This file is indexed.

/usr/share/julia/test/linalg/triangular.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
# This file is a part of Julia. License is MIT: http://julialang.org/license

debug = false
using Base.Test
using Base.LinAlg: BlasFloat, errorbounds, full!, naivesub!, transpose!, UnitUpperTriangular, UnitLowerTriangular, A_rdiv_B!, A_rdiv_Bc!

debug && println("Triangular matrices")

n = 9
srand(123)

debug && println("Test basic type functionality")
@test_throws DimensionMismatch LowerTriangular(randn(5, 4))
@test LowerTriangular(randn(3, 3)) |> t -> [size(t, i) for i = 1:3] == [size(full(t), i) for i = 1:3]

# The following test block tries to call all methods in base/linalg/triangular.jl in order for a combination of input element types. Keep the ordering when adding code.
for elty1 in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
    # Begin loop for first Triangular matrix
    for (t1, uplo1) in ((UpperTriangular, :U),
                        (UnitUpperTriangular, :U),
                        (LowerTriangular, :L),
                        (UnitLowerTriangular, :L))

        # Construct test matrix
        A1 = t1(elty1 == Int ? rand(1:7, n, n) : convert(Matrix{elty1}, (elty1 <: Complex ? complex(randn(n, n), randn(n, n)) : randn(n, n)) |> t -> chol(t't, Val{uplo1})))

        debug && println("elty1: $elty1, A1: $t1")

        # Convert
        @test convert(AbstractMatrix{elty1}, A1) == A1
        @test convert(Matrix, A1) == full(A1)

        # full!
        @test full!(copy(A1)) == full(A1)

        # fill!
        @test full!(fill!(copy(A1), 1)) == full(t1(ones(size(A1)...)))

        # similar
        @test isa(similar(A1), t1)
        @test_throws ArgumentError similar(A1,typeof(A1),(n,n+1))
        @test_throws ArgumentError similar(A1,typeof(A1),(n,n,n))

        # getindex
        ## Linear indexing
        for i = 1:length(A1)
            @test A1[i] == full(A1)[i]
        end

        ## Cartesian indexing
        for i = 1:size(A1, 1)
            for j = 1:size(A1, 2)
                @test A1[i,j] == full(A1)[i,j]
            end
        end

        # setindex! (and copy)
        A1c = copy(A1)
        for i = 1:size(A1, 1)
            for j = 1:size(A1, 2)
                if uplo1 == :U
                    if i > j
                        A1c[i,j] = 0
                        @test_throws ArgumentError A1c[i,j] = 1
                    elseif i == j && t1 == UnitUpperTriangular
                        A1c[i,j] = 1
                        @test_throws ArgumentError A1c[i,j] = 0
                    else
                        A1c[i,j] = 0
                        @test A1c[i,j] == 0
                    end
                else
                    if i < j
                        A1c[i,j] = 0
                        @test_throws ArgumentError A1c[i,j] = 1
                    elseif i == j && t1 == UnitLowerTriangular
                        A1c[i,j] = 1
                        @test_throws ArgumentError A1c[i,j] = 0
                    else
                        A1c[i,j] = 0
                        @test A1c[i,j] == 0
                    end
                end
            end
        end

        # istril/istriu
        if uplo1 == :L
            @test istril(A1)
            @test !istriu(A1)
        else
            @test istriu(A1)
            @test !istril(A1)
        end

