This file is indexed.

/usr/share/julia/test/linalg/tridiag.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
# This file is a part of Julia. License is MIT: http://julialang.org/license

debug = false

using Base.Test

# basic tridiagonal operations
n = 5

srand(123)

d = 1 .+ rand(n)
dl = -rand(n-1)
du = -rand(n-1)
v = randn(n)
B = randn(n,2)

for elty in (Float32, Float64, Complex64, Complex128, Int)
    if elty == Int
        srand(61516384)
        d = rand(1:100, n)
        dl = -rand(0:10, n-1)
        du = -rand(0:10, n-1)
        v = rand(1:100, n)
        B = rand(1:100, n, 2)
    else
        d = convert(Vector{elty}, d)
        dl = convert(Vector{elty}, dl)
        du = convert(Vector{elty}, du)
        v = convert(Vector{elty}, v)
        B = convert(Matrix{elty}, B)
    end
    ε = eps(abs2(float(one(elty))))
    T = Tridiagonal(dl, d, du)
    Ts = SymTridiagonal(d, dl)
    @test_throws ArgumentError size(Ts,0)
    @test size(Ts,3) == 1
    @test size(T, 1) == n
    @test size(T) == (n, n)
    F = diagm(d)
    for i = 1:n-1
        F[i,i+1] = du[i]
        F[i+1,i] = dl[i]
    end
    @test full(T) == F

    # elementary operations on tridiagonals
    @test conj(T) == Tridiagonal(conj(dl), conj(d), conj(du))
    @test transpose(T) == Tridiagonal(du, d, dl)
    @test ctranspose(T) == Tridiagonal(conj(du), conj(d), conj(dl))

    @test abs(T) == Tridiagonal(abs(dl),abs(d),abs(du))
    @test real(T) == Tridiagonal(real(dl),real(d),real(du))
    @test imag(T) == Tridiagonal(imag(dl),imag(d),imag(du))
    @test abs(Ts) == SymTridiagonal(abs(d),abs(dl))
    @test real(Ts) == SymTridiagonal(real(d),real(dl))
    @test imag(Ts) == SymTridiagonal(imag(d),imag(dl))

    # test interconversion of Tridiagonal and SymTridiagonal
    @test Tridiagonal(dl, d, dl) == SymTridiagonal(d, dl)
    @test SymTridiagonal(d, dl) == Tridiagonal(dl, d, dl)
    @test Tridiagonal(dl, d, du) + Tridiagonal(du, d, dl) == SymTridiagonal(2d, dl+du)
    @test SymTridiagonal(d, dl) + Tridiagonal(dl, d, du) == Tridiagonal(dl + dl, d+d, dl+du)
    @test convert(SymTridiagonal,Tridiagonal(Ts)) == Ts
    @test full(convert(SymTridiagonal{Complex64},Tridiagonal(Ts))) == convert(Matrix{Complex64},full(Ts))

    # tridiagonal linear algebra
    @test_approx_eq T*v F*v
    invFv = F\v
    @test_approx_eq T\v invFv
    # @test_approx_eq Base.solve(T,v) invFv
    # @test_approx_eq Base.solve(T, B) F\B
    Tlu = factorize(T)
    x = Tlu\v
    @test_approx_eq x invFv
    @test_approx_eq det(T) det(F)

    @test_approx_eq T * Base.LinAlg.UnitUpperTriangular(eye(n)) F*eye(n)
    @test_approx_eq T * Base.LinAlg.UnitLowerTriangular(eye(n)) F*eye(n)
    @test_approx_eq T * UpperTriangular(eye(n)) F*eye(n)
    @test_approx_eq T * LowerTriangular(eye(n)) F*eye(n)

    # symmetric tridiagonal
    if elty <: Real
        Ts = SymTridiagonal(d, dl)
        Fs = full(Ts)
        invFsv = Fs\v
        Tldlt = factorize(Ts)
        x = Tldlt\v
        @test_approx_eq x invFsv
        @test_approx_eq full(full(Tldlt)) Fs
        @test_throws DimensionMismatch Tldlt\rand(elty,n+1)
        @test size(Tldlt) == size(Ts)
        if elty <: AbstractFloat
            @test typeof(convert(Base.LinAlg.LDLt{Float32},Tldlt)) == Base.LinAlg.LDLt{Float32,SymTridiagonal{elty}}
        end
    end

    # eigenvalues/eigenvectors of symmetric tridiagonal
    if elty === Float32 || elty === Float64
        DT, VT = eig(Ts)
        D, Vecs = eig(Fs)
        @test_approx_eq DT D
        @test_approx_eq abs(VT'Vecs) eye(elty, n)
        @test eigvecs(Ts) == eigvecs(Fs)
        #call to LAPACK.stein here
        Test.test_approx_eq_modphase(eigvecs(Ts,eigvals(Ts)),eigvecs(Fs))
    end

    # Test det(A::Matrix)
    # In the long run, these tests should step through Strang's
    #  axiomatic definition of determinants.
    # If all axioms are satisfied and all the composition rules work,
    #  all determinants will be correct except for floating point errors.

