/usr/share/julia/test/linalg/dense.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 | # This file is a part of Julia. License is MIT: http://julialang.org/license
debug = false
using Base.Test
# Check that non-floats are correctly promoted
@test_approx_eq [1 0 0; 0 1 0]\[1,1] [1;1;0]
using Base.LinAlg: BlasComplex, BlasFloat, BlasReal
n = 10
# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1
srand(1234321)
a = rand(n,n)
for elty in (Float32, Float64, Complex64, Complex128)
a = convert(Matrix{elty}, a)
# cond
@test_approx_eq_eps cond(a, 1) 4.837320054554436e+02 0.01
@test_approx_eq_eps cond(a, 2) 1.960057871514615e+02 0.01
@test_approx_eq_eps cond(a, Inf) 3.757017682707787e+02 0.01
@test_approx_eq_eps cond(a[:,1:5]) 10.233059337453463 0.01
@test_throws ArgumentError cond(a,3)
end
areal = randn(n,n)/2
aimg = randn(n,n)/2
a2real = randn(n,n)/2
a2img = randn(n,n)/2
breal = randn(n,2)/2
bimg = randn(n,2)/2
for eltya in (Float32, Float64, Complex64, Complex128, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(areal, aimg) : areal)
a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(a2real, a2img) : a2real)
asym = a'+a # symmetric indefinite
apd = a'*a # symmetric positive-definite
ε = εa = eps(abs(float(one(eltya))))
@test isposdef(apd,:U)
for eltyb in (Float32, Float64, Complex64, Complex128, Int)
b = eltyb == Int ? rand(1:5, n, 2) : convert(Matrix{eltyb}, eltyb <: Complex ? complex(breal, bimg) : breal)
εb = eps(abs(float(one(eltyb))))
ε = max(εa,εb)
debug && println("\ntype of a: ", eltya, " type of b: ", eltyb, "\n")
debug && println("Solve square general system of equations")
κ = cond(a,1)
x = a \ b
@test_throws DimensionMismatch b'\b
@test_throws DimensionMismatch b\b'
@test norm(a*x - b, 1)/norm(b) < ε*κ*n*2 # Ad hoc, revisit!
@test zeros(eltya,n)\ones(eltya,n) ≈ zeros(eltya,n,1)\ones(eltya,n,1)
debug && println("Test nullspace")
a15null = nullspace(a[:,1:n1]')
@test rank([a[:,1:n1] a15null]) == 10
@test_approx_eq_eps norm(a[:,1:n1]'a15null, Inf) zero(eltya) 300ε
@test_approx_eq_eps norm(a15null'a[:,1:n1], Inf) zero(eltya) 400ε
@test size(nullspace(b), 2) == 0
@test nullspace(zeros(eltya,n)) == eye(eltya,1)
end # for eltyb
debug && println("Test pinv")
pinva15 = pinv(a[:,1:n1])
@test_approx_eq a[:,1:n1]*pinva15*a[:,1:n1] a[:,1:n1]
@test_approx_eq pinva15*a[:,1:n1]*pinva15 pinva15
@test size(pinv(ones(eltya,0,0))) == (0,0)
debug && println("Lyapunov/Sylvester")
let
x = lyap(a, a2)
@test_approx_eq -a2 a*x + x*a'
