This file is indexed.

/usr/share/julia/test/linalg/arnoldi.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# This file is a part of Julia. License is MIT: http://julialang.org/license

using Base.Test

debug = false

debug && println("eigs")
let
    srand(1234)
    local n,a,asym,b,bsym,d,v
    n = 10
    areal  = sprandn(n,n,0.4)
    breal  = sprandn(n,n,0.4)
    acmplx = complex(sprandn(n,n,0.4), sprandn(n,n,0.4))
    bcmplx = complex(sprandn(n,n,0.4), sprandn(n,n,0.4))

    testtol = 1e-6

    for elty in (Float64, Complex128)
        if elty == Complex64 || elty == Complex128
            a = acmplx
            b = bcmplx
        else
            a = areal
            b = breal
        end
        a     = convert(SparseMatrixCSC{elty}, a)
        asym  = a' + a                  # symmetric indefinite
        apd   = a'*a                    # symmetric positive-definite

        b     = convert(SparseMatrixCSC{elty}, b)
        bsym  = b' + b
        bpd   = b'*b

        (d,v) = eigs(a, nev=3)
        @test_approx_eq a*v[:,2] d[2]*v[:,2]
        @test norm(v) > testtol # eigenvectors cannot be null vectors
        # (d,v) = eigs(a, b, nev=3, tol=1e-8) # not handled yet
        # @test_approx_eq_eps a*v[:,2] d[2]*b*v[:,2] testtol
        # @test norm(v) > testtol # eigenvectors cannot be null vectors

        (d,v) = eigs(asym, nev=3)
        @test_approx_eq asym*v[:,1] d[1]*v[:,1]
        @test_approx_eq eigs(asym; nev=1, sigma=d[3])[1][1] d[3]
        @test norm(v) > testtol # eigenvectors cannot be null vectors

        (d,v) = eigs(apd, nev=3)
        @test_approx_eq apd*v[:,3] d[3]*v[:,3]
        @test_approx_eq eigs(apd; nev=1, sigma=d[3])[1][1] d[3]

        (d,v) = eigs(apd, bpd, nev=3, tol=1e-8)
        @test_approx_eq_eps apd*v[:,2] d[2]*bpd*v[:,2] testtol
        @test norm(v) > testtol # eigenvectors cannot be null vectors

        # test (shift-and-)invert mode
        (d,v) = eigs(apd, nev=3, sigma=0)
        @test_approx_eq apd*v[:,3] d[3]*v[:,3]
        @test norm(v) > testtol # eigenvectors cannot be null vectors

        (d,v) = eigs(apd, bpd, nev=3, sigma=0, tol=1e-8)
        @test_approx_eq_eps apd*v[:,1] d[1]*bpd*v[:,1] testtol
        @test norm(v) > testtol # eigenvectors cannot be null vectors

        @test_throws ArgumentError eigs(rand(elty,2,2))
        @test_throws ArgumentError eigs(a, nev=-1)
        @test_throws ArgumentError eigs(a, which=:Z)
        @test_throws ArgumentError eigs(a, which=:BE)
        @test_throws DimensionMismatch eigs(a, v0=zeros(elty,n+2))
        @test_throws ArgumentError eigs(a, v0=zeros(Int,n))
        if elty == Float64
            @test_throws ArgumentError eigs(a+a.',which=:SI)
            @test_throws ArgumentError eigs(a+a.',which=:LI)
            @test_throws ArgumentError eigs(a,sigma=rand(Complex64))
        end
    end
end

# Problematic example from #6965
let A6965 = [
         1.0   1.0   1.0   1.0   1.0   1.0   1.0  1.0
        -1.0   2.0   0.0   0.0   0.0   0.0   0.0  1.0
        -1.0   0.0   3.0   0.0   0.0   0.0   0.0  1.0
        -1.0   0.0   0.0   4.0   0.0   0.0   0.0  1.0
        -1.0   0.0   0.0   0.0   5.0   0.0   0.0  1.0
        -1.0   0.0   0.0   0.0   0.0   6.0   0.0  1.0
        -1.0   0.0   0.0   0.0   0.0   0.0   7.0  1.0
        -1.0  -1.0  -1.0  -1.0  -1.0  -1.0  -1.0  8.0
       ]

    d, = eigs(A6965,which=:SM,nev=2,ncv=4,tol=eps())
    @test_approx_eq d[1] 2.5346936860350002
    @test_approx_eq real(d[2]) 2.6159972444834976
    @test_approx_eq abs(imag(d[2])) 1.2917858749046127

    # Requires ARPACK 3.2 or a patched 3.1.5
    #T6965 = [ 0.9  0.05  0.05
    #          0.8  0.1   0.1
    #          0.7  0.1   0.2 ]
    #d,v,nconv = eigs(T6965,nev=1,which=:LM)
    #@test_approx_eq_eps T6965*v d[1]*v 1e-6
end

