This file is indexed.

/usr/share/julia/test/linalg/qr.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# This file is a part of Julia. License is MIT: http://julialang.org/license

debug = false
using Base.Test

using Base.LinAlg: BlasComplex, BlasFloat, BlasReal, QRPivoted

n = 10

# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1

srand(1234321)

areal = randn(n,n)/2
aimg  = randn(n,n)/2
a2real = randn(n,n)/2
a2img  = randn(n,n)/2
breal = randn(n,2)/2
bimg  = randn(n,2)/2

for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
    a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(areal, aimg) : areal)
    a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(a2real, a2img) : a2real)
    asym = a'+a                  # symmetric indefinite
    apd  = a'*a                 # symmetric positive-definite
    ε = εa = eps(abs(float(one(eltya))))

    for eltyb in (Float32, Float64, Complex64, Complex128, Int)
        b = eltyb == Int ? rand(1:5, n, 2) : convert(Matrix{eltyb}, eltyb <: Complex ? complex(breal, bimg) : breal)
        εb = eps(abs(float(one(eltyb))))
        ε = max(εa,εb)

        α = rand(eltyb)
        aα = fill(α,1,1)
        @test qrfact(α)[:Q]*qrfact(α)[:R] ≈ qrfact(aα)[:Q]*qrfact(aα)[:R]
        @test abs(qrfact(α)[:Q][1,1]) ≈ one(eltyb)
        tab = promote_type(eltya,eltyb)

debug && println("\ntype of a: ", eltya, " type of b: ", eltyb, "\n")
debug && println("QR decomposition (without pivoting)")
        for i = 1:2
            let a = i == 1 ? a : sub(a, 1:n - 1, 1:n - 1), b = i == 1 ? b : sub(b, 1:n - 1), n = i == 1 ? n : n - 1
                qra   = @inferred qrfact(a)
                @inferred qr(a)
                q, r  = qra[:Q], qra[:R]
                @test_throws KeyError qra[:Z]
                @test_approx_eq q'*full(q, thin = false) eye(n)
                @test_approx_eq q*full(q, thin = false)' eye(n)
                @test_approx_eq q*r a
                @test_approx_eq_eps a*(qra\b) b 3000ε
                @test_approx_eq full(qra) a
                @test_approx_eq_eps A_mul_Bc(eye(eltyb,size(q.factors,2)),q)*full(q, thin=false) eye(n) 5000ε
                if eltya != Int
                    @test eye(eltyb,n)*q ≈ convert(AbstractMatrix{tab},q)
                    ac = copy(a)
                    @test qrfact!(a[:, 1:5])\b == qrfact!(sub(ac, :, 1:5))\b
                end

debug && println("Thin QR decomposition (without pivoting)")
                qra   = @inferred qrfact(a[:,1:n1], Val{false})
                @inferred qr(a[:,1:n1], Val{false})
                q,r   = qra[:Q], qra[:R]
                @test_throws KeyError qra[:Z]
                @test_approx_eq q'*full(q, thin=false) eye(n)
                @test_approx_eq q'*full(q) eye(n, n1)
                @test_approx_eq q*r a[:,1:n1]
                @test_approx_eq_eps q*b[1:n1] full(q)*b[1:n1] 100ε
                @test_approx_eq_eps q*b full(q, thin=false)*b 100ε
                @test_throws DimensionMismatch q*b[1:n1 + 1]
                @test_throws DimensionMismatch b[1:n1 + 1]*q'
                @test_approx_eq_eps A_mul_Bc(UpperTriangular(eye(eltyb,size(q.factors,2))),q)*full(q, thin=false) eye(n1,n) 5000ε
                if eltya != Int
                    @test eye(eltyb,n)*q ≈ convert(AbstractMatrix{tab},q)
                end

debug && println("(Automatic) Fat (pivoted) QR decomposition") # Pivoting is only implemented for BlasFloats
                if eltya <: BlasFloat
                    @inferred qrfact(a, Val{true})
                    @inferred qr(a, Val{true})
                end
                qrpa  = factorize(a[1:n1,:])
                q,r = qrpa[:Q], qrpa[:R]
                @test_throws KeyError qrpa[:Z]
                if isa(qrpa,QRPivoted) p = qrpa[:p] end # Reconsider if pivoted QR gets implemented in julia
                @test_approx_eq q'*full(q, thin=false) eye(n1)
                @test_approx_eq q*full(q, thin=false)' eye(n1)
                @test_approx_eq (UpperTriangular(eye(eltya,size(q,2)))*q')*full(q, thin=false) eye(n1)
                @test_approx_eq q*r isa(qrpa,QRPivoted) ? a[1:n1,p] : a[1:n1,:]
                @test_approx_eq isa(qrpa, QRPivoted) ? q*r[:,invperm(p)] : q*r a[1:n1,:]
                @test_approx_eq isa(qrpa, QRPivoted) ? q*r*qrpa[:P].' : q*r a[1:n1,:]
                @test_approx_eq_eps a[1:n1,:]*(qrpa\b[1:n1]) b[1:n1] 5000ε
                @test_approx_eq full(qrpa) a[1:5,:]
                @test_throws DimensionMismatch q*b[1:n1 + 1]
                @test_throws DimensionMismatch b[1:n1 + 1]*q'
                if eltya != Int
                    @test eye(eltyb,n1)*q ≈ convert(AbstractMatrix{tab},q)
                end

