eta(2)
@test_approx_eq eta(Complex64(2)) eta(2)
@test_approx_eq zeta(0) -0.5
@test_approx_eq zeta(2) pi^2/6
@test_approx_eq zeta(Complex64(2)) zeta(2)
@test_approx_eq zeta(4) pi^4/90
@test_approx_eq zeta(one(Float32)) Float32(zeta(one(Float64)))
@test isnan(zeta(NaN))
@test isnan(zeta(complex(0,Inf)))
@test isnan(zeta(complex(-Inf,0)))
# quadgk
@test_approx_eq quadgk(cos, 0,0.7,1)[1] sin(1)
@test_approx_eq quadgk(x -> exp(im*x), 0,0.7,1)[1] (exp(1im)-1)/im
@test_approx_eq quadgk(x -> exp(im*x), 0,1im)[1] -1im*expm1(-1)
@test_approx_eq_eps quadgk(cos, 0,BigFloat(1),order=40)[1] sin(BigFloat(1)) 1000*eps(BigFloat)
@test_approx_eq quadgk(x -> exp(-x), 0,0.7,Inf)[1] 1.0
@test_approx_eq quadgk(x -> exp(x), -Inf,0)[1] 1.0
@test_approx_eq quadgk(x -> exp(-x^2), -Inf,Inf)[1] sqrt(pi)
@test_approx_eq quadgk(x -> [exp(-x), exp(-2x)], 0, Inf)[1] [1,0.5]
@test_approx_eq quadgk(cos, 0,0.7,1, norm=abs)[1] sin(1)
# Ensure subnormal flags functions don't segfault
@test any(set_zero_subnormals(true) .== [false,true])
@test any(get_zero_subnormals() .== [false,true])
@test set_zero_subnormals(false)
@test !get_zero_subnormals()
# useful test functions for relative error
err(z, x) = abs(z - x) / abs(x)
errc(z, x) = max(err(real(z),real(x)), err(imag(z),imag(x)))
for x in -10.2:0.3456:50
@test 1e-12 > err(digamma(x+0im), digamma(x))
end
# digamma, trigamma, polygamma & zeta test cases (compared to Wolfram Alpha)
@test 1e-13 > err(digamma(7+0im), 1.872784335098467139393487909917597568957840664060076401194232)
@test 1e-13 > errc(digamma(7im), 1.94761433458434866917623737015561385331974500663251349960124 + 1.642224898223468048051567761191050945700191089100087841536im)
@test 1e-13 > errc(digamma(-3.2+0.1im), 4.65022505497781398615943030397508454861261537905047116427511+2.32676364843128349629415011622322040021960602904363963042380im)
@test 1e-13 > err(trigamma(8+0im), 0.133137014694031425134546685920401606452509991909746283540546)
@test 1e-13 > errc(trigamma(8im), -0.0078125000000000000029194973110119898029284994355721719150 - 0.12467345030312762782439017882063360876391046513966063947im)
@test 1e-13 > errc(trigamma(-3.2+0.1im), 15.2073506449733631753218003030676132587307964766963426965699+15.7081038855113567966903832015076316497656334265029416039199im)
@test 1e-13 > err(polygamma(2, 8.1+0im), -0.01723882695611191078960494454602091934457319791968308929600)
@test 1e-13 > errc(polygamma(30, 8.1+2im), -2722.8895150799704384107961215752996280795801958784600407589+6935.8508929338093162407666304759101854270641674671634631058im)
@test 1e-13 > errc(polygamma(3, 2.1+1im), 0.00083328137020421819513475400319288216246978855356531898998-0.27776110819632285785222411186352713789967528250214937861im)
@test 1e-11 > err(polygamma(3, -4.2 + 2im),-0.0037752884324358856340054736472407163991189965406070325067-0.018937868838708874282432870292420046797798431078848805822im)
@test 1e-13 > err(polygamma(13, 5.2 - 2im), 0.08087519202975913804697004241042171828113370070289754772448-0.2300264043021038366901951197725318713469156789541415899307im)
@test 1e-11 > err(polygamma(123, -47.2 + 0im), 5.7111648667225422758966364116222590509254011308116701029e291)
@test 1e-13 > errc(zeta(4.1+0.3im, -3.2+0.1im), -461.95403678374488506025596495576748255121001107881278765917+926.02552636148651929560277856510991293536052745360005500774im)
