/usr/share/julia/test/linalg/cholesky.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 | # This file is a part of Julia. License is MIT: http://julialang.org/license
debug = false
using Base.Test
using Base.LinAlg: BlasComplex, BlasFloat, BlasReal, QRPivoted
n = 10
# Split n into 2 parts for tests needing two matrices
n1 = div(n, 2)
n2 = 2*n1
srand(1234321)
areal = randn(n,n)/2
aimg = randn(n,n)/2
a2real = randn(n,n)/2
a2img = randn(n,n)/2
breal = randn(n,2)/2
bimg = randn(n,2)/2
for eltya in (Float32, Float64, Complex64, Complex128, BigFloat, Int)
a = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(areal, aimg) : areal)
a2 = eltya == Int ? rand(1:7, n, n) : convert(Matrix{eltya}, eltya <: Complex ? complex(a2real, a2img) : a2real)
apd = a'*a # symmetric positive-definite
ε = εa = eps(abs(float(one(eltya))))
@inferred cholfact(apd)
@inferred chol(apd)
capd = factorize(apd)
r = capd[:U]
κ = cond(apd, 1) #condition number
#getindex
@test_throws KeyError capd[:Z]
#Test error bound on reconstruction of matrix: LAWNS 14, Lemma 2.1
#these tests were failing on 64-bit linux when inside the inner loop
#for eltya = Complex64 and eltyb = Int. The E[i,j] had NaN32 elements
#but only with srand(1234321) set before the loops.
E = abs(apd - r'*r)
for i=1:n, j=1:n
@test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end
E = abs(apd - full(capd))
for i=1:n, j=1:n
@test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end
@test_approx_eq apd * inv(capd) eye(n)
@test abs((det(capd) - det(apd))/det(capd)) <= ε*κ*n # Ad hoc, but statistically verified, revisit
@test_approx_eq @inferred(logdet(capd)) log(det(capd)) # logdet is less likely to overflow
apos = apd[1,1] # test chol(x::Number), needs x>0
@test_approx_eq cholfact(apos).factors √apos
@test_throws ArgumentError chol(-one(eltya))
# test chol of 2x2 Strang matrix
S = convert(AbstractMatrix{eltya},full(SymTridiagonal([2,2],[-1])))
U = Bidiagonal([2,sqrt(eltya(3))],[-1],true) / sqrt(eltya(2))
@test_approx_eq full(chol(S)) full(U)
#lower Cholesky factor
lapd = cholfact(apd, :L)
@test_approx_eq full(lapd) apd
l = lapd[:L]
@test_approx_eq l*l' apd
#pivoted upper Cholesky
if eltya != BigFloat
cz = cholfact(zeros(eltya,n,n), :U, Val{true})
@test_throws Base.LinAlg.RankDeficientException Base.LinAlg.chkfullrank(cz)
cpapd = cholfact(apd, :U, Val{true})
@test rank(cpapd) == n
@test all(diff(diag(real(cpapd.factors))).<=0.) # diagonal should be non-increasing
if isreal(apd)
@test_approx_eq apd * inv(cpapd) eye(n)
end
@test full(cpapd) ≈ apd
#getindex
@test_throws KeyError cpapd[:Z]
@test size(cpapd) == size(apd)
@test full(copy(cpapd)) ≈ apd
@test det(cpapd) ≈ det(apd)
@test cpapd[:P]*cpapd[:L]*cpapd[:U]*cpapd[:P]' ≈ apd
end
for eltyb in (Float32, Float64, Complex64, Complex128, Int)
b = eltyb == Int ? rand(1:5, n, 2) : convert(Matrix{eltyb}, eltyb <: Complex ? complex(breal, bimg) : breal)
εb = eps(abs(float(one(eltyb))))
ε = max(εa,εb)
debug && println("\ntype of a: ", eltya, " type of b: ", eltyb, "\n")
#Test error bound on linear solver: LAWNS 14, Theorem 2.1
#This is a surprisingly loose bound...