x2 = sylvester(a[1:3, 1:3], a[4:n, 4:n], a2[1:3,4:n])
@test_approx_eq -a2[1:3, 4:n] a[1:3, 1:3]*x2 + x2*a[4:n, 4:n]
end
debug && println("Matrix square root")
asq = sqrtm(a)
@test_approx_eq asq*asq a
asymsq = sqrtm(asym)
@test_approx_eq asymsq*asymsq asym
debug && println("Numbers")
α = rand(eltya)
A = zeros(eltya,1,1)
A[1,1] = α
@test diagm(α) == A
@test expm(α) == exp(α)
debug && println("Powers")
if eltya <: AbstractFloat
z = zero(eltya)
t = convert(eltya,2)
r = convert(eltya,2.5)
@test a^z ≈ eye(a)
@test a^t ≈ a^2
@test eye(eltya,n,n)^r ≈ eye(a)
end
debug && println("Factorize")
d = rand(eltya,n)
e = rand(eltya,n-1)
e2 = rand(eltya,n-1)
f = rand(eltya,n-2)
A = diagm(d)
@test factorize(A) == Diagonal(d)
A += diagm(e,-1)
@test factorize(A) == Bidiagonal(d,e,false)
A += diagm(f,-2)
@test factorize(A) == LowerTriangular(A)
A = diagm(d) + diagm(e,1)
@test factorize(A) == Bidiagonal(d,e,true)
if eltya <: Real
A = diagm(d) + diagm(e,1) + diagm(e,-1)
@test full(factorize(A)) ≈ full(factorize(SymTridiagonal(d,e)))
A = diagm(d) + diagm(e,1) + diagm(e,-1) + diagm(f,2) + diagm(f,-2)
@test inv(factorize(A)) ≈ inv(factorize(Symmetric(A)))
end
A = diagm(d) + diagm(e,1) + diagm(e2,-1)
@test full(factorize(A)) ≈ full(factorize(Tridiagonal(e2,d,e)))
A = diagm(d) + diagm(e,1) + diagm(f,2)
@test factorize(A) == UpperTriangular(A)
end # for eltya
# test triu/tril bounds checking
A = rand(5,7)
@test_throws(ArgumentError,triu(A,8))
@test_throws(ArgumentError,triu(A,-6))
@test_throws(ArgumentError,tril(A,8))
@test_throws(ArgumentError,tril(A,-6))
# Test gradient
for elty in (Int32, Int64, Float32, Float64, Complex64, Complex128)
if elty <: Real
x = convert(Vector{elty}, [1:3;])
g = ones(elty, 3)
else
x = convert(Vector{elty}, complex([1:3;], [1:3;]))
g = convert(Vector{elty}, complex(ones(3), ones(3)))
end
@test_approx_eq gradient(x) g
@test gradient(ones(elty,1)) == zeros(elty,1)
end
# Tests norms
nnorm = 10
mmat = 10
nmat = 8
for elty in (Float32, Float64, BigFloat, Complex{Float32}, Complex{Float64}, Complex{BigFloat}, Int32, Int64, BigInt)
debug && println(elty)
## Vector
x = ones(elty,10)
xs = sub(x,1:2:10)
@test_approx_eq norm(x, -Inf) 1
@test_approx_eq norm(x, -1) 1/10
@test_approx_eq norm(x, 0) 10
@test_approx_eq norm(x, 1) 10
@test_approx_eq norm(x, 2) sqrt(10)
@test_approx_eq norm(x, 3) cbrt(10)
@test_approx_eq norm(x, Inf) 1
if elty <: Base.LinAlg.BlasFloat
@test_approx_eq norm(x, 1:4) 2
@test_throws BoundsError norm(x,-1:4)