@test 1e-13 > errc(zeta(4.1+0.3im, 3.2+0.1im), 0.0121197525131633219465301571139288562254218365173899270675-0.00687228692565614267981577154948499247518236888933925740902im)
@test 1e-13 > errc(zeta(4.1, 3.2+0.1im),0.0137637451187986846516125754047084829556100290057521276517-0.00152194599531628234517456529686769063828217532350810111482im)
@test 1e-12 > errc(zeta(1.0001, -4.5e2+3.2im), 9993.89099199843392251301993718413132850540848778561412270571-3.13257480938495907945892330398176989805350557816701044268548im)
@test_throws DomainError zeta(3.1,-4.2)
@test 1e-13 > errc(zeta(3.1,-4.2+0im), -138.06320182025311080661516120845508778572835942189570145952+45.586579397698817209431034568162819207622092308850063038062im)
@test 1e-15 > errc(zeta(3.1+0im,-4.2), zeta(3.1,-4.2+0im))
@test 1e-13 > errc(zeta(3.1,4.2), 0.029938344862645948405021260567725078588893266227472565010234)
@test 1e-13 > err(zeta(27, 3.1), 5.413318813037879056337862215066960774064332961282599376e-14)
@test 1e-13 > err(zeta(27, 2), 7.4507117898354294919810041706041194547190318825658299932e-9)
@test 1e-12 > err(zeta(27, -105.3), -1.311372652244914148556295810515903234635727465138859603e14)
@test polygamma(4, -3.1+Inf*im) == polygamma(4, 3.1+Inf*im) == 0
@test polygamma(4, -0.0) == Inf == -polygamma(4, +0.0)
@test zeta(4, +0.0) == Inf == zeta(4, -0.0)
@test zeta(5, +0.0) == Inf == -zeta(5, -0.0)
@test zeta(Inf, 1.) == 1
@test zeta(Inf, 2.) == 0
@test isnan(zeta(NaN, 1.))
@test isa([digamma(x) for x in [1.0]], Vector{Float64})
@test isa([trigamma(x) for x in [1.0]], Vector{Float64})
@test isa([polygamma(3,x) for x in [1.0]], Vector{Float64})
@test 1e-13 > errc(zeta(2 + 1im, -1.1), zeta(2 + 1im, -1.1+0im))
@test 1e-13 > errc(zeta(2 + 1im, -1.1), -1525.8095173321060982383023516086563741006869909580583246557 + 1719.4753293650912305811325486980742946107143330321249869576im)
@test_approx_eq polygamma(3,5) polygamma(3,5.)
@test @evalpoly(2,3,4,5,6) == 3+2*(4+2*(5+2*6)) == @evalpoly(2+0im,3,4,5,6)
@test let evalcounts=0
@evalpoly(begin
evalcounts += 1
4
end, 1,2,3,4,5)
evalcounts
end == 1
a0 = 1
a1 = 2
c = 3
@test @evalpoly(c, a0, a1) == 7
@test 1e-14 > err(eta(1+1e-9), 0.693147180719814213126976796937244130533478392539154928250926)
@test 1e-14 > err(eta(1+5e-3), 0.693945708117842473436705502427198307157819636785324430166786)
@test 1e-13 > err(eta(1+7.1e-3), 0.694280602623782381522315484518617968911346216413679911124758)
@test 1e-13 > err(eta(1+8.1e-3), 0.694439974969407464789106040237272613286958025383030083792151)
@test 1e-13 > err(eta(1 - 2.1e-3 + 2e-3 * im), 0.69281144248566007063525513903467244218447562492555491581+0.00032001240133205689782368277733081683574922990400416791019im)
@test 1e-13 > err(eta(1 + 5e-3 + 5e-3 * im), 0.69394652468453741050544512825906295778565788963009705146+0.00079771059614865948716292388790427833787298296229354721960im)
@test 1e-12 > errc(zeta(1e-3+1e-3im), -0.5009189365276307665899456585255302329444338284981610162-0.0009209468912269622649423786878087494828441941303691216750im)
@test 1e-13 > errc(zeta(1e-4 + 2e-4im), -0.5000918637469642920007659467492165281457662206388959645-0.0001838278317660822408234942825686513084009527096442173056im)