    # The determinant of the identity matrix should always be 1.
    for i = 1:10
        A = eye(elty, i)
        @test_approx_eq det(A) one(elty)
    end

    # The determinant of a Householder reflection matrix should always be -1.
    for i = 1:10
        A = eye(elty, 10)
        A[i, i] = -one(elty)
        @test_approx_eq det(A) -one(elty)
    end

    # The determinant of a rotation matrix should always be 1.
    if elty != Int
        for theta = convert(Vector{elty}, pi ./ [1:4;])
            R = [cos(theta) -sin(theta);
                 sin(theta) cos(theta)]
            @test_approx_eq convert(elty, det(R)) one(elty)
        end

    # issue #1490
    @test_approx_eq_eps det(ones(elty, 3,3)) zero(elty) 3*eps(real(one(elty)))

    @test det(SymTridiagonal(elty[],elty[])) == one(elty)

    #tril/triu
    @test_throws ArgumentError tril!(SymTridiagonal(d,dl),n+1)
    @test_throws ArgumentError tril!(Tridiagonal(dl,d,du),n+1)
    @test tril(SymTridiagonal(d,dl))    == Tridiagonal(dl,d,zeros(dl))
    @test tril(SymTridiagonal(d,dl),1)  == Tridiagonal(dl,d,dl)
    @test tril(SymTridiagonal(d,dl),-1) == Tridiagonal(dl,zeros(d),zeros(dl))
    @test tril(SymTridiagonal(d,dl),-2) == Tridiagonal(zeros(dl),zeros(d),zeros(dl))
    @test tril(Tridiagonal(dl,d,du))    == Tridiagonal(dl,d,zeros(du))
    @test tril(Tridiagonal(dl,d,du),1)  == Tridiagonal(dl,d,du)
    @test tril(Tridiagonal(dl,d,du),-1) == Tridiagonal(dl,zeros(d),zeros(du))
    @test tril(Tridiagonal(dl,d,du),-2) == Tridiagonal(zeros(dl),zeros(d),zeros(du))

    @test_throws ArgumentError triu!(SymTridiagonal(d,dl),n+1)
    @test_throws ArgumentError triu!(Tridiagonal(dl,d,du),n+1)
    @test triu(SymTridiagonal(d,dl))    == Tridiagonal(zeros(dl),d,dl)
    @test triu(SymTridiagonal(d,dl),-1) == Tridiagonal(dl,d,dl)
    @test triu(SymTridiagonal(d,dl),1)  == Tridiagonal(zeros(dl),zeros(d),dl)
    @test triu(SymTridiagonal(d,dl),2)  == Tridiagonal(zeros(dl),zeros(d),zeros(dl))
    @test triu(Tridiagonal(dl,d,du))    == Tridiagonal(zeros(dl),d,du)
    @test triu(Tridiagonal(dl,d,du),-1) == Tridiagonal(dl,d,du)
    @test triu(Tridiagonal(dl,d,du),1)  == Tridiagonal(zeros(dl),zeros(d),du)
    @test triu(Tridiagonal(dl,d,du),2)  == Tridiagonal(zeros(dl),zeros(d),zeros(du))

    @test !istril(SymTridiagonal(d,dl))
    @test !istriu(SymTridiagonal(d,dl))
    @test istriu(Tridiagonal(zeros(dl),d,du))
    @test istril(Tridiagonal(dl,d,zeros(du)))
    end
end