debug && println("(Automatic) Thin (pivoted) QR decomposition") # Pivoting is only implemented for BlasFloats
                qrpa  = factorize(a[:,1:n1])
                q,r = qrpa[:Q], qrpa[:R]
                @test_throws KeyError qrpa[:Z]
                if isa(qrpa, QRPivoted) p = qrpa[:p] end # Reconsider if pivoted QR gets implemented in julia
                @test_approx_eq q'*full(q, thin=false) eye(n)
                @test_approx_eq q*full(q, thin=false)' eye(n)
                @test_approx_eq q*r isa(qrpa, QRPivoted) ? a[:,p] : a[:,1:n1]
                @test_approx_eq isa(qrpa, QRPivoted) ? q*r[:,invperm(p)] : q*r a[:,1:n1]
                @test_approx_eq full(qrpa) a[:,1:5]
                @test_throws DimensionMismatch q*b[1:n1 + 1]
                @test_throws DimensionMismatch b[1:n1 + 1]*q'
                @test_approx_eq_eps A_mul_Bc(UpperTriangular(eye(eltyb,size(q.factors,2))),q)*full(q, thin=false) eye(n1,n) 5000ε
                if eltya != Int
                    @test eye(eltyb,n)*q ≈ convert(AbstractMatrix{tab},q)
                end
            end
        end

debug && println("Matmul with QR factorizations")
        if eltya != Int
            qrpa = factorize(a[:,1:n1])
            q,r  = qrpa[:Q], qrpa[:R]
            @test_approx_eq A_mul_B!(full(q,thin=false)',q) eye(n)
            @test_throws DimensionMismatch A_mul_B!(eye(eltya,n+1),q)
            @test_approx_eq A_mul_Bc!(full(q,thin=false),q) eye(n)
            @test_throws DimensionMismatch A_mul_Bc!(eye(eltya,n+1),q)
            @test_throws BoundsError size(q,-1)
            if eltya == BigFloat
                @test_throws DimensionMismatch Base.LinAlg.A_mul_B!(q,zeros(eltya,n1+1))
                @test_throws DimensionMismatch Base.LinAlg.Ac_mul_B!(q,zeros(eltya,n1+1))
            end

            qra   = qrfact(a[:,1:n1], Val{false})
            q,r   = qra[:Q], qra[:R]
            @test_approx_eq A_mul_B!(full(q,thin=false)',q) eye(n)
            @test_throws DimensionMismatch A_mul_B!(eye(eltya,n+1),q)
            @test_approx_eq A_mul_Bc!(full(q,thin=false),q) eye(n)
            @test_throws DimensionMismatch A_mul_Bc!(eye(eltya,n+1),q)
            @test_throws BoundsError size(q,-1)
            @test_throws DimensionMismatch q * eye(Int8,n+4)
        end

debug && println("Hessenberg")
        if eltya != BigFloat
            hA = hessfact(a)
            @test size(hA[:Q],1) == size(a,1)
            @test size(hA[:Q],2) == size(a,2)
            @test_throws KeyError hA[:Z]
            @test_approx_eq full(hA) a
            @test_approx_eq full(Base.LinAlg.HessenbergQ(hA)) full(hA[:Q])
        end
    end
end

# Because transpose(x) == x
@test_throws ErrorException transpose(qrfact(randn(3,3)))
@test_throws ErrorException ctranspose(qrfact(randn(3,3)))
@test_throws ErrorException transpose(qrfact(randn(3,3), Val{false}))
@test_throws ErrorException ctranspose(qrfact(randn(3,3), Val{false}))
@test_throws ErrorException transpose(qrfact(big(randn(3,3))))
@test_throws ErrorException ctranspose(qrfact(big(randn(3,3))))

#Issue 7304
let
    A=[-√.5 -√.5; -√.5 √.5]
    Q=full(qrfact(A)[:Q])
    @test vecnorm(A-Q) < eps()
end

qrpa = qrfact(areal,Val{true})
qrpa = convert(QRPivoted{BigFloat},qrpa)
@test qrpa \ zeros(BigFloat,n) ≈ zeros(BigFloat,n)
@test qrpa \ zeros(BigFloat,n,n) ≈ zeros(BigFloat,n,n)