/usr/share/julia/test/linalg/matmul.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 | # This file is a part of Julia. License is MIT: http://julialang.org/license
using Base.Test
## Test Julia fallbacks to BLAS routines
# matrices with zero dimensions
for i = 1:10
@test ones(0,5)*ones(5,3) == zeros(0,3)
@test ones(3,5)*ones(5,0) == zeros(3,0)
@test ones(3,0)*ones(0,4) == zeros(3,4)
@test ones(0,5)*ones(5,0) == zeros(0,0)
@test ones(0,0)*ones(0,4) == zeros(0,4)
@test ones(3,0)*ones(0,0) == zeros(3,0)
@test ones(0,0)*ones(0,0) == zeros(0,0)
@test Array(Float64, 5, 0) |> t -> t't == zeros(0,0)
@test Array(Float64, 5, 0) |> t -> t*t' == zeros(5,5)
@test Array(Complex128, 5, 0) |> t -> t't == zeros(0,0)
@test Array(Complex128, 5, 0) |> t -> t*t' == zeros(5,5)
end
# 2x2
A = [1 2; 3 4]
B = [5 6; 7 8]
@test A*B == [19 22; 43 50]
@test At_mul_B(A, B) == [26 30; 38 44]
@test A_mul_Bt(A, B) == [17 23; 39 53]
@test At_mul_Bt(A, B) == [23 31; 34 46]
Ai = A+(0.5*im).*B
Bi = B+(2.5*im).*A[[2,1],[2,1]]
@test Ai*Bi == [-21+53.5im -4.25+51.5im; -12+95.5im 13.75+85.5im]
@test Ac_mul_B(Ai, Bi) == [68.5-12im 57.5-28im; 88-3im 76.5-25im]
@test A_mul_Bc(Ai, Bi) == [64.5+5.5im 43+31.5im; 104-18.5im 80.5+31.5im]
@test Ac_mul_Bc(Ai, Bi) == [-28.25-66im 9.75-58im; -26-89im 21-73im]
@test_throws DimensionMismatch [1 2; 0 0; 0 0] * [1 2]
# 3x3
A = [1 2 3; 4 5 6; 7 8 9].-5
B = [1 0 5; 6 -10 3; 2 -4 -1]
@test A*B == [-26 38 -27; 1 -4 -6; 28 -46 15]
@test Ac_mul_B(A, B) == [-6 2 -25; 3 -12 -18; 12 -26 -11]
@test A_mul_Bc(A, B) == [-14 0 6; 4 -3 -3; 22 -6 -12]
@test Ac_mul_Bc(A, B) == [6 -8 -6; 12 -9 -9; 18 -10 -12]
Ai = A+(0.5*im).*B
Bi = B+(2.5*im).*A[[2,1,3],[2,3,1]]
@test Ai*Bi == [-44.75+13im 11.75-25im -38.25+30im; -47.75-16.5im -51.5+51.5im -56+6im; 16.75-4.5im -53.5+52im -15.5im]
@test Ac_mul_B(Ai, Bi) == [-21+2im -1.75+49im -51.25+19.5im; 25.5+56.5im -7-35.5im 22+35.5im; -3+12im -32.25+43im -34.75-2.5im]
@test A_mul_Bc(Ai, Bi) == [-20.25+15.5im -28.75-54.5im 22.25+68.5im; -12.25+13im -15.5+75im -23+27im; 18.25+im 1.5+94.5im -27-54.5im]
@test Ac_mul_Bc(Ai, Bi) == [1+2im 20.75+9im -44.75+42im; 19.5+17.5im -54-36.5im 51-14.5im; 13+7.5im 11.25+31.5im -43.25-14.5im]
@test_throws DimensionMismatch [1 2 3; 0 0 0; 0 0 0] * [1 2 3]
# Generic integer matrix multiplication
A = [1 2 3; 4 5 6] .- 3
B = [2 -2; 3 -5; -4 7]
@test A*B == [-7 9; -4 9]
@test At_mul_Bt(A, B) == [-6 -11 15; -6 -13 18; -6 -15 21]
A = ones(Int, 2, 100)
B = ones(Int, 100, 3)
@test A*B == [100 100 100; 100 100 100]
A = rand(1:20, 5, 5) .- 10
B = rand(1:20, 5, 5) .- 10
@test At_mul_B(A, B) == A'*B
@test A_mul_Bt(A, B) == A*B'
v = [1,2]
C = Array(Int, 2, 2)
@test @inferred(A_mul_Bc!(C, v, v)) == [1 2; 2 4]
# Preallocated
C = Array(Int, size(A, 1), size(B, 2))
@test A_mul_B!(C, A, B) == A*B
@test At_mul_B!(C, A, B) == A'*B
@test A_mul_Bt!(C, A, B) == A*B'
@test At_mul_Bt!(C, A, B) == A'*B'
@test Base.LinAlg.Ac_mul_Bt!(C, A, B) == A'*B.'