@test_throws BoundsError norm(x,1:11)
end
@test_approx_eq norm(xs, -Inf) 1
@test_approx_eq norm(xs, -1) 1/5
@test_approx_eq norm(xs, 0) 5
@test_approx_eq norm(xs, 1) 5
@test_approx_eq norm(xs, 2) sqrt(5)
@test_approx_eq norm(xs, 3) cbrt(5)
@test_approx_eq norm(xs, Inf) 1
# Issue #12552:
if real(elty) <: AbstractFloat
for p in [-Inf,-1,1,2,3,Inf]
@test isnan(norm(elty[0,NaN],p))
@test isnan(norm(elty[NaN,0],p))
end
end
## Number
norm(x[1:1]) === norm(x[1], -Inf)
norm(x[1:1]) === norm(x[1], 0)
norm(x[1:1]) === norm(x[1], 1)
norm(x[1:1]) === norm(x[1], 2)
norm(x[1:1]) === norm(x[1], Inf)
for i = 1:10
x = elty <: Integer ? convert(Vector{elty}, rand(1:10, nnorm)) :
elty <: Complex ? convert(Vector{elty}, complex(randn(nnorm), randn(nnorm))) :
convert(Vector{elty}, randn(nnorm))
xs = sub(x,1:2:nnorm)
y = elty <: Integer ? convert(Vector{elty}, rand(1:10, nnorm)) :
elty <: Complex ? convert(Vector{elty}, complex(randn(nnorm), randn(nnorm))) :
convert(Vector{elty}, randn(nnorm))
ys = sub(y,1:2:nnorm)
α = elty <: Integer ? randn() :
elty <: Complex ? convert(elty, complex(randn(),randn())) :
convert(elty, randn())
# Absolute homogeneity
@test_approx_eq norm(α*x,-Inf) abs(α)*norm(x,-Inf)
@test_approx_eq norm(α*x,-1) abs(α)*norm(x,-1)
@test_approx_eq norm(α*x,1) abs(α)*norm(x,1)
@test_approx_eq norm(α*x) abs(α)*norm(x) # two is default
@test_approx_eq norm(α*x,3) abs(α)*norm(x,3)
@test_approx_eq norm(α*x,Inf) abs(α)*norm(x,Inf)
@test_approx_eq norm(α*xs,-Inf) abs(α)*norm(xs,-Inf)
@test_approx_eq norm(α*xs,-1) abs(α)*norm(xs,-1)
@test_approx_eq norm(α*xs,1) abs(α)*norm(xs,1)
@test_approx_eq norm(α*xs) abs(α)*norm(xs) # two is default
@test_approx_eq norm(α*xs,3) abs(α)*norm(xs,3)
@test_approx_eq norm(α*xs,Inf) abs(α)*norm(xs,Inf)
# Triangle inequality
@test norm(x + y,1) <= norm(x,1) + norm(y,1)
@test norm(x + y) <= norm(x) + norm(y) # two is default
@test norm(x + y,3) <= norm(x,3) + norm(y,3)
@test norm(x + y,Inf) <= norm(x,Inf) + norm(y,Inf)
@test norm(xs + ys,1) <= norm(xs,1) + norm(ys,1)
@test norm(xs + ys) <= norm(xs) + norm(ys) # two is default
@test norm(xs + ys,3) <= norm(xs,3) + norm(ys,3)
@test norm(xs + ys,Inf) <= norm(xs,Inf) + norm(ys,Inf)
# Against vectorized versions
@test_approx_eq norm(x,-Inf) minimum(abs(x))
@test_approx_eq norm(x,-1) inv(sum(1./abs(x)))
@test_approx_eq norm(x,0) sum(x .!= 0)
@test_approx_eq norm(x,1) sum(abs(x))
@test_approx_eq norm(x) sqrt(sum(abs2(x)))
@test_approx_eq norm(x,3) cbrt(sum(abs(x).^3.))
