This file is indexed.

/usr/share/julia/test/linalg/diagonal.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
# This file is a part of Julia. License is MIT: http://julialang.org/license

using Base.Test
import Base.LinAlg: BlasFloat, BlasComplex, SingularException

debug = false

n=12 #Size of matrix problem to test
srand(1)

debug && println("Diagonal matrices")
for relty in (Float32, Float64, BigFloat), elty in (relty, Complex{relty})
    debug && println("elty is $(elty), relty is $(relty)")
    d=convert(Vector{elty}, randn(n))
    v=convert(Vector{elty}, randn(n))
    U=convert(Matrix{elty}, randn(n,n))
    if elty <: Complex
        d+=im*convert(Vector{elty}, randn(n))
        v+=im*convert(Vector{elty}, randn(n))
        U+=im*convert(Matrix{elty}, randn(n,n))
    end
    D = Diagonal(d)
    DM = diagm(d)

    @test_throws ArgumentError size(D,0)
    @test eye(Diagonal{elty},n) == Diagonal(ones(elty,n))
    @test typeof(convert(Diagonal{Complex64},D)) == Diagonal{Complex64}
    @test typeof(convert(AbstractMatrix{Complex64},D))   == Diagonal{Complex64}

    @test full(real(D)) == real(DM)
    @test full(abs(D)) == abs(DM)
    @test full(imag(D)) == imag(DM)

    debug && println("Linear solve")
    @test_approx_eq_eps D*v DM*v n*eps(relty)*(elty<:Complex ? 2:1)
    @test_approx_eq_eps D*U DM*U n^2*eps(relty)*(elty<:Complex ? 2:1)
    if relty != BigFloat
        @test_approx_eq_eps D\v DM\v 2n^2*eps(relty)*(elty<:Complex ? 2:1)
        @test_approx_eq_eps D\U DM\U 2n^3*eps(relty)*(elty<:Complex ? 2:1)
        @test_approx_eq_eps A_ldiv_B!(D,copy(v)) DM\v 2n^2*eps(relty)*(elty<:Complex ? 2:1)
        @test_approx_eq_eps A_ldiv_B!(D,copy(U)) DM\U 2n^3*eps(relty)*(elty<:Complex ? 2:1)
        @test_approx_eq_eps A_ldiv_B!(D,eye(D)) D\eye(D) 2n^3*eps(relty)*(elty<:Complex ? 2:1)
        @test_throws DimensionMismatch A_ldiv_B!(D, ones(elty, n + 1))
        @test_throws SingularException A_ldiv_B!(Diagonal(zeros(relty,n)),copy(v))
        b = rand(elty,n,n)
        b = sparse(b)
        @test A_ldiv_B!(D,copy(b)) ≈ full(D)\full(b)
        @test_throws SingularException A_ldiv_B!(Diagonal(zeros(elty,n)),copy(b))
        b = sub(rand(elty,n),collect(1:n))
        b2 = copy(b)
        c = A_ldiv_B!(D,b)
        d = full(D)\b2
        for i in 1:n
            @test c[i] ≈ d[i]
        end
        @test_throws SingularException A_ldiv_B!(Diagonal(zeros(elty,n)),b)
        b = rand(elty,n+1,n+1)
        b = sparse(b)
        @test_throws DimensionMismatch A_ldiv_B!(D,copy(b))
        b = sub(rand(elty,n+1),collect(1:n+1))
        @test_throws DimensionMismatch A_ldiv_B!(D,b)
    end

    debug && println("Simple unary functions")
    for op in (-,)
      @test op(D)==op(DM)
    end

    for func in (det, trace)
        @test_approx_eq_eps func(D) func(DM) n^2*eps(relty)*(elty<:Complex ? 2:1)
    end
    if relty <: BlasFloat
        for func in (expm,)
            @test_approx_eq_eps func(D) func(DM) n^3*eps(relty)
        end
        @test_approx_eq_eps logm(Diagonal(abs(D.diag))) logm(abs(DM)) n^3*eps(relty)
    end
    if elty <: BlasComplex
        for func in (logdet, sqrtm)
            @test_approx_eq_eps func(D) func(DM) n^2*eps(relty)*2
        end
    end

    debug && println("Binary operations")
    d = convert(Vector{elty}, randn(n))
    D2 = Diagonal(d)
    DM2= diagm(d)
    for op in (+, -, *)
        @test full(op(D, D2)) ≈ op(DM, DM2)
    end
    # binary ops with plain numbers
    a = rand()
    @test full(a*D) ≈ a*DM
    @test full(D*a) ≈ DM*a
    @test full(D/a) ≈ DM/a
    if relty <: BlasFloat
        b = rand(elty,n,n)
        b = sparse(b)
        @test A_mul_B!(copy(D), copy(b)) ≈ full(D)*full(b)
        @test At_mul_B!(copy(D), copy(b)) ≈ full(D).'*full(b)
        @test Ac_mul_B!(copy(D), copy(b)) ≈ full(D)'*full(b)
    end