# Issue #7169: (TODO: better accuracy should be possible?)
@test 1e-9 > errc(zeta(0 + 99.69im), 4.67192766128949471267133846066040655597942700322077493021802+3.89448062985266025394674304029984849370377607524207984092848im)
@test 1e-12 > errc(zeta(3 + 99.69im), 1.09996958148566565003471336713642736202442134876588828500-0.00948220959478852115901654819402390826992494044787958181148im)
@test 1e-9 > errc(zeta(-3 + 99.69im), 10332.6267578711852982128675093428012860119184786399673520976+13212.8641740351391796168658602382583730208014957452167440726im)
@test 1e-13 > errc(zeta(2 + 99.69im, 1.3), 0.41617652544777996034143623540420694985469543821307918291931-0.74199610821536326325073784018327392143031681111201859489991im)
for z in (1.234, 1.234 + 5.678im, [1.234, 5.678])
@test_approx_eq cis(z) exp(im*z)
end
# modf
for elty in (Float32, Float64)
@test_approx_eq modf( convert(elty,1.2) )[1] convert(elty,0.2)
@test_approx_eq modf( convert(elty,1.2) )[2] convert(elty,1.0)
@test_approx_eq modf( convert(elty,1.0) )[1] convert(elty,0.0)
@test_approx_eq modf( convert(elty,1.0) )[2] convert(elty,1.0)
end
# frexp
for elty in (Float32, Float64)
@test frexp( convert(elty,0.5) ) == (convert(elty,0.5),0)
@test frexp( convert(elty,4.0) ) == (convert(elty,0.5),3)
@test_approx_eq frexp( convert(elty,10.5) )[1] convert(elty,0.65625)
@test frexp( convert(elty,10.5) )[2] == 4
@test_approx_eq frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[1][1] convert(elty,0.5)
@test_approx_eq frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[1][2] convert(elty,0.65625)
@test frexp( [ convert(elty,4.0) convert(elty,10.5) ] )[2] == [ 3 4 ]
end
# log/log1p
# if using Tang's algorithm, should be accurate to within 0.56 ulps
X = rand(100)
for x in X
for n = -5:5
xn = ldexp(x,n)
for T in (Float32,Float64)
xt = T(x)
y = Base.Math.JuliaLibm.log(xt)
yb = log(big(xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
y = Base.Math.JuliaLibm.log1p(xt)
yb = log1p(big(xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
if n <= 0
y = Base.Math.JuliaLibm.log1p(-xt)
yb = log1p(big(-xt))
@test abs(y-yb) <= 0.56*eps(T(yb))
end
end
end
end
for n = 0:28
@test log(2,2^n) == n
end
with_bigfloat_precision(10_000) do
@test log(2,big(2)^100) == 100
@test log(2,big(2)^200) == 200
@test log(2,big(2)^300) == 300
@test log(2,big(2)^400) == 400
end
for T in (Float32,Float64)
@test log(zero(T)) == -Inf
@test isnan(log(NaN))
@test_throws DomainError log(-one(T))
@test log1p(-one(T)) == -Inf
@test isnan(log1p(NaN))
@test_throws DomainError log1p(-2*one(T))
end
# test vectorization of 2-arg vectorized functions
binary_math_functions = [
copysign, flipsign, log, atan2, hypot, max, min,
airy, airyx, besselh, hankelh1, hankelh2, hankelh1x, hankelh2x,
besseli, besselix, besselj, besseljx, besselk, besselkx, bessely, besselyx,
polygamma, zeta, beta, lbeta,
]
for f in binary_math_functions
x = y = 2
v = [f(x,y)]
@test f([x],y) == v
@test f(x,[y]) == v
@test f([x],[y]) == v
end
# #3024, #12822
@test_throws DomainError 2 ^ -2
@test_throws DomainError (-2)^(2.2)
@test_throws DomainError (-2.0)^(2.2)
|