#Test equivalence of eigenvectors/singular vectors taking into account possible phase (sign) differences
function test_approx_eq_vecs{S<:Real,T<:Real}(a::StridedVecOrMat{S}, b::StridedVecOrMat{T}, error=nothing)
    n = size(a, 1)
    @test n==size(b,1) && size(a,2)==size(b,2)
    error==nothing && (error=n^3*(eps(S)+eps(T)))
    for i=1:n
        ev1, ev2 = a[:,i], b[:,i]
        deviation = min(abs(norm(ev1-ev2)),abs(norm(ev1+ev2)))
        if !isnan(deviation)
            @test_approx_eq_eps deviation 0.0 error
        end
    end
end

let n = 12 #Size of matrix problem to test
    srand(123)
    debug && println("SymTridiagonal (symmetric tridiagonal) matrices")
    for relty in (Float32, Float64), elty in (relty, Complex{relty})
        debug && println("elty is $(elty), relty is $(relty)")
        a = convert(Vector{elty}, randn(n))
        b = convert(Vector{elty}, randn(n-1))
        if elty <: Complex
            a += im*convert(Vector{elty}, randn(n))
            b += im*convert(Vector{elty}, randn(n-1))
        end

        @test_throws DimensionMismatch SymTridiagonal(a, ones(n+1))
        @test_throws ArgumentError SymTridiagonal(rand(n,n))

        A = SymTridiagonal(a, b)
        fA = map(elty <: Complex ? Complex128 : Float64, full(A))

        debug && println("getindex")
        @test_throws BoundsError A[n+1,1]
        @test_throws BoundsError A[1,n+1]
        @test A[1,n] == convert(elty,0.0)
        @test A[1,1] == a[1]

        debug && println("Diagonal extraction")
        @test diag(A,1) == b
        @test diag(A,-1) == b
        @test diag(A,0) == a
        @test diag(A,n-1) == zeros(elty,1)
        @test_throws ArgumentError diag(A,n+1)

        debug && println("Idempotent tests")
        for func in (conj, transpose, ctranspose)
            @test func(func(A)) == A
        end

        debug && println("Simple unary functions")
        for func in (det, inv)
            @test_approx_eq_eps func(A) func(fA) n^2*sqrt(eps(relty))
        end

        debug && println("Rounding to Ints")
        if elty <: Real
            @test round(Int,A) == round(Int,fA)
            @test trunc(Int,A) == trunc(Int,fA)
            @test ceil(Int,A) == ceil(Int,fA)
            @test floor(Int,A) == floor(Int,fA)
        end

        debug && println("Tridiagonal/SymTridiagonal mixing ops")
        B = convert(Tridiagonal{elty},A)
        @test B == A
        @test B + A == A + B
        @test B - A == A - B

        debug && println("Multiplication with strided vector")
        @test_approx_eq A*ones(n) full(A)*ones(n)

        debug && println("Multiplication with strided matrix")
        @test_approx_eq A*ones(n, 2) full(A)*ones(n, 2)

        debug && println("Eigensystems")
        if elty <: Real
            zero, infinity = convert(elty, 0), convert(elty, Inf)
            debug && println("This tests eigenvalue and eigenvector computations using stebz! and stein!")
            w, iblock, isplit = LAPACK.stebz!('V', 'B', -infinity, infinity, 0, 0, zero, a, b)
            evecs = LAPACK.stein!(a, b, w)

            (e, v) = eig(SymTridiagonal(a, b))
            @test_approx_eq e w
            test_approx_eq_vecs(v, evecs)

            debug && println("stein! call using iblock and isplit")
            w, iblock, isplit = LAPACK.stebz!('V', 'B', -infinity, infinity, 0, 0, zero, a, b)
            evecs = LAPACK.stein!(a, b, w, iblock, isplit)
            test_approx_eq_vecs(v, evecs)

            debug && println("stegr! call with index range")
            F = eigfact(SymTridiagonal(a, b),1:2)
            fF = eigfact(Symmetric(full(SymTridiagonal(a, b))),1:2)
            Test.test_approx_eq_modphase(F[:vectors], fF[:vectors])
            @test_approx_eq F[:values] fF[:values]

            debug && println("stegr! call with value range")
            F = eigfact(SymTridiagonal(a, b),0.0,1.0)
            fF = eigfact(Symmetric(full(SymTridiagonal(a, b))),0.0,1.0)
            Test.test_approx_eq_modphase(F[:vectors], fF[:vectors])
            @test_approx_eq F[:values] fF[:values]
        end

        debug && println("Binary operations")
        a = convert(Vector{elty}, randn(n))
        b = convert(Vector{elty}, randn(n - 1))
        if elty <: Complex
            a += im*convert(Vector{elty}, randn(n))
            b += im*convert(Vector{elty}, randn(n - 1))
        end