        #tril/triu
        if uplo1 == :L
            @test tril(A1,0)  == A1
            @test tril(A1,-1) == LowerTriangular(tril(full(A1),-1))
            @test tril(A1,1)  == t1(tril(tril(full(A1),1)))
            @test_throws ArgumentError tril!(A1,n+1)
            @test triu(A1,0)  == t1(diagm(diag(A1)))
            @test triu(A1,-1) == t1(tril(triu(A1.data,-1)))
            @test triu(A1,1)  == LowerTriangular(zeros(A1.data))
            @test_throws ArgumentError triu!(A1,n+1)
        else
            @test triu(A1,0)  == A1
            @test triu(A1,1)  == UpperTriangular(triu(full(A1),1))
            @test triu(A1,-1) == t1(triu(triu(full(A1),-1)))
            @test_throws ArgumentError triu!(A1,n+1)
            @test tril(A1,0)  == t1(diagm(diag(A1)))
            @test tril(A1,1)  == t1(triu(tril(A1.data,1)))
            @test tril(A1,-1) == UpperTriangular(zeros(A1.data))
            @test_throws ArgumentError tril!(A1,n+1)
        end

        # factorize
        @test factorize(A1) == A1

        # (c)transpose
        @test full(A1') == full(A1)'
        @test full(A1.') == full(A1).'
        @test transpose!(copy(A1)) == A1.'
        @test ctranspose!(copy(A1)) == A1'

        # diag
        @test diag(A1) == diag(full(A1))

        # real
        @test full(real(A1)) == real(full(A1))
        @test full(imag(A1)) == imag(full(A1))
        @test full(abs(A1)) == abs(full(A1))

        # Unary operations
        @test full(-A1) == -full(A1)

        # copy
        B = similar(A1)
        copy!(B,A1)
        @test B == A1
        B = similar(A1.')
        copy!(B, A1.')
        @test B == A1.'

        #expm/logm
        if (elty1 == Float64 || elty1 == Complex128) && (t1 == UpperTriangular || t1 == LowerTriangular)
            @test expm(full(logm(A1))) ≈ full(A1)
        end

        # scale
        if (t1 == UpperTriangular || t1 == LowerTriangular)
            unitt = istriu(A1) ? UnitUpperTriangular : UnitLowerTriangular
            if elty1 == Int
                cr = 2
            else
                cr = 0.5
            end
            ci = cr * im
            if elty1 <: Real
                A1tmp = copy(A1)
                scale!(A1tmp,cr)
                @test A1tmp == cr*A1
                A1tmp = copy(A1)
                scale!(cr,A1tmp)
                @test A1tmp == cr*A1
                A1tmp = copy(A1)
                A2tmp = unitt(A1)
                scale!(A1tmp,A2tmp,cr)
                @test A1tmp == cr * A2tmp
            else
                A1tmp = copy(A1)
                scale!(A1tmp,ci)
                @test A1tmp == ci*A1
                A1tmp = copy(A1)
                scale!(ci,A1tmp)
                @test A1tmp == ci*A1
                A1tmp = copy(A1)
                A2tmp = unitt(A1)
                scale!(A1tmp,A2tmp,ci)
                @test A1tmp == ci * A2tmp
            end
        end

        @test scale(A1,0.5) == 0.5*A1
        @test scale(0.5,A1) == 0.5*A1
        @test scale(A1,0.5im) == 0.5im*A1
        @test scale(0.5im,A1) == 0.5im*A1


        # Binary operations
        @test A1*0.5 == full(A1)*0.5
        @test 0.5*A1 == 0.5*full(A1)
        @test A1/0.5 == full(A1)/0.5
        @test 0.5\A1 == 0.5\full(A1)

        # inversion
        @test_approx_eq inv(A1) inv(lufact(full(A1)))
        inv(full(A1)) # issue #11298
        @test isa(inv(A1), t1)
        # make sure the call to LAPACK works right
        if elty1 <: BlasFloat
            @test_approx_eq Base.LinAlg.inv!(copy(A1)) inv(lufact(full(A1)))
        end

