/usr/share/julia/test/linalg/symmetric.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 | # This file is a part of Julia. License is MIT: http://julialang.org/license
using Base.Test
srand(101)
debug = false #Turn on for more debugging info
#Pauli σ-matrices
for σ in map(Hermitian, Any[ eye(2), [0 1; 1 0], [0 -im; im 0], [1 0; 0 -1] ])
@test ishermitian(σ)
end
# Hermitian matrix exponential/log
let A1 = randn(4,4) + im*randn(4,4)
A2 = A1 + A1'
@test expm(A2) ≈ expm(Hermitian(A2))
@test logm(A2) ≈ logm(Hermitian(A2))
A3 = A1 * A1' # posdef
@test expm(A3) ≈ expm(Hermitian(A3))
@test logm(A3) ≈ logm(Hermitian(A3))
end
let A1 = randn(4,4)
A3 = A1 * A1'
A4 = A1 + A1.'
@test expm(A4) ≈ expm(Symmetric(A4))
@test logm(A3) ≈ logm(Symmetric(A3))
@test logm(A3) ≈ logm(Hermitian(A3))
end
let n=10
areal = randn(n,n)/2
aimg = randn(n,n)/2
debug && println("symmetric eigendecomposition")
for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(areal, aimg) : areal)
asym = a'+a # symmetric indefinite
ε = εa = eps(abs(float(one(eltya))))
x = randn(n)
y = randn(n)
b = randn(n,n)/2
x = eltya == Int ? rand(1:7, n) : convert(Vector{eltya}, eltya <: Complex ? complex(x, zeros(n)) : x)
y = eltya == Int ? rand(1:7, n) : convert(Vector{eltya}, eltya <: Complex ? complex(y, zeros(n)) : y)
b = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(b, zeros(n,n)) : b)
debug && println("\ntype of a: ", eltya, "\n")
# full
@test asym == full(Hermitian(asym))
#trace
@test trace(asym) == trace(Hermitian(asym))
# issym, ishermitian
if eltya <: Real
@test issym(Symmetric(asym))
@test ishermitian(Symmetric(asym))
end
if eltya <: Complex
@test ishermitian(Symmetric(b + b'))
end
#transpose, ctranspose
if eltya <: Real
@test transpose(Symmetric(asym)) == asym
else
@test transpose(Hermitian(asym)) == transpose(asym)
end
@test ctranspose(Symmetric(asym)) == Symmetric(conj(asym))
@test ctranspose(Hermitian(asym)) == asym
#tril/triu
for di in -n:n
@test triu(Symmetric(a+a.'),di) == triu(a+a.',di)
@test tril(Symmetric(a+a.'),di) == tril(a+a.',di)
@test triu(Hermitian(asym),di) == triu(asym,di)
@test tril(Hermitian(asym),di) == tril(asym,di)
@test triu(Symmetric(a+a.',:L),di) == triu(a+a.',di)
@test tril(Symmetric(a+a.',:L),di) == tril(a+a.',di)
@test triu(Hermitian(asym,:L),di) == triu(asym,di)
@test tril(Hermitian(asym,:L),di) == tril(asym,di)
end
eltya == BigFloat && continue # Revisit when implemented in julia
d, v = eig(asym)
@test asym*v[:,1] ≈ d[1]*v[:,1]
@test v*Diagonal(d)*v' ≈ asym
@test isequal(eigvals(asym[1]), eigvals(asym[1:1,1:1]))
@test abs(eigfact(Hermitian(asym), 1:2)[:vectors]'v[:,1:2]) ≈ eye(eltya, 2)
eig(Hermitian(asym), 1:2) # same result, but checks that method works
@test abs(eigfact(Hermitian(asym), d[1] - 1, (d[2] + d[3])/2)[:vectors]'v[:,1:2]) ≈ eye(eltya, 2)
eig(Hermitian(asym), d[1] - 1, (d[2] + d[3])/2) # same result, but checks that method works
@test eigvals(Hermitian(asym), 1:2) ≈ d[1:2]
@test eigvals(Hermitian(asym), d[1] - 1, (d[2] + d[3])/2) ≈ d[1:2]