#test DimensionMismatch for generic_matmatmul
@test_throws DimensionMismatch Base.LinAlg.Ac_mul_Bt!(C,A,ones(Int,4,4))
@test_throws DimensionMismatch Base.LinAlg.Ac_mul_Bt!(C,ones(Int,4,4),B)
#and for generic_matvecmul
A = rand(5,5)
B = rand(5)
@test_throws DimensionMismatch Base.LinAlg.generic_matvecmul!(zeros(6),'N',A,B)
@test_throws DimensionMismatch Base.LinAlg.generic_matvecmul!(B,'N',A,zeros(6))
v = [1,2,3]
C = Array(Int, 3, 3)
@test A_mul_Bt!(C, v, v) == v*v'
vf = map(Float64,v)
C = Array(Float64, 3, 3)
@test A_mul_Bt!(C, v, v) == v*v'
# fallbacks & such for BlasFloats
A = rand(Float64,6,6)
B = rand(Float64,6,6)
C = zeros(Float64,6,6)
@test Base.LinAlg.At_mul_Bt!(C,A,B) == A.'*B.'
@test Base.LinAlg.A_mul_Bc!(C,A,B) == A*B.'
@test Base.LinAlg.Ac_mul_B!(C,A,B) == A.'*B
# matrix algebra with subarrays of floats (stride != 1)
A = reshape(map(Float64,1:20),5,4)
Aref = A[1:2:end,1:2:end]
Asub = sub(A, 1:2:5, 1:2:4)
b = [1.2,-2.5]
@test (Aref*b) == (Asub*b)
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
@test A_mul_Bt(Asub, Asub) == A_mul_Bt(Aref, Aref)
Ai = A .+ im
Aref = Ai[1:2:end,1:2:end]
Asub = sub(Ai, 1:2:5, 1:2:4)
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
@test A_mul_Bc(Asub, Asub) == A_mul_Bc(Aref, Aref)
# issue #15286
let C = zeros(8, 8), sC = sub(C, 1:2:8, 1:2:8), B = reshape(map(Float64,-9:10),5,4)
@test At_mul_B!(sC, A, A) == A'*A
@test At_mul_B!(sC, A, B) == A'*B
end
let Aim = A .- im, C = zeros(Complex128,8,8), sC = sub(C, 1:2:8, 1:2:8), B = reshape(map(Float64,-9:10),5,4) .+ im
@test Ac_mul_B!(sC, Aim, Aim) == Aim'*Aim
@test Ac_mul_B!(sC, Aim, B) == Aim'*B
end
# syrk & herk
A = reshape(1:1503, 501, 3).-750.0
res = Float64[135228751 9979252 -115270247; 9979252 10481254 10983256; -115270247 10983256 137236759]
@test At_mul_B(A, A) == res
@test A_mul_Bt(A',A') == res
cutoff = 501
A = reshape(1:6*cutoff,2*cutoff,3).-(6*cutoff)/2
Asub = sub(A, 1:2:2*cutoff, 1:3)
Aref = A[1:2:2*cutoff, 1:3]
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
Ai = A .- im
Asub = sub(Ai, 1:2:2*cutoff, 1:3)
Aref = Ai[1:2:2*cutoff, 1:3]
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
@test_throws DimensionMismatch Base.LinAlg.syrk_wrapper!(zeros(5,5),'N',ones(6,5))
@test_throws DimensionMismatch Base.LinAlg.herk_wrapper!(zeros(5,5),'N',ones(6,5))
# matmul for types w/o sizeof (issue #1282)
A = Array(Complex{Int},10,10)
A[:] = complex(1,1)
A2 = A^2
@test A2[1,1] == 20im
@test_throws DimensionMismatch scale!(zeros(5,5),ones(5),rand(5,6))
