This file is indexed.

/usr/share/julia/test/linalg/generic.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# This file is a part of Julia. License is MIT: http://julialang.org/license

import Base: -, *
using Base.Test

# A custom Quaternion type with minimal defined interface and methods.
# Used to test scale and scale! methods to show non-commutativity.
immutable Quaternion{T<:Real} <: Number
    s::T
    v1::T
    v2::T
    v3::T
end
Quaternion(s::Real, v1::Real, v2::Real, v3::Real) = Quaternion(promote(s, v1, v2, v3)...)
Base.abs2(q::Quaternion) = q.s*q.s + q.v1*q.v1 + q.v2*q.v2 + q.v3*q.v3
Base.abs(q::Quaternion) = sqrt(abs2(q))
Base.real{T}(::Type{Quaternion{T}}) = T
Base.conj(q::Quaternion) = Quaternion(q.s, -q.v1, -q.v2, -q.v3)

(-)(ql::Quaternion, qr::Quaternion) =
    Quaternion(ql.s - qr.s, ql.v1 - qr.v1, ql.v2 - qr.v2, ql.v3 - qr.v3)
(*)(q::Quaternion, w::Quaternion) = Quaternion(q.s*w.s - q.v1*w.v1 - q.v2*w.v2 - q.v3*w.v3,
                                               q.s*w.v1 + q.v1*w.s + q.v2*w.v3 - q.v3*w.v2,
                                               q.s*w.v2 - q.v1*w.v3 + q.v2*w.s + q.v3*w.v1,
                                               q.s*w.v3 + q.v1*w.v2 - q.v2*w.v1 + q.v3*w.s)

debug = false

srand(123)

n = 5 # should be odd

for elty in (Int, Rational{BigInt}, Float32, Float64, BigFloat, Complex{Float32}, Complex{Float64}, Complex{BigFloat})
    if elty <: Int
        A = rand(-n:n, n, n) + 10I
    elseif elty <: Rational
        A = Rational{BigInt}[rand(-n:n)/rand(1:n) for i = 1:n, j = 1:n] + 10I
    elseif elty <: Real
        A = convert(Matrix{elty}, randn(n,n)) + 10I
    else
        A = convert(Matrix{elty}, complex(randn(n,n), randn(n,n)))
    end

    debug && println("element type: $elty")

    @test_approx_eq logdet(A) log(det(A))
    if elty <: Real
        @test_approx_eq logabsdet(A)[1] log(abs(det(A)))
        @test logabsdet(A)[2] == sign(abs(det(A)))
        @test_throws DomainError logdet(convert(Matrix{elty}, -eye(n)))
        @test logabsdet(convert(Matrix{elty}, -eye(n)))[2] == -1
    end
end

# test diff, throw ArgumentError for invalid dimension argument
let X = [3  9   5;
         7  4   2;
         2  1  10]
    @test diff(X,1) == [4  -5 -3; -5  -3  8]
    @test diff(X,2) == [6 -4; -3 -2; -1 9]
    @test_throws ArgumentError diff(X,3)
    @test_throws ArgumentError diff(X,-1)
end

x = float([1:12;])
y = [5.5; 6.3; 7.6; 8.8; 10.9; 11.79; 13.48; 15.02; 17.77; 20.81; 22.0; 22.99]
@test_approx_eq linreg(x,y) [2.5559090909090867, 1.6960139860139862]

# test diag
let A = eye(4)
    @test diag(A) == ones(4)
    @test diag(sub(A, 1:3, 1:3)) == ones(3)
end

# test generic axpy
x = ['a','b','c','d','e']
y = ['a','b','c','d','e']
α = 'f'
@test_throws DimensionMismatch Base.LinAlg.axpy!(α,x,['g'])
@test_throws BoundsError Base.LinAlg.axpy!(α,x,collect(-1:5),y,collect(1:7))
@test_throws BoundsError Base.LinAlg.axpy!(α,x,collect(1:7),y,collect(-1:5))
@test_throws BoundsError Base.LinAlg.axpy!(α,x,collect(1:7),y,collect(1:7))
@test_throws DimensionMismatch Base.LinAlg.axpy!(α,x,collect(1:3),y,collect(1:5))

@test_throws ArgumentError diag(rand(10))
@test !issym(ones(5,3))
@test !ishermitian(ones(5,3))
@test cross(ones(3),ones(3)) == zeros(3)

@test trace(Bidiagonal(ones(5),zeros(4),true)) == 5

# 2-argument version of scale
a = reshape([1.:6;], (2,3))
@test scale(a, 5.) == a*5
@test scale(5., a) == a*5
@test scale(a, [1.; 2.; 3.]) == a.*[1 2 3]
@test scale([1.; 2.], a) == a.*[1; 2]
@test scale(a, [1; 2; 3]) == a.*[1 2 3]
@test scale([1; 2], a) == a.*[1; 2]
@test scale(eye(Int, 2), 0.5) == 0.5*eye(2)
@test scale([1; 2], sub(a, :, :)) == a.*[1; 2]
@test scale(sub([1; 2], :), a) == a.*[1; 2]
@test_throws DimensionMismatch scale(a, ones(2))
@test_throws DimensionMismatch scale(ones(3), a)