        # Determinant
        @test_approx_eq_eps det(A1) det(lufact(full(A1))) sqrt(eps(real(float(one(elty1)))))*n*n

        # Matrix square root
        @test sqrtm(A1) |> t->t*t ≈ A1

        # naivesub errors
        @test_throws DimensionMismatch naivesub!(A1,ones(elty1,n+1))

        # eigenproblems
        if elty1 != BigFloat # Not handled yet
            vals, vecs = eig(A1)
            if (t1 == UpperTriangular || t1 == LowerTriangular) && elty1 != Int # Cannot really handle degenerate eigen space and Int matrices will probably have repeated eigenvalues.
                @test_approx_eq_eps vecs*diagm(vals)/vecs full(A1) sqrt(eps(float(real(one(vals[1])))))*(norm(A1, Inf)*n)^2
            end
        end

        # Condition number tests - can be VERY approximate
        if elty1 <:BlasFloat
            for p in (1.0, Inf)
                @test_approx_eq_eps cond(A1, p) cond(A1, p) (cond(A1, p) + cond(A1, p))
            end
            @test cond(A1,2) == cond(full(A1),2)
        end

        if elty1 != BigFloat # Not implemented yet
            svd(A1)
            svdfact(A1)
            elty1 <: BlasFloat && svdfact!(copy(A1))
            svdvals(A1)
        end

        # Begin loop for second Triangular matrix
        for elty2 in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
            for (t2, uplo2) in ((UpperTriangular, :U),
                                (UnitUpperTriangular, :U),
                                (LowerTriangular, :L),
                                (UnitLowerTriangular, :L))

                debug && println("elty1: $elty1, A1: $t1, elty2: $elty2")

                A2 = t2(elty2 == Int ? rand(1:7, n, n) : convert(Matrix{elty2}, (elty2 <: Complex ? complex(randn(n, n), randn(n, n)) : randn(n, n)) |> t-> chol(t't, Val{uplo2})))

                # Convert
                if elty1 <: Real && !(elty2 <: Integer)
                    @test convert(AbstractMatrix{elty2}, A1) == t1(convert(Matrix{elty2}, A1.data))
                elseif elty2 <: Real && !(elty1 <: Integer)
                    @test_throws InexactError convert(AbstractMatrix{elty2}, A1) == t1(convert(Matrix{elty2}, A1.data))
                end

                # Binary operations
                @test full(A1 + A2) == full(A1) + full(A2)
                @test full(A1 - A2) == full(A1) - full(A2)

                # Triangular-Triangular multiplication and division
                elty1 != BigFloat && elty2 != BigFloat && @test_approx_eq full(A1*A2) full(A1)*full(A2)
                @test_approx_eq full(A1'A2) full(A1)'full(A2)
                @test_approx_eq full(A1*A2') full(A1)*full(A2)'
                @test_approx_eq full(A1'A2') full(A1)'full(A2)'
                @test_approx_eq full(A1/A2) full(A1)/full(A2)
                if elty2 != BigFloat
                    @test_throws DimensionMismatch eye(n+1)/A2
                    @test_throws DimensionMismatch eye(n+1)/A2'
                    @test_throws DimensionMismatch eye(n+1)*A2
                    @test_throws DimensionMismatch eye(n+1)*A2'
                    @test_throws DimensionMismatch A2'*eye(n+1)
                    @test_throws DimensionMismatch A2*eye(n+1)
                    @test_throws DimensionMismatch A2*ones(n+1)
                end
            end
        end

        for eltyB in (Float32, Float64, Complex64, Complex128)
            B = convert(Matrix{eltyB}, elty1 <: Complex ? real(A1)*ones(n, n) : A1*ones(n, n))

            debug && println("elty1: $elty1, A1: $t1, B: $eltyB")

            Tri = Tridiagonal(rand(eltyB,n-1),rand(eltyB,n),rand(eltyB,n-1))
            @test_approx_eq Base.LinAlg.A_mul_B!(Tri,copy(A1)) Tri*full(A1)