    #division of two Diagonals
    @test D/D2 ≈ Diagonal(D.diag./D2.diag)
    @test D\D2 ≈ Diagonal(D2.diag./D.diag)
    # test triu/tril
    @test istriu(D)
    @test istril(D)
    @test triu(D,1)  == zeros(D)
    @test triu(D,0)  == D
    @test triu(D,-1) == D
    @test tril(D,1)  == D
    @test tril(D,-1) == zeros(D)
    @test tril(D,0)  == D
    @test_throws ArgumentError tril(D,n+1)
    @test_throws ArgumentError triu(D,n+1)

    # factorize
    @test factorize(D) == D

    debug && println("Eigensystem")
    eigD = eigfact(D)
    @test Diagonal(eigD[:values]) ≈ D
    @test eigD[:vectors] == eye(D)

    debug && println("ldiv")
    v = rand(n + 1)
    @test_throws DimensionMismatch D\v
    v = rand(n)
    @test D\v ≈ DM\v
    V = rand(n + 1, n)
    @test_throws DimensionMismatch D\V
    V = rand(n, n)
    @test D\V ≈ DM\V

    debug && println("conj and transpose")
    @test transpose(D) == D
    if elty <: BlasComplex
        @test full(conj(D)) ≈ conj(DM)
        @test ctranspose(D) == conj(D)
    end

    #logdet
    if relty <: Real
        ld=convert(Vector{relty},rand(n))
        @test logdet(Diagonal(ld)) ≈ logdet(diagm(ld))
    end

    #similar
    @test_throws ArgumentError similar(D, eltype(D), (n,n+1))
    @test length(diag(similar(D, eltype(D), (n,n)))) == n

    #10036
    @test issym(D2)
    @test ishermitian(D2)
    if elty <: Complex
        dc = d + im*convert(Vector{elty}, ones(n))
        D3 = Diagonal(dc)
        @test issym(D3)
        @test !ishermitian(D3)
    end

    U, s, V = svd(D)
    @test (U*Diagonal(s))*V' ≈ D
    @test svdvals(D) == s
    @test svdfact(D)[:V] == V

end

D = Diagonal(Matrix{Float64}[randn(3,3), randn(2,2)])
@test sort([svdvals(D)...;], rev = true) ≈ svdvals([D.diag[1] zeros(3,2); zeros(2,3) D.diag[2]])
@test [eigvals(D)...;] ≈ eigvals([D.diag[1] zeros(3,2); zeros(2,3) D.diag[2]])
#isposdef
@test !isposdef(Diagonal(-1.0 * rand(n)))

# Indexing
let d = randn(n), D = Diagonal(d)
    for i=1:n
        @test D[i,i] == d[i]
    end
    for i=1:n
        for j=1:n
            @test D[i,j] == (i==j ? d[i] : 0)
        end
    end
    D2 = copy(D)
    for i=1:n
        D2[i,i] = i
    end
    for i=1:n
        for j=1:n
            if i == j
                @test D2[i,j] == i
            else
                @test D2[i,j] == 0
                D2[i,j] = 0
                @test_throws ArgumentError (D2[i,j] = 1)
            end
        end
    end
    @test_throws BoundsError D[0, 0]
    @test_throws BoundsError (D[0, 0] = 0)
    @test_throws BoundsError D[-1,-2]
    @test_throws BoundsError (D[-1,-2] = 0)
    @test_throws BoundsError D[n+1,n+1]
    @test_throws BoundsError (D[n+1,n+1] = 0)
    @test_throws BoundsError D[n,n+1]
    @test_throws BoundsError (D[n,n+1] = 0)
end

# inv
let d = randn(n), D = Diagonal(d)
    @test inv(D) ≈ inv(full(D))
end
@test_throws SingularException inv(Diagonal(zeros(n)))