This file is indexed.

/usr/share/julia/test/linalg/matmul.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
# This file is a part of Julia. License is MIT: http://julialang.org/license

using Base.Test

## Test Julia fallbacks to BLAS routines

# matrices with zero dimensions
for i = 1:10
    @test ones(0,5)*ones(5,3) == zeros(0,3)
    @test ones(3,5)*ones(5,0) == zeros(3,0)
    @test ones(3,0)*ones(0,4) == zeros(3,4)
    @test ones(0,5)*ones(5,0) == zeros(0,0)
    @test ones(0,0)*ones(0,4) == zeros(0,4)
    @test ones(3,0)*ones(0,0) == zeros(3,0)
    @test ones(0,0)*ones(0,0) == zeros(0,0)
    @test Array(Float64, 5, 0) |> t -> t't == zeros(0,0)
    @test Array(Float64, 5, 0) |> t -> t*t' == zeros(5,5)
    @test Array(Complex128, 5, 0) |> t -> t't == zeros(0,0)
    @test Array(Complex128, 5, 0) |> t -> t*t' == zeros(5,5)
end

# 2x2
A = [1 2; 3 4]
B = [5 6; 7 8]
@test A*B == [19 22; 43 50]
@test At_mul_B(A, B) == [26 30; 38 44]
@test A_mul_Bt(A, B) == [17 23; 39 53]
@test At_mul_Bt(A, B) == [23 31; 34 46]
Ai = A+(0.5*im).*B
Bi = B+(2.5*im).*A[[2,1],[2,1]]
@test Ai*Bi == [-21+53.5im -4.25+51.5im; -12+95.5im 13.75+85.5im]
@test Ac_mul_B(Ai, Bi) == [68.5-12im 57.5-28im; 88-3im 76.5-25im]
@test A_mul_Bc(Ai, Bi) == [64.5+5.5im 43+31.5im; 104-18.5im 80.5+31.5im]
@test Ac_mul_Bc(Ai, Bi) == [-28.25-66im 9.75-58im; -26-89im 21-73im]
@test_throws DimensionMismatch [1 2; 0 0; 0 0] * [1 2]

# 3x3
A = [1 2 3; 4 5 6; 7 8 9].-5
B = [1 0 5; 6 -10 3; 2 -4 -1]
@test A*B == [-26 38 -27; 1 -4 -6; 28 -46 15]
@test Ac_mul_B(A, B) == [-6 2 -25; 3 -12 -18; 12 -26 -11]
@test A_mul_Bc(A, B) == [-14 0 6; 4 -3 -3; 22 -6 -12]
@test Ac_mul_Bc(A, B) == [6 -8 -6; 12 -9 -9; 18 -10 -12]
Ai = A+(0.5*im).*B
Bi = B+(2.5*im).*A[[2,1,3],[2,3,1]]
@test Ai*Bi == [-44.75+13im 11.75-25im -38.25+30im; -47.75-16.5im -51.5+51.5im -56+6im; 16.75-4.5im -53.5+52im -15.5im]
@test Ac_mul_B(Ai, Bi) == [-21+2im -1.75+49im -51.25+19.5im; 25.5+56.5im -7-35.5im 22+35.5im; -3+12im -32.25+43im -34.75-2.5im]
@test A_mul_Bc(Ai, Bi) == [-20.25+15.5im -28.75-54.5im 22.25+68.5im; -12.25+13im -15.5+75im -23+27im; 18.25+im 1.5+94.5im -27-54.5im]
@test Ac_mul_Bc(Ai, Bi) == [1+2im 20.75+9im -44.75+42im; 19.5+17.5im -54-36.5im 51-14.5im; 13+7.5im 11.25+31.5im -43.25-14.5im]
@test_throws DimensionMismatch [1 2 3; 0 0 0; 0 0 0] * [1 2 3]

# Generic integer matrix multiplication
A = [1 2 3; 4 5 6] .- 3
B = [2 -2; 3 -5; -4 7]
@test A*B == [-7 9; -4 9]
@test At_mul_Bt(A, B) == [-6 -11 15; -6 -13 18; -6 -15 21]
A = ones(Int, 2, 100)
B = ones(Int, 100, 3)
@test A*B == [100 100 100; 100 100 100]
A = rand(1:20, 5, 5) .- 10
B = rand(1:20, 5, 5) .- 10
@test At_mul_B(A, B) == A'*B
@test A_mul_Bt(A, B) == A*B'
v = [1,2]
C = Array(Int, 2, 2)
@test @inferred(A_mul_Bc!(C, v, v)) == [1 2; 2 4]