@test_approx_eq norm(x,Inf) maximum(abs(x))
end
## Matrix (Operator)
A = ones(elty,10,10)
As = sub(A,1:5,1:5)
@test_approx_eq norm(A, 1) 10
elty <: Union{BigFloat,Complex{BigFloat},BigInt} || @test_approx_eq norm(A, 2) 10
@test_approx_eq norm(A, Inf) 10
@test_approx_eq norm(As, 1) 5
elty <: Union{BigFloat,Complex{BigFloat},BigInt} || @test_approx_eq norm(As, 2) 5
@test_approx_eq norm(As, Inf) 5
for i = 1:10
A = elty <: Integer ? convert(Matrix{elty}, rand(1:10, mmat, nmat)) :
elty <: Complex ? convert(Matrix{elty}, complex(randn(mmat, nmat), randn(mmat, nmat))) :
convert(Matrix{elty}, randn(mmat, nmat))
As = sub(A,1:nmat,1:nmat)
B = elty <: Integer ? convert(Matrix{elty}, rand(1:10, mmat, nmat)) :
elty <: Complex ? convert(Matrix{elty}, complex(randn(mmat, nmat), randn(mmat, nmat))) :
convert(Matrix{elty}, randn(mmat, nmat))
Bs = sub(B,1:nmat,1:nmat)
α = elty <: Integer ? randn() :
elty <: Complex ? convert(elty, complex(randn(),randn())) :
convert(elty, randn())
# Absolute homogeneity
@test_approx_eq norm(α*A,1) abs(α)*norm(A,1)
elty <: Union{BigFloat,Complex{BigFloat},BigInt} || @test_approx_eq norm(α*A) abs(α)*norm(A) # two is default
@test_approx_eq norm(α*A,Inf) abs(α)*norm(A,Inf)
@test_approx_eq norm(α*As,1) abs(α)*norm(As,1)
elty <: Union{BigFloat,Complex{BigFloat},BigInt} || @test_approx_eq norm(α*As) abs(α)*norm(As) # two is default
@test_approx_eq norm(α*As,Inf) abs(α)*norm(As,Inf)
# Triangle inequality
@test norm(A + B,1) <= norm(A,1) + norm(B,1)
elty <: Union{BigFloat,Complex{BigFloat},BigInt} || @test norm(A + B) <= norm(A) + norm(B) # two is default
@test norm(A + B,Inf) <= norm(A,Inf) + norm(B,Inf)
@test norm(As + Bs,1) <= norm(As,1) + norm(Bs,1)
elty <: Union{BigFloat,Complex{BigFloat},BigInt} || @test norm(As + Bs) <= norm(As) + norm(Bs) # two is default
@test norm(As + Bs,Inf) <= norm(As,Inf) + norm(Bs,Inf)
# vecnorm:
for p = -2:3
@test norm(reshape(A, length(A)), p) == vecnorm(A, p)
end
# issue #10234
if elty <: AbstractFloat || elty <: Complex
let z = zeros(elty, 100)
z[1] = -Inf
for p in [-2,-1.5,-1,-0.5,0.5,1,1.5,2,Inf]
@test norm(z, p) == (p < 0 ? 0 : Inf)
@test norm(elty[Inf],p) == Inf
end
end
end
end
end
# issue #10234
@test norm(Any[Inf],-2) == norm(Any[Inf],-1) == norm(Any[Inf],1) == norm(Any[Inf],1.5) == norm(Any[Inf],2) == norm(Any[Inf],Inf) == Inf
# overflow/underflow in norms:
@test_approx_eq norm(Float64[1e-300, 1], -3)*1e300 1
@test_approx_eq norm(Float64[1e300, 1], 3)*1e-300 1
## Issue related tests
# issue #1447
let
A = [1.+0.im 0; 0 1]
B = pinv(A)
for i = 1:4
@test_approx_eq A[i] B[i]
end
end
# issue #2246
let
A = [1 2 0 0; 0 1 0 0; 0 0 0 0; 0 0 0 0]
Asq = sqrtm(A)
@test_approx_eq Asq*Asq A
A2 = sub(A, 1:2, 1:2)
A2sq = sqrtm(A2)
@test_approx_eq A2sq*A2sq A2
end
let
N = 3
@test_approx_eq log(det(eye(N))) logdet(eye(N))
end
# issue #2637
let
a = [1, 2, 3]
b = [4, 5, 6]