@test full(eigfact(asym)) ≈ asym
# relation to svdvals
@test sum(sort(abs(eigvals(Hermitian(asym))))) == sum(sort(svdvals(Hermitian(asym))))
# cond
@test cond(Hermitian(asym)) ≈ cond(asym)
# rank
let A = a[:,1:5]*a[:,1:5]'
@test rank(A) == rank(Hermitian(A))
end
# mat * vec
if eltya <: Complex
@test Hermitian(asym)*x+y ≈ asym*x+y
end
if eltya <: Real && eltya != Int
@test Symmetric(asym)*x+y ≈ asym*x+y
end
C = zeros(eltya,n,n)
# mat * mat
if eltya <: Complex
@test Hermitian(asym) * a ≈ asym * a
@test a * Hermitian(asym) ≈ a * asym
@test Hermitian(asym) * Hermitian(asym) ≈ asym*asym
@test_throws DimensionMismatch Hermitian(asym) * ones(eltya,n+1)
Base.LinAlg.A_mul_B!(C,a,Hermitian(asym))
@test C ≈ a*asym
end
if eltya <: Real && eltya != Int
@test Symmetric(asym) * Symmetric(asym) ≈ asym*asym
@test Symmetric(asym) * a ≈ asym * a
@test a * Symmetric(asym) ≈ a * asym
@test_throws DimensionMismatch Symmetric(asym) * ones(eltya,n+1)
Base.LinAlg.A_mul_B!(C,a,Symmetric(asym))
@test C ≈ a*asym
end
# solver
@test Hermitian(asym)\x ≈ asym\x
if eltya <: Real
@test Symmetric(asym)\x ≈ asym\x
end
#inversion
@test inv(Hermitian(asym)) ≈ inv(asym)
if eltya <: Real && eltya != Int
@test inv(Symmetric(asym)) ≈ inv(asym)
end
# conversion
@test Symmetric(asym) == convert(Symmetric,Symmetric(asym))
if eltya <: Real && eltya != Int
typs = [Float16,Float32,Float64]
for typ in typs
@test Symmetric(convert(Matrix{typ},asym)) == convert(Symmetric{typ,Matrix{typ}},Symmetric(asym))
end
end
if eltya <: Complex && eltya != Int
typs = [Complex64,Complex128]
for typ in typs
@test Hermitian(convert(Matrix{typ},asym)) == convert(Hermitian{typ,Matrix{typ}},Hermitian(asym))
end
end
#unsafe_getindex
if eltya <: Real
@test Symmetric(asym)[1:2,1:2] == asym[1:2,1:2]
end
@test Hermitian(asym)[1:2,1:2] == asym[1:2,1:2]
end
end
#Issue #7647: test xsyevr, xheevr, xstevr drivers
for Mi7647 in (Symmetric(diagm(1.0:3.0)),
Hermitian(diagm(1.0:3.0)),
Hermitian(diagm(complex(1.0:3.0))),
SymTridiagonal([1.0:3.0;], zeros(2)))
debug && println("Eigenvalues in interval for $(typeof(Mi7647))")
@test eigmin(Mi7647) == eigvals(Mi7647, 0.5, 1.5)[1] == 1.0
@test eigmax(Mi7647) == eigvals(Mi7647, 2.5, 3.5)[1] == 3.0
@test eigvals(Mi7647) == eigvals(Mi7647, 0.5, 3.5) == [1.0:3.0;]
end
#Issue #7933
let A7933 = [1 2; 3 4]
B7933 = copy(A7933)
C7933 = full(Symmetric(A7933))
@test A7933 == B7933
end
# Issues #8057 and #8058
for f in (eigfact, eigvals, eig)
for A in (Symmetric([0 1; 1 0]), Hermitian([0 im; -im 0]))
@test_throws ArgumentError f(A, 3, 2)
@test_throws ArgumentError f(A, 1:4)
end
end
#Issue 10671
let A = [1.0+im 2.0; 2.0 0.0]
@test !ishermitian(A)
@test_throws ArgumentError Hermitian(A)
end
# 17780
let a = randn(2,2)
a = a'a
b = complex(a,a)
c = Symmetric(b)
@test conj(c) == conj(Array(c))
cc = copy(c)
@test conj!(c) == conj(Array(cc))
c = Hermitian(b + b')
@test conj(c) == conj(Array(c))
cc = copy(c)
@test conj!(c) == conj(Array(c))
end
|