This file is indexed.

/usr/share/julia/test/linalg/schur.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
# This file is a part of Julia. License is MIT: http://julialang.org/license

debug = false
using Base.Test

using Base.LinAlg: BlasComplex, BlasFloat, BlasReal, QRPivoted

n = 10

# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1

srand(1234321)

areal = randn(n,n)/2
aimg  = randn(n,n)/2

for eltya in (Float32, Float64, Complex64, Complex128, Int)
    a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(areal, aimg) : areal)
    asym = a'+a                  # symmetric indefinite
    apd  = a'*a                 # symmetric positive-definite
    ε = εa = eps(abs(float(one(eltya))))

debug && println("\ntype of a: ", eltya, "\n")
debug && println("Schur")
    d,v = eig(a)
    f   = schurfact(a)
    @test_approx_eq f[:vectors]*f[:Schur]*f[:vectors]' a
    @test_approx_eq sort(real(f[:values])) sort(real(d))
    @test_approx_eq sort(imag(f[:values])) sort(imag(d))
    @test istriu(f[:Schur]) || eltype(a)<:Real
    @test_approx_eq full(f) a
    @test_throws KeyError f[:A]

debug && println("Reorder Schur")
    # use asym for real schur to enforce tridiag structure
    # avoiding partly selection of conj. eigenvalues
    ordschura = eltya <: Complex ? a : asym
    S = schurfact(ordschura)
    select = bitrand(n)
    O = ordschur(S, select)
    sum(select) != 0 && @test_approx_eq S[:values][find(select)] O[:values][1:sum(select)]
    @test_approx_eq O[:vectors]*O[:Schur]*O[:vectors]' ordschura
    @test_throws KeyError f[:A]
    Snew = Base.LinAlg.Schur(copy(S.T),copy(S.Z),copy(S.values))
    SchurNew = ordschur!(Snew,select)
    @test O[:vectors] ≈ SchurNew[:vectors]
    @test O[:Schur] ≈ SchurNew[:Schur]

debug && println("Generalized Schur")
    a1_sf = a[1:n1, 1:n1]
    a2_sf = a[n1+1:n2, n1+1:n2]
    f = schurfact(a1_sf, a2_sf)
    @test_approx_eq f[:Q]*f[:S]*f[:Z]' a1_sf
    @test_approx_eq f[:Q]*f[:T]*f[:Z]' a2_sf
    @test istriu(f[:S]) || eltype(a)<:Real
    @test istriu(f[:T]) || eltype(a)<:Real
    @test_throws KeyError f[:A]

debug && println("Reorder Generalized Schur")
    a1_sf = a[1:n1, 1:n1]
    a2_sf = a[n1+1:n2, n1+1:n2]
    NS = schurfact(a1_sf, a2_sf)
    # Currently just testing with selecting gen eig values < 1
    select = abs2(NS[:values]) .< 1
    m = sum(select)
    S = ordschur(NS, select)
    # Make sure that the new factorization stil factors matrix
    @test_approx_eq S[:Q]*S[:S]*S[:Z]' a1_sf
    @test_approx_eq S[:Q]*S[:T]*S[:Z]' a2_sf
    # Make sure that we have sorted it correctly
    @test_approx_eq NS[:values][find(select)] S[:values][1:m]

    Snew = Base.LinAlg.GeneralizedSchur(copy(NS.S),copy(NS.T),copy(NS.alpha),copy(NS.beta),copy(NS.Q),copy(NS.Z))
    SchurNew = ordschur!(Snew,select)
    @test S[:Q] ≈ SchurNew[:Q]
    @test S[:S] ≈ SchurNew[:S]
    @test S[:T] ≈ SchurNew[:T]
    @test S[:Z] ≈ SchurNew[:Z]
    @test S[:alpha] ≈ SchurNew[:alpha]
    @test S[:beta] ≈ SchurNew[:beta]
    sS,sT,sQ,sZ = schur(a1_sf,a2_sf)
    @test NS[:Q] ≈ sQ
    @test NS[:T] ≈ sT
    @test NS[:S] ≈ sS
    @test NS[:Z] ≈ sZ
end