# issue #6450
@test dot(Any[1.0,2.0], Any[3.5,4.5]) === 12.5
for elty in (Float32,Float64,Complex64,Complex128)
x = convert(Vector{elty},[1.0,2.0,3.0])
y = convert(Vector{elty},[3.5,4.5,5.5])
@test_throws DimensionMismatch dot(x, 1:2, y, 1:3)
@test_throws BoundsError dot(x, 1:4, y, 1:4)
@test_throws BoundsError dot(x, 1:3, y, 2:4)
@test dot(x,1:2,y,1:2) == convert(elty,12.5)
@test x.'*y == convert(Vector{elty},[29.0])
end
vecdot_(x,y) = invoke(vecdot, (Any,Any), x,y) # generic vecdot
let A = [1+2im 3+4im; 5+6im 7+8im], B = [2+7im 4+1im; 3+8im 6+5im]
@test vecdot(A,B) == dot(vec(A),vec(B)) == vecdot_(A,B) == vecdot(float(A),float(B))
@test vecdot(Int[], Int[]) == 0 == vecdot_(Int[], Int[])
@test_throws MethodError vecdot(Any[], Any[])
@test_throws MethodError vecdot_(Any[], Any[])
for n1 = 0:2, n2 = 0:2, d in (vecdot, vecdot_)
if n1 != n2
@test_throws DimensionMismatch d(1:n1, 1:n2)
else
@test_approx_eq d(1:n1, 1:n2) vecnorm(1:n1)^2
end
end
end
# Issue 11978
A = Array(Matrix{Float64}, 2, 2)
A[1,1] = eye(3)
A[1,2] = eye(3,2)
A[2,1] = eye(2,3)
A[2,2] = eye(2)
b = Array(Vector{Float64}, 2)
b[1] = ones(3)
b[2] = ones(2)
@test A*b == Vector{Float64}[[2,2,1], [2,2]]
@test_throws ArgumentError Base.LinAlg.copytri!(ones(10,10),'Z')
for elty in [Float32,Float64,Complex128,Complex64]
@test_throws DimensionMismatch Base.LinAlg.gemv!(ones(elty,10),'N',rand(elty,10,10),ones(elty,11))
@test_throws DimensionMismatch Base.LinAlg.gemv!(ones(elty,11),'N',rand(elty,10,10),ones(elty,10))
@test Base.LinAlg.gemv!(ones(elty,0),'N',rand(elty,0,0),rand(elty,0)) == ones(elty,0)
@test Base.LinAlg.gemv!(ones(elty,10), 'N',ones(elty,10,0),ones(elty,0)) == zeros(elty,10)
@test Base.LinAlg.gemm_wrapper('N','N',eye(elty,10,10),eye(elty,10,10)) == eye(elty,10,10)
@test_throws DimensionMismatch Base.LinAlg.gemm_wrapper!(eye(elty,10,10),'N','N',eye(elty,10,11),eye(elty,10,10))
@test_throws DimensionMismatch Base.LinAlg.gemm_wrapper!(eye(elty,10,10),'N','N',eye(elty,0,0),eye(elty,0,0))
A = rand(elty,3,3)
@test Base.LinAlg.matmul3x3('T','N',A,eye(elty,3)) == A.'
end
# Number types that lack conversion to the destination type (#14293)
immutable RootInt
i::Int
end
import Base: *
(*)(x::RootInt, y::RootInt) = x.i*y.i
a = [RootInt(3)]
C = [0]
A_mul_Bt!(C, a, a)
@test C[1] == 9
a = [RootInt(2),RootInt(10)]
C = Array(Int, 2, 2)
A_mul_Bt!(C, a, a)
@test C == [4 20; 20 100]
A = [RootInt(3) RootInt(5)]
C = Array(Int, 1)
A_mul_B!(C, A, a)
@test C == [56]
|