@test kron(eye(2),eye(2)) == eye(4)
@test kron(a,b) == [4,5,6,8,10,12,12,15,18]
@test kron(a',b') == [4 5 6 8 10 12 12 15 18]
@test kron(a,b') == [4 5 6; 8 10 12; 12 15 18]
@test kron(a',b) == [4 8 12; 5 10 15; 6 12 18]
@test kron(a,eye(2)) == [1 0; 0 1; 2 0; 0 2; 3 0; 0 3]
@test kron(eye(2),a) == [ 1 0; 2 0; 3 0; 0 1; 0 2; 0 3]
@test kron(eye(2),2) == 2*eye(2)
@test kron(3,eye(3)) == 3*eye(3)
@test kron(a,2) == [2, 4, 6]
@test kron(b',2) == [8 10 12]
end
# issue #4796
let
dim=2
S=zeros(Complex,dim,dim)
T=zeros(Complex,dim,dim)
T[:] = 1
z = 2.5 + 1.5im
S[1] = z
@test S*T == [z z; 0 0]
end
# Matrix exponential
for elty in (Float32, Float64, Complex64, Complex128)
A1 = convert(Matrix{elty}, [4 2 0; 1 4 1; 1 1 4])
eA1 = convert(Matrix{elty}, [147.866622446369 127.781085523181 127.781085523182;
183.765138646367 183.765138646366 163.679601723179;
71.797032399996 91.8825693231832 111.968106246371]')
@test_approx_eq expm(A1) eA1
A2 = convert(Matrix{elty},
[29.87942128909879 0.7815750847907159 -2.289519314033932;
0.7815750847907159 25.72656945571064 8.680737820540137;
-2.289519314033932 8.680737820540137 34.39400925519054])
eA2 = convert(Matrix{elty},
[ 5496313853692458.0 -18231880972009236.0 -30475770808580460.0;
-18231880972009252.0 60605228702221920.0 101291842930249760.0;
-30475770808580480.0 101291842930249728.0 169294411240851968.0])
@test_approx_eq expm(A2) eA2
A3 = convert(Matrix{elty}, [-131 19 18;-390 56 54;-387 57 52])
eA3 = convert(Matrix{elty}, [-1.50964415879218 -5.6325707998812 -4.934938326092;
0.367879439109187 1.47151775849686 1.10363831732856;
0.135335281175235 0.406005843524598 0.541341126763207]')
@test_approx_eq expm(A3) eA3
A4 = convert(Matrix{elty}, [0.25 0.25; 0 0])
eA4 = convert(Matrix{elty}, [1.2840254166877416 0.2840254166877415; 0 1])
@test expm(A4) ≈ eA4
A5 = convert(Matrix{elty}, [0 0.02; 0 0])
eA5 = convert(Matrix{elty}, [1 0.02; 0 1])
@test expm(A5) ≈ eA5
# Hessenberg
@test_approx_eq hessfact(A1)[:H] convert(Matrix{elty},
[4.000000000000000 -1.414213562373094 -1.414213562373095
-1.414213562373095 4.999999999999996 -0.000000000000000
0 -0.000000000000002 3.000000000000000])
end
for elty in (Float64, Complex{Float64})
A4 = convert(Matrix{elty}, [1/2 1/3 1/4 1/5+eps();
1/3 1/4 1/5 1/6;
1/4 1/5 1/6 1/7;
1/5 1/6 1/7 1/8])
@test_approx_eq expm(logm(A4)) A4
OLD_STDERR = STDERR
rd,wr = redirect_stderr()
A5 = convert(Matrix{elty}, [1 1 0 1; 0 1 1 0; 0 0 1 1; 1 0 0 1])
@test_approx_eq expm(logm(A5)) A5
s = readline(rd)
@test contains(s, "WARNING: Matrix with nonpositive real eigenvalues, a nonprincipal matrix logarithm will be returned.")
A6 = convert(Matrix{elty}, [-5 2 0 0 ; 1/2 -7 3 0; 0 1/3 -9 4; 0 0 1/4 -11])
@test_approx_eq expm(logm(A6)) A6
s = readline(rd)
@test contains(s, "WARNING: Matrix with nonpositive real eigenvalues, a nonprincipal matrix logarithm will be returned.")