# Preallocated
C = Array(Int, size(A, 1), size(B, 2))
@test A_mul_B!(C, A, B) == A*B
@test At_mul_B!(C, A, B) == A'*B
@test A_mul_Bt!(C, A, B) == A*B'
@test At_mul_Bt!(C, A, B) == A'*B'
@test Base.LinAlg.Ac_mul_Bt!(C, A, B) == A'*B.'

#test DimensionMismatch for generic_matmatmul
@test_throws DimensionMismatch Base.LinAlg.Ac_mul_Bt!(C,A,ones(Int,4,4))
@test_throws DimensionMismatch Base.LinAlg.Ac_mul_Bt!(C,ones(Int,4,4),B)

#and for generic_matvecmul
A = rand(5,5)
B = rand(5)
@test_throws DimensionMismatch Base.LinAlg.generic_matvecmul!(zeros(6),'N',A,B)
@test_throws DimensionMismatch Base.LinAlg.generic_matvecmul!(B,'N',A,zeros(6))

v = [1,2,3]
C = Array(Int, 3, 3)
@test A_mul_Bt!(C, v, v) == v*v'
vf = map(Float64,v)
C = Array(Float64, 3, 3)
@test A_mul_Bt!(C, v, v) == v*v'

# fallbacks & such for BlasFloats
A = rand(Float64,6,6)
B = rand(Float64,6,6)
C = zeros(Float64,6,6)
@test Base.LinAlg.At_mul_Bt!(C,A,B) == A.'*B.'
@test Base.LinAlg.A_mul_Bc!(C,A,B) == A*B.'
@test Base.LinAlg.Ac_mul_B!(C,A,B) == A.'*B

# matrix algebra with subarrays of floats (stride != 1)
A = reshape(map(Float64,1:20),5,4)
Aref = A[1:2:end,1:2:end]
Asub = sub(A, 1:2:5, 1:2:4)
b = [1.2,-2.5]
@test (Aref*b) == (Asub*b)
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
@test A_mul_Bt(Asub, Asub) == A_mul_Bt(Aref, Aref)
Ai = A .+ im
Aref = Ai[1:2:end,1:2:end]
Asub = sub(Ai, 1:2:5, 1:2:4)
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)
@test A_mul_Bc(Asub, Asub) == A_mul_Bc(Aref, Aref)
# issue #15286
let C = zeros(8, 8), sC = sub(C, 1:2:8, 1:2:8), B = reshape(map(Float64,-9:10),5,4)
    @test At_mul_B!(sC, A, A) == A'*A
    @test At_mul_B!(sC, A, B) == A'*B
end
let Aim = A .- im, C = zeros(Complex128,8,8), sC = sub(C, 1:2:8, 1:2:8), B = reshape(map(Float64,-9:10),5,4) .+ im
    @test Ac_mul_B!(sC, Aim, Aim) == Aim'*Aim
    @test Ac_mul_B!(sC, Aim, B) == Aim'*B
end


# syrk & herk
A = reshape(1:1503, 501, 3).-750.0
res = Float64[135228751 9979252 -115270247; 9979252 10481254 10983256; -115270247 10983256 137236759]
@test At_mul_B(A, A) == res
@test A_mul_Bt(A',A') == res
cutoff = 501
A = reshape(1:6*cutoff,2*cutoff,3).-(6*cutoff)/2
Asub = sub(A, 1:2:2*cutoff, 1:3)
Aref = A[1:2:2*cutoff, 1:3]
@test At_mul_B(Asub, Asub) == At_mul_B(Aref, Aref)
Ai = A .- im
Asub = sub(Ai, 1:2:2*cutoff, 1:3)
Aref = Ai[1:2:2*cutoff, 1:3]
@test Ac_mul_B(Asub, Asub) == Ac_mul_B(Aref, Aref)

@test_throws DimensionMismatch Base.LinAlg.syrk_wrapper!(zeros(5,5),'N',ones(6,5))
@test_throws DimensionMismatch Base.LinAlg.herk_wrapper!(zeros(5,5),'N',ones(6,5))