x = capd\b
@test norm(x-apd\b,1)/norm(x,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
@test norm(apd*x-b,1)/norm(b,1) <= (3n^2 + n + n^3*ε)*ε/(1-(n+1)*ε)*κ
@test norm(a*(capd\(a'*b)) - b,1)/norm(b,1) <= ε*κ*n # Ad hoc, revisit
if eltya != BigFloat && eltyb != BigFloat
@test norm(apd * (lapd\b) - b)/norm(b) <= ε*κ*n
@test norm(apd * (lapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n
end
debug && println("pivoted Choleksy decomposition")
if eltya != BigFloat && eltyb != BigFloat # Note! Need to implement pivoted cholesky decomposition in julia
@test norm(apd * (cpapd\b) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit
@test norm(apd * (cpapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n
lpapd = cholfact(apd, :L, Val{true})
@test norm(apd * (lpapd\b) - b)/norm(b) <= ε*κ*n # Ad hoc, revisit
@test norm(apd * (lpapd\b[1:n]) - b[1:n])/norm(b[1:n]) <= ε*κ*n
end
end
end
begin
# Cholesky factor of Matrix with non-commutative elements, here 2x2-matrices
X = Matrix{Float64}[0.1*rand(2,2) for i in 1:3, j = 1:3]
L = full(Base.LinAlg.chol!(X*X', Val{:L}))
U = full(Base.LinAlg.chol!(X*X', Val{:U}))
XX = full(X*X')
@test sum(sum(norm, L*L' - XX)) < eps()
@test sum(sum(norm, U'*U - XX)) < eps()
end
# Test generic cholfact!
for elty in (Float32, Float64, Complex{Float32}, Complex{Float64})
if elty <: Complex
A = complex(randn(5,5), randn(5,5))
else
A = randn(5,5)
end
A = convert(Matrix{elty}, A'A)
for ul in (:U, :L)
@test_approx_eq full(cholfact(A, ul)[ul]) full(invoke(Base.LinAlg.chol!, Tuple{AbstractMatrix, Type{Val{ul}}},copy(A), Val{ul}))
end
end
# issue #13243, unexpected nans in complex cholfact
let apd = [5.8525753f0 + 0.0f0im -0.79540455f0 + 0.7066077f0im 0.98274714f0 + 1.3824869f0im 2.619998f0 + 1.8532984f0im -1.8306153f0 - 1.2336911f0im 0.32275113f0 + 0.015575029f0im 2.1968813f0 + 1.0640624f0im 0.27894387f0 + 0.97911835f0im 3.0476584f0 + 0.18548489f0im 0.3842994f0 + 0.7050991f0im
-0.79540455f0 - 0.7066077f0im 8.313246f0 + 0.0f0im -1.8076122f0 - 0.8882447f0im 0.47806996f0 + 0.48494184f0im 0.5096429f0 - 0.5395974f0im -0.7285097f0 - 0.10360408f0im -1.1760061f0 - 2.7146957f0im -0.4271084f0 + 0.042899966f0im -1.7228563f0 + 2.8335886f0im 1.8942566f0 + 0.6389735f0im
0.98274714f0 - 1.3824869f0im -1.8076122f0 + 0.8882447f0im 9.367975f0 + 0.0f0im -0.1838578f0 + 0.6468568f0im -1.8338387f0 + 0.7064959f0im 0.041852742f0 - 0.6556877f0im 2.5673025f0 + 1.9732997f0im -1.1148382f0 - 0.15693812f0im 2.4704504f0 - 1.0389464f0im 1.0858271f0 - 1.298006f0im
2.619998f0 - 1.8532984f0im 0.47806996f0 - 0.48494184f0im -0.1838578f0 - 0.6468568f0im 3.1117508f0 + 0.0f0im -1.956626f0 + 0.22825956f0im 0.07081801f0 - 0.31801307f0im 0.3698375f0 - 0.5400855f0im 0.80686307f0 + 1.5315914f0im 1.5649154f0 - 1.6229297f0im -0.112077385f0 + 1.2014246f0im