redirect_stderr(OLD_STDERR)
A7 = convert(Matrix{elty}, [1 0 0 1e-8; 0 1 0 0; 0 0 1 0; 0 0 0 1])
@test_approx_eq expm(logm(A7)) A7
end
A8 = 100 * [-1+1im 0 0 1e-8; 0 1 0 0; 0 0 1 0; 0 0 0 1];
@test_approx_eq expm(logm(A8)) A8
# issue 5116
A9 = [0 10 0 0; -1 0 0 0; 0 0 0 0; -2 0 0 0]
eA9 = [-0.999786072879326 -0.065407069689389 0.0 0.0
0.006540706968939 -0.999786072879326 0.0 0.0
0.0 0.0 1.0 0.0
0.013081413937878 -3.999572145758650 0.0 1.0]
@test_approx_eq expm(A9) eA9
# issue 5116
A10 = [ 0. 0. 0. 0. ; 0. 0. -im 0.; 0. im 0. 0.; 0. 0. 0. 0.]
eA10 = [ 1.0+0.0im 0.0+0.0im 0.0+0.0im 0.0+0.0im
0.0+0.0im 1.543080634815244+0.0im 0.0-1.175201193643801im 0.0+0.0im
0.0+0.0im 0.0+1.175201193643801im 1.543080634815243+0.0im 0.0+0.0im
0.0+0.0im 0.0+0.0im 0.0+0.0im 1.0+0.0im]
@test_approx_eq expm(A10) eA10
# issue #7181
A = [ 1 5 9
2 6 10
3 7 11
4 8 12 ]
@test_throws ArgumentError diag(A, -5)
@test diag(A,-4) == []
@test diag(A,-3) == [4]
@test diag(A,-2) == [3,8]
@test diag(A,-1) == [2,7,12]
@test diag(A, 0) == [1,6,11]
@test diag(A, 1) == [5,10]
@test diag(A, 2) == [9]
@test diag(A, 3) == []
@test_throws ArgumentError diag(A, 4)
@test diag(zeros(0,0)) == []
@test_throws ArgumentError diag(zeros(0,0),1)
@test_throws ArgumentError diag(zeros(0,0),-1)
@test diag(zeros(1,0)) == []
@test diag(zeros(1,0),-1) == []
@test_throws ArgumentError diag(zeros(1,0),1)
@test_throws ArgumentError diag(zeros(1,0),-2)
@test diag(zeros(0,1)) == []
@test diag(zeros(0,1),1) == []
@test_throws ArgumentError diag(zeros(0,1),-1)
@test_throws ArgumentError diag(zeros(0,1),2)
## Least squares solutions
a = [ones(20) 1:20 1:20]
b = reshape(eye(8, 5), 20, 2)
for elty in (Float32, Float64, Complex64, Complex128)
a = convert(Matrix{elty}, a)
b = convert(Matrix{elty}, b)
# Vector rhs
x = a[:,1:2]\b[:,1]
@test_approx_eq ((a[:,1:2]*x-b[:,1])'*(a[:,1:2]*x-b[:,1]))[1] convert(elty, 2.546616541353384)
# Matrix rhs
x = a[:,1:2]\b
@test_approx_eq det((a[:,1:2]*x-b)'*(a[:,1:2]*x-b)) convert(elty, 4.437969924812031)
# Rank deficient
x = a\b
@test_approx_eq det((a*x-b)'*(a*x-b)) convert(elty, 4.437969924812031)
# Underdetermined minimum norm
x = convert(Matrix{elty}, [1 0 0; 0 1 -1]) \ convert(Vector{elty}, [1,1])
@test_approx_eq x convert(Vector{elty}, [1, 0.5, -0.5])
# symmetric, positive definite
@test_approx_eq inv(convert(Matrix{elty}, [6. 2; 2 1])) convert(Matrix{elty}, [0.5 -1; -1 3])
# symmetric, indefinite
@test_approx_eq inv(convert(Matrix{elty}, [1. 2; 2 1])) convert(Matrix{elty}, [-1. 2; 2 -1]/3)
end
# test ops on Numbers
for elty in [Float32,Float64,Complex64,Complex128]
a = rand(elty)
@test expm(a) == exp(a)
@test isposdef(one(elty))
@test sqrtm(a) == sqrt(a)
@test logm(a) ≈ log(a)
@test lyap(one(elty),a) == -a/2
end
# stride1
a = rand(10)
b = slice(a,2:2:10)
@test Base.LinAlg.stride1(b) == 2
|