# matmul for types w/o sizeof (issue #1282)
A = Array(Complex{Int},10,10)
A[:] = complex(1,1)
A2 = A^2
@test A2[1,1] == 20im

@test_throws DimensionMismatch scale!(zeros(5,5),ones(5),rand(5,6))

# issue #6450
@test dot(Any[1.0,2.0], Any[3.5,4.5]) === 12.5

for elty in (Float32,Float64,Complex64,Complex128)
    x = convert(Vector{elty},[1.0,2.0,3.0])
    y = convert(Vector{elty},[3.5,4.5,5.5])
    @test_throws DimensionMismatch dot(x, 1:2, y, 1:3)
    @test_throws BoundsError dot(x, 1:4, y, 1:4)
    @test_throws BoundsError dot(x, 1:3, y, 2:4)
    @test dot(x,1:2,y,1:2) == convert(elty,12.5)
    @test x.'*y == convert(Vector{elty},[29.0])
end

vecdot_(x,y) = invoke(vecdot, (Any,Any), x,y) # generic vecdot
let A = [1+2im 3+4im; 5+6im 7+8im], B = [2+7im 4+1im; 3+8im 6+5im]
    @test vecdot(A,B) == dot(vec(A),vec(B)) == vecdot_(A,B) == vecdot(float(A),float(B))
    @test vecdot(Int[], Int[]) == 0 == vecdot_(Int[], Int[])
    @test_throws MethodError vecdot(Any[], Any[])
    @test_throws MethodError vecdot_(Any[], Any[])
    for n1 = 0:2, n2 = 0:2, d in (vecdot, vecdot_)
        if n1 != n2
            @test_throws DimensionMismatch d(1:n1, 1:n2)
        else
            @test_approx_eq d(1:n1, 1:n2) vecnorm(1:n1)^2
        end
    end
end

# Issue 11978
A = Array(Matrix{Float64}, 2, 2)
A[1,1] = eye(3)
A[1,2] = eye(3,2)
A[2,1] = eye(2,3)
A[2,2] = eye(2)
b = Array(Vector{Float64}, 2)
b[1] = ones(3)
b[2] = ones(2)
@test A*b == Vector{Float64}[[2,2,1], [2,2]]

@test_throws ArgumentError Base.LinAlg.copytri!(ones(10,10),'Z')
for elty in [Float32,Float64,Complex128,Complex64]
    @test_throws DimensionMismatch Base.LinAlg.gemv!(ones(elty,10),'N',rand(elty,10,10),ones(elty,11))
    @test_throws DimensionMismatch Base.LinAlg.gemv!(ones(elty,11),'N',rand(elty,10,10),ones(elty,10))
    @test Base.LinAlg.gemv!(ones(elty,0),'N',rand(elty,0,0),rand(elty,0)) == ones(elty,0)
    @test Base.LinAlg.gemv!(ones(elty,10), 'N',ones(elty,10,0),ones(elty,0)) == zeros(elty,10)

    @test Base.LinAlg.gemm_wrapper('N','N',eye(elty,10,10),eye(elty,10,10)) == eye(elty,10,10)
    @test_throws DimensionMismatch Base.LinAlg.gemm_wrapper!(eye(elty,10,10),'N','N',eye(elty,10,11),eye(elty,10,10))
    @test_throws DimensionMismatch Base.LinAlg.gemm_wrapper!(eye(elty,10,10),'N','N',eye(elty,0,0),eye(elty,0,0))

    A = rand(elty,3,3)
    @test Base.LinAlg.matmul3x3('T','N',A,eye(elty,3)) == A.'
end

# Number types that lack conversion to the destination type (#14293)
immutable RootInt
    i::Int
end
import Base: *
(*)(x::RootInt, y::RootInt) = x.i*y.i

a = [RootInt(3)]
C = [0]
A_mul_Bt!(C, a, a)
@test C[1] == 9
a = [RootInt(2),RootInt(10)]
C = Array(Int, 2, 2)
A_mul_Bt!(C, a, a)
@test C == [4 20; 20 100]
A = [RootInt(3) RootInt(5)]
C = Array(Int, 1)
A_mul_B!(C, A, a)
@test C == [56]