-1.8306153f0 + 1.2336911f0im 0.5096429f0 + 0.5395974f0im -1.8338387f0 - 0.7064959f0im -1.956626f0 - 0.22825956f0im 3.6439795f0 + 0.0f0im -0.2594722f0 + 0.48786148f0im -0.47636223f0 - 0.27821827f0im -0.61608654f0 - 2.01858f0im -2.7767487f0 + 1.7693765f0im 0.048102796f0 - 0.9741874f0im
0.32275113f0 - 0.015575029f0im -0.7285097f0 + 0.10360408f0im 0.041852742f0 + 0.6556877f0im 0.07081801f0 + 0.31801307f0im -0.2594722f0 - 0.48786148f0im 3.624376f0 + 0.0f0im -1.6697118f0 + 0.4017511f0im -1.4397877f0 - 0.7550918f0im -0.31456697f0 - 1.0403451f0im -0.31978557f0 + 0.13701046f0im
2.1968813f0 - 1.0640624f0im -1.1760061f0 + 2.7146957f0im 2.5673025f0 - 1.9732997f0im 0.3698375f0 + 0.5400855f0im -0.47636223f0 + 0.27821827f0im -1.6697118f0 - 0.4017511f0im 6.8273163f0 + 0.0f0im -0.10051322f0 + 0.24303961f0im 1.4415971f0 + 0.29750675f0im 1.221786f0 - 0.85654986f0im
0.27894387f0 - 0.97911835f0im -0.4271084f0 - 0.042899966f0im -1.1148382f0 + 0.15693812f0im 0.80686307f0 - 1.5315914f0im -0.61608654f0 + 2.01858f0im -1.4397877f0 + 0.7550918f0im -0.10051322f0 - 0.24303961f0im 3.4057708f0 + 0.0f0im -0.5856801f0 - 1.0203559f0im 0.7103452f0 + 0.8422135f0im
3.0476584f0 - 0.18548489f0im -1.7228563f0 - 2.8335886f0im 2.4704504f0 + 1.0389464f0im 1.5649154f0 + 1.6229297f0im -2.7767487f0 - 1.7693765f0im -0.31456697f0 + 1.0403451f0im 1.4415971f0 - 0.29750675f0im -0.5856801f0 + 1.0203559f0im 7.005772f0 + 0.0f0im -0.9617417f0 - 1.2486815f0im
0.3842994f0 - 0.7050991f0im 1.8942566f0 - 0.6389735f0im 1.0858271f0 + 1.298006f0im -0.112077385f0 - 1.2014246f0im 0.048102796f0 + 0.9741874f0im -0.31978557f0 - 0.13701046f0im 1.221786f0 + 0.85654986f0im 0.7103452f0 - 0.8422135f0im -0.9617417f0 + 1.2486815f0im 3.4629636f0 + 0.0f0im]
b = [-0.905011814118756 + 0.2847570854574069im -0.7122162951294634 - 0.630289556702497im
-0.7620356655676837 + 0.15533508334193666im 0.39947219167701153 - 0.4576746001199889im
-0.21782716937787788 - 0.9222220085490986im -0.727775859267237 + 0.50638268521728im
-1.0509472322215125 + 0.5022165705328413im -0.7264975746431271 + 0.31670415674097235im
-0.6650468984506477 - 0.5000967284800251im -0.023682508769195098 + 0.18093440285319276im
-0.20604111555491242 + 0.10570814584017311im 0.562377322638969 - 0.2578030745663871im
-0.3451346708401685 + 1.076948486041297im 0.9870834574024372 - 0.2825689605519449im
0.25336108035924787 + 0.975317836492159im 0.0628393808469436 - 0.1253397353973715im
0.11192755545114 - 0.1603741874112385im 0.8439562576196216 + 1.0850814110398734im
-1.0568488936791578 - 0.06025820467086475im 0.12696236014017806 - 0.09853584666755086im]
cholfact(apd, :L, Val{true}) \ b
r = factorize(apd)[:U]
E = abs(apd - r'*r)
ε = eps(abs(float(one(Complex64))))
n = 10
for i=1:n, j=1:n
@test E[i,j] <= (n+1)ε/(1-(n+1)ε)*real(sqrt(apd[i,i]*apd[j,j]))
end
end
|