        B = SymTridiagonal(a, b)
        fB = map(elty <: Complex ? Complex128 : Float64, full(B))

        for op in (+, -, *)
            @test_approx_eq full(op(A, B)) op(fA, fB)
        end
        α = rand(elty)
        @test_approx_eq full(α*A) α*full(A)
        @test_approx_eq full(A*α) full(A)*α
        @test_approx_eq full(A/α) full(A)/α

        debug && println("A_mul_B!")
        @test_throws DimensionMismatch A_mul_B!(zeros(elty,n,n),B,ones(elty,n+1,n))
        @test_throws DimensionMismatch A_mul_B!(zeros(elty,n+1,n),B,ones(elty,n,n))
        @test_throws DimensionMismatch A_mul_B!(zeros(elty,n,n+1),B,ones(elty,n,n))

    end

    debug && println("Tridiagonal matrices")
    for relty in (Float32, Float64), elty in (relty, Complex{relty})
        debug && println("relty is $(relty), elty is $(elty)")
        a = convert(Vector{elty}, randn(n - 1))
        b = convert(Vector{elty}, randn(n))
        c = convert(Vector{elty}, randn(n - 1))
        if elty <: Complex
            a += im*convert(Vector{elty}, randn(n - 1))
            b += im*convert(Vector{elty}, randn(n))
            c += im*convert(Vector{elty}, randn(n - 1))
        end

        @test_throws ArgumentError Tridiagonal(a,a,a)
        A = Tridiagonal(a, b, c)
        fA = map(elty <: Complex ? Complex128 : Float64, full(A))

        debug && println("Similar, size, and copy!")
        B = similar(A)
        @test size(B) == size(A)
        copy!(B,A)
        @test B == A
        @test_throws DimensionMismatch similar(A,(n,n,2))
        @test_throws DimensionMismatch similar(A,(n+1,n))
        @test_throws DimensionMismatch similar(A,(n,n+1))
        @test size(A,3) == 1
        @test_throws ArgumentError size(A,0)

        debug && println("Diagonal extraction")
        @test diag(A,-1) == a
        @test diag(A,0) == b
        @test diag(A,1) == c
        @test diag(A,n-1) == zeros(elty,1)
        @test_throws ArgumentError diag(A,n+1)

        debug && println("Simple unary functions")
        for func in (det, inv)
            @test_approx_eq_eps func(A) func(fA) n^2*sqrt(eps(relty))
        end

        debug && println("Rounding to Ints")
        if elty <: Real
            @test round(Int,A) == round(Int,fA)
            @test trunc(Int,A) == trunc(Int,fA)
            @test ceil(Int,A) == ceil(Int,fA)
            @test floor(Int,A) == floor(Int,fA)
        end

        debug && println("Binary operations")
        a = convert(Vector{elty}, randn(n - 1))
        b = convert(Vector{elty}, randn(n))
        c = convert(Vector{elty}, randn(n - 1))
        if elty <: Complex
            a += im*convert(Vector{elty}, randn(n - 1))
            b += im*convert(Vector{elty}, randn(n))
            c += im*convert(Vector{elty}, randn(n - 1))
        end

        debug && println("Multiplication with strided vector")
        @test_approx_eq A*ones(n) full(A)*ones(n)

        debug && println("Multiplication with strided matrix")
        @test_approx_eq A*ones(n, 2) full(A)*ones(n, 2)


        B = Tridiagonal(a, b, c)
        fB = map(elty <: Complex ? Complex128 : Float64, full(B))

        for op in (+, -, *)
            @test_approx_eq full(op(A, B)) op(fA, fB)
        end
        α = rand(elty)
        @test_approx_eq full(α*A) α*full(A)
        @test_approx_eq full(A*α) full(A)*α
        @test_approx_eq full(A/α) full(A)/α

        @test_throws ArgumentError convert(SymTridiagonal{elty},A)

        debug && println("A_mul_B!")
        @test_throws DimensionMismatch Base.LinAlg.A_mul_B!(zeros(fA),A,ones(elty,n,n+1))
        @test_throws DimensionMismatch Base.LinAlg.A_mul_B!(zeros(fA),A,ones(elty,n+1,n))

        debug && println("getindex")
        @test_throws BoundsError A[n+1,1]
        @test_throws BoundsError A[1,n+1]
    end
end

# Issue 12068
SymTridiagonal([1, 2], [0])^3 == [1 0; 0 8]

#test convert for SymTridiagonal
@test convert(SymTridiagonal{Float64},SymTridiagonal(ones(Float32,5),ones(Float32,4))) == SymTridiagonal(ones(Float64,5),ones(Float64,4))
@test convert(AbstractMatrix{Float64},SymTridiagonal(ones(Float32,5),ones(Float32,4))) == SymTridiagonal(ones(Float64,5),ones(Float64,4))