            # Triangular-dense Matrix/vector multiplication
            @test_approx_eq A1*B[:,1] full(A1)*B[:,1]
            @test_approx_eq A1*B full(A1)*B
            @test_approx_eq A1'B[:,1] full(A1)'B[:,1]
            @test_approx_eq A1'B full(A1)'B
            @test_approx_eq A1*B' full(A1)*B'
            @test_approx_eq B*A1 B*full(A1)
            @test_approx_eq B[:,1]'A1 B[:,1]'full(A1)
            @test_approx_eq B'A1 B'full(A1)
            @test_approx_eq B*A1' B*full(A1)'
            @test_approx_eq B[:,1]'A1' B[:,1]'full(A1)'
            @test_approx_eq B'A1' B'full(A1)'

            if eltyB == elty1
                @test_approx_eq A_mul_B!(zeros(B),A1,B) A1*B
                @test_approx_eq A_mul_Bc!(zeros(B),A1,B) A1*B'
            end
            #error handling
            @test_throws DimensionMismatch Base.LinAlg.A_mul_B!(A1, ones(eltyB,n+1))
            @test_throws DimensionMismatch Base.LinAlg.A_mul_B!(ones(eltyB,n+1,n+1), A1)
            @test_throws DimensionMismatch Base.LinAlg.Ac_mul_B!(A1, ones(eltyB,n+1))
            @test_throws DimensionMismatch Base.LinAlg.A_mul_Bc!(ones(eltyB,n+1,n+1),A1)

            # ... and division
            @test_approx_eq A1\B[:,1] full(A1)\B[:,1]
            @test_approx_eq A1\B full(A1)\B
            @test_approx_eq A1'\B[:,1] full(A1)'\B[:,1]
            @test_approx_eq A1'\B full(A1)'\B
            @test_approx_eq A1\B' full(A1)\B'
            @test_approx_eq A1'\B' full(A1)'\B'
            if t1 == UpperTriangular || t1 == LowerTriangular
                @test_throws Base.LinAlg.SingularException naivesub!(t1(zeros(elty1,n,n)),ones(eltyB,n))
            end
            @test_approx_eq B/A1 B/full(A1)
            @test_approx_eq B/A1' B/full(A1)'
            @test_approx_eq B'/A1 B'/full(A1)
            @test_approx_eq B'/A1' B'/full(A1)'

            # Error bounds
            elty1 != BigFloat && errorbounds(A1, A1\B, B)

        end
    end
end

# Matrix square root
Atn = UpperTriangular([-1 1 2; 0 -2 2; 0 0 -3])
Atp = UpperTriangular([1 1 2; 0 2 2; 0 0 3])
@test sqrtm(Atn) |> t->t*t ≈ Atn
@test typeof(sqrtm(Atn)[1,1]) <: Complex
@test sqrtm(Atp) |> t->t*t ≈ Atp
@test typeof(sqrtm(Atp)[1,1]) <: Real

Areal   = randn(n, n)/2
Aimg    = randn(n, n)/2
A2real  = randn(n, n)/2
A2img   = randn(n, n)/2

for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
    A = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(Areal, Aimg) : Areal)
    # a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(a2real, a2img) : a2real)
    εa = eps(abs(float(one(eltya))))

    for eltyb in (Float32, Float64, Complex64, Complex128)
        εb = eps(abs(float(one(eltyb))))
        ε = max(εa,εb)

        debug && println("\ntype of A: ", eltya, " type of b: ", eltyb, "\n")

        debug && println("Solve upper triangular system")
        Atri = UpperTriangular(lufact(A)[:U]) |> t -> eltya <: Complex && eltyb <: Real ? real(t) : t # Here the triangular matrix can't be too badly conditioned
        b = convert(Matrix{eltyb}, eltya <: Complex ? full(Atri)*ones(n, 2) : full(Atri)*ones(n, 2))
        x = full(Atri) \ b

        debug && println("Test error estimates")
        if eltya != BigFloat && eltyb != BigFloat
            for i = 1:2
                @test  norm(x[:,1] .- 1) <= errorbounds(UpperTriangular(A), x, b)[1][i]
            end
        end
        debug && println("Test forward error [JIN 5705] if this is not a BigFloat")