# 2-argument version of scale!
@test scale!(copy(a), 5.) == a*5
@test scale!(5., copy(a)) == a*5
b = randn(Base.LinAlg.SCAL_CUTOFF) # make sure we try BLAS path
@test scale!(copy(b), 5.) == b*5
@test scale!(copy(a), [1.; 2.; 3.]) == a.*[1 2 3]
@test scale!([1.; 2.], copy(a)) == a.*[1; 2]
@test scale!(copy(a), [1; 2; 3]) == a.*[1 2 3]
@test scale!([1; 2], copy(a)) == a.*[1; 2]
@test_throws DimensionMismatch scale!(a, ones(2))
@test_throws DimensionMismatch scale!(ones(3), a)

# 3-argument version of scale!
@test scale!(similar(a), 5., a) == a*5
@test scale!(similar(a), a, 5.) == a*5
@test scale!(similar(a), a, [1.; 2.; 3.]) == a.*[1 2 3]
@test scale!(similar(a), [1.; 2.], a) == a.*[1; 2]
@test scale!(similar(a), a, [1; 2; 3]) == a.*[1 2 3]
@test scale!(similar(a), [1; 2], a) == a.*[1; 2]
@test_throws DimensionMismatch scale!(similar(a), a, ones(2))
@test_throws DimensionMismatch scale!(similar(a), ones(3), a)
@test_throws DimensionMismatch scale!(Array(Float64, 3, 2), a, ones(3))

# scale real matrix by complex type
@test_throws InexactError scale!([1.0], 2.0im)
@test isequal(scale([1.0], 2.0im),             Complex{Float64}[2.0im])
@test isequal(scale(2.0im, [1.0]),             Complex{Float64}[2.0im])
@test isequal(scale(Float32[1.0], 2.0f0im),    Complex{Float32}[2.0im])
@test isequal(scale(Float32[1.0], 2.0im),      Complex{Float64}[2.0im])
@test isequal(scale(Float64[1.0], 2.0f0im),    Complex{Float64}[2.0im])
@test isequal(scale(Float32[1.0], big(2.0)im), Complex{BigFloat}[2.0im])
@test isequal(scale(Float64[1.0], big(2.0)im), Complex{BigFloat}[2.0im])
@test isequal(scale(BigFloat[1.0], 2.0im),     Complex{BigFloat}[2.0im])
@test isequal(scale(BigFloat[1.0], 2.0f0im),   Complex{BigFloat}[2.0im])

# test scale and scale! for non-commutative multiplication
q = Quaternion(0.44567, 0.755871, 0.882548, 0.423612)
qmat = [Quaternion(0.015007, 0.355067, 0.418645, 0.318373)]
#@test scale!(q, copy(qmat)) != scale!(copy(qmat), q) #uncomment if #14425 gets backported
## Test * because it doesn't dispatch to scale!
@test q*qmat != qmat*q
@test conj(q*qmat) ≈ conj(qmat)*conj(q)

# test ops on Numbers
for elty in [Float32,Float64,Complex64,Complex128]
    a = rand(elty)
    @test trace(a)         == a
    @test rank(zero(elty)) == 0
    @test rank(one(elty))  == 1
    @test !isfinite(cond(zero(elty)))
    @test cond(a)          == one(elty)
    @test cond(a,1)        == one(elty)
    @test issym(a)
    @test ishermitian(one(elty))
    @test det(a) == a
end

@test qr(big([0 1; 0 0]))[2] == [0 1; 0 0]

@test norm([2.4e-322, 4.4e-323]) ≈ 2.47e-322
@test norm([2.4e-322, 4.4e-323], 3) ≈ 2.4e-322
@test_throws ArgumentError norm(ones(5,5),5)

# test generic vecnorm for arrays of arrays
let x = Vector{Int}[[1,2], [3,4]]
    @test norm(x) ≈ sqrt(30)
    @test norm(x, 1) ≈ sqrt(5) + 5
    @test norm(x, 3) ≈ cbrt(sqrt(125)+125)
end

# test that LinAlg.axpy! works for element type without commutative multiplication
let
    α = ones(Int, 2, 2)
    x = fill([1 0; 1 1], 3)
    y = fill(zeros(Int, 2, 2), 3)
    @test LinAlg.axpy!(α, x, deepcopy(y)) == x .* Matrix{Int}[α]
    @test LinAlg.axpy!(α, x, deepcopy(y)) != Matrix{Int}[α] .* x
end

# test that LinAlg.axpy! works for x and y of different dimensions
let
    α = 5
    x = 2:5
    y = ones(Int, 2, 4)
    rx = [1 4]
    ry = [2 8]
    @test LinAlg.axpy!(α, x, rx, y, ry) == [1 1 1 1; 11 1 1 26]
end