# Example from Quantum Information Theory
import Base: size, issym, ishermitian

type CPM{T<:Base.LinAlg.BlasFloat}<:AbstractMatrix{T} # completely positive map
    kraus::Array{T,3} # kraus operator representation
end
size(Phi::CPM)=(size(Phi.kraus,1)^2,size(Phi.kraus,3)^2)
issym(Phi::CPM)=false
ishermitian(Phi::CPM)=false
import Base: *
function *{T<:Base.LinAlg.BlasFloat}(Phi::CPM{T},rho::Vector{T})
    rho=reshape(rho,(size(Phi.kraus,3),size(Phi.kraus,3)))
    rho2=zeros(T,(size(Phi.kraus,1),size(Phi.kraus,1)))
    for s=1:size(Phi.kraus,2)
        As=slice(Phi.kraus,:,s,:)
        rho2+=As*rho*As'
    end
    return reshape(rho2,(size(Phi.kraus,1)^2,))
end

let
    # Generate random isometry
    (Q,R)=qr(randn(100,50))
    Q=reshape(Q,(50,2,50))
    # Construct trace-preserving completely positive map from this
    Phi=CPM(Q)
    (d,v,nconv,numiter,numop,resid) = eigs(Phi,nev=1,which=:LM)
    # Properties: largest eigenvalue should be 1, largest eigenvector, when reshaped as matrix
    # should be a Hermitian positive definite matrix (up to an arbitrary phase)

    @test_approx_eq d[1] 1. # largest eigenvalue should be 1.
    v=reshape(v,(50,50)) # reshape to matrix
    v/=trace(v) # factor out arbitrary phase
    @test isapprox(vecnorm(imag(v)),0.) # it should be real
    v=real(v)
    # @test isapprox(vecnorm(v-v')/2,0.) # it should be Hermitian
    # Since this fails sometimes (numerical precision error),this test is commented out
    v=(v+v')/2
    @test isposdef(v)

    # Repeat with starting vector
    (d2,v2,nconv2,numiter2,numop2,resid2) = eigs(Phi,nev=1,which=:LM,v0=reshape(v,(2500,)))
    v2=reshape(v2,(50,50))
    v2/=trace(v2)
    @test numiter2<numiter
    @test_approx_eq v v2

    @test_approx_eq eigs(speye(50), nev=10)[1] ones(10) #Issue 4246
end

debug && println("real svds")
let # svds test
    A = sparse([1, 1, 2, 3, 4], [2, 1, 1, 3, 1], [2.0, -1.0, 6.1, 7.0, 1.5])
    S1 = svds(A, nsv = 2)
    S2 = svd(full(A))

    ## singular values match:
    @test_approx_eq S1[2] S2[2][1:2]

    ## 1st left singular vector
    s1_left = sign(S1[1][3,1]) * S1[1][:,1]
    s2_left = sign(S2[1][3,1]) * S2[1][:,1]
    @test_approx_eq s1_left s2_left

    ## 1st right singular vector
    s1_right = sign(S1[3][3,1]) * S1[3][:,1]
    s2_right = sign(S2[3][3,1]) * S2[3][:,1]
    @test_approx_eq s1_right s2_right

    #10329
    debug && println("Issue 10329")
    B = sparse(diagm([1.0, 2.0, 34.0, 5.0, 6.0]))
    S3 = svds(B, ritzvec=false, nsv=2)
    @test_approx_eq S3[1] [34.0, 6.0]
    S4 = svds(B, nsv=2)
    @test_approx_eq S4[2] [34.0, 6.0]

    @test_throws ArgumentError svds(A,nsv=0)
    @test_throws ArgumentError svds(A,nsv=20)
end

debug && println("complex svds")
let # complex svds test
    A = sparse([1, 1, 2, 3, 4], [2, 1, 1, 3, 1], exp(im*[2.0:2:10;]))
    S1 = svds(A, nsv = 2)
    S2 = svd(full(A))

    ## singular values match:
    @test_approx_eq S1[2] S2[2][1:2]

    ## left singular vectors
    s1_left = abs(S1[1][:,1:2])
    s2_left = abs(S2[1][:,1:2])
    @test_approx_eq s1_left s2_left

    ## right singular vectors
    s1_right = abs(S1[3][:,1:2])
    s2_right = abs(S2[3][:,1:2])
    @test_approx_eq s1_right s2_right

    @test_throws ArgumentError svds(A,nsv=0)
    @test_throws ArgumentError svds(A,nsv=20)
end

# test promotion
eigs(rand(1:10, 10, 10))
eigs(rand(1:10, 10, 10), rand(1:10, 10, 10) |> t -> t't)
svds(rand(1:10, 10, 8))
@test_throws MethodError eigs(big(rand(1:10, 10, 10)))
@test_throws MethodError eigs(big(rand(1:10, 10, 10)), rand(1:10, 10, 10))
@test_throws MethodError svds(big(rand(1:10, 10, 8)))

# Symmetric generalized with singular B
let
    n = 10
    k = 3
    A = randn(n,n); A = A'A
    B = randn(n,k);  B = B*B'
    @test sort(eigs(A, B, nev = k, sigma = 1.0)[1]) ≈ sort(eigvals(A, B)[1:k])
end