        x = Atri \ b
        γ = n*ε/(1 - n*ε)
        if eltya != BigFloat
            bigA = big(Atri)
            x̂ = ones(n, 2)
            for i = 1:size(b, 2)
                @test norm(x̂[:,i] - x[:,i], Inf)/norm(x̂[:,i], Inf) <= condskeel(bigA, x̂[:,i])*γ/(1 - condskeel(bigA)*γ)
            end
        end

        debug && println("Test backward error [JIN 5705]")
        for i = 1:size(b, 2)
            @test norm(abs(b[:,i] - Atri*x[:,i]), Inf) <= γ * norm(Atri, Inf) * norm(x[:,i], Inf)
        end

        debug && println("Solve lower triangular system")
        Atri = UpperTriangular(lufact(A)[:U]) |> t -> eltya <: Complex && eltyb <: Real ? real(t) : t # Here the triangular matrix can't be too badly conditioned
        b = convert(Matrix{eltyb}, eltya <: Complex ? full(Atri)*ones(n, 2) : full(Atri)*ones(n, 2))
        x = full(Atri)\b

        debug && println("Test error estimates")
        if eltya != BigFloat && eltyb != BigFloat
            for i = 1:2
                @test  norm(x[:,1] .- 1) <= errorbounds(UpperTriangular(A), x, b)[1][i]
            end
        end

        debug && println("Test forward error [JIN 5705] if this is not a BigFloat")
        b = eltyb == Int ? trunc(Int,Atri*ones(n, 2)) : convert(Matrix{eltyb}, Atri*ones(eltya, n, 2))
        x = Atri \ b
        γ = n*ε/(1 - n*ε)
        if eltya != BigFloat
            bigA = big(Atri)
            x̂ = ones(n, 2)
            for i = 1:size(b, 2)
                @test norm(x̂[:,i] - x[:,i], Inf)/norm(x̂[:,i], Inf) <= condskeel(bigA, x̂[:,i])*γ/(1 - condskeel(bigA)*γ)
            end
        end

        debug && println("Test backward error [JIN 5705]")
        for i = 1:size(b, 2)
            @test norm(abs(b[:,i] - Atri*x[:,i]), Inf) <= γ * norm(Atri, Inf) * norm(x[:,i], Inf)
        end
    end
end

# Issue 10742 and similar
@test istril(UpperTriangular(diagm([1,2,3,4])))
@test istriu(LowerTriangular(diagm([1,2,3,4])))
@test isdiag(UpperTriangular(diagm([1,2,3,4])))
@test isdiag(LowerTriangular(diagm([1,2,3,4])))
@test !isdiag(UpperTriangular(rand(4, 4)))
@test !isdiag(LowerTriangular(rand(4, 4)))

# Test throwing in fallbacks for non BlasFloat/BlasComplex in A_rdiv_Bx!
let
    n = 5
    A = rand(Float16, n, n)
    B = rand(Float16, n-1, n-1)
    @test_throws DimensionMismatch A_rdiv_B!(A, LowerTriangular(B))
    @test_throws DimensionMismatch A_rdiv_B!(A, UpperTriangular(B))
    @test_throws DimensionMismatch A_rdiv_B!(A, UnitLowerTriangular(B))
    @test_throws DimensionMismatch A_rdiv_B!(A, UnitUpperTriangular(B))

    @test_throws DimensionMismatch A_rdiv_Bc!(A, LowerTriangular(B))
    @test_throws DimensionMismatch A_rdiv_Bc!(A, UpperTriangular(B))
    @test_throws DimensionMismatch A_rdiv_Bc!(A, UnitLowerTriangular(B))
    @test_throws DimensionMismatch A_rdiv_Bc!(A, UnitUpperTriangular(B))
end