This file is indexed.

/usr/share/julia/test/fft.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# This file is a part of Julia. License is MIT: http://julialang.org/license

# fft
a = rand(8) + im*rand(8)
@test norm(ifft(fft(a)) - a) < 1e-8

m4 = [16.    2     3    13;
    5    11    10     8;
    9     7     6    12;
    4    14    15     1]

true_fft_m4 = [
    34.            34.            34.            34.;
     7. - 1.im  -5. + 3.im  -3. + 5.im   1. - 7.im;
    16.           -16.           -16.            16.;
     7. + 1.im  -5. - 3.im  -3. - 5.im   1. + 7.im ]

true_fftn_m4 = [
 136.        0          0         0 ;
   0.       20          8 + 8im   0 - 12im ;
   0.       32 + 32im   0        32 - 32im ;
   0.        0 + 12im   8 - 8im  20 ]

true_fftd2_m4 = [
   34.   13 + 11im    4   13 - 11im ;
   34.   -5 -  3im   -4   -5 +  3im ;
   34.    3 +  5im   -4    3 -  5im ;
   34.  -11 - 13im    4  -11 + 13im ]

b = rand(17,14)
b[3:6,9:12] = m4
sm4 = slice(b,3:6,9:12)

m3d = map(Float32,reshape(1:5*3*2, 5, 3, 2))
true_fftd3_m3d = Array(Float32, 5, 3, 2)
true_fftd3_m3d[:,:,1] = 17:2:45
true_fftd3_m3d[:,:,2] = -15

# use invoke to force usage of CTPlan versions even if FFTW is present
for A in (Array,SubArray)
    for f in (:fft,:ifft,:plan_fft,:plan_ifft)
        f_ = symbol(string(f, "_"))
        @eval begin
            $f_{T,N}(x::$A{T,N}) = invoke($f, Tuple{AbstractArray{T,N}}, x)
            $f_{T,N,R}(x::$A{T,N},r::R) = invoke($f,Tuple{AbstractArray{T,N},R},x,r)
        end
    end
end

for (f,fi,pf,pfi) in ((fft,ifft,plan_fft,plan_ifft),
                      (fft_,ifft_,plan_fft_,plan_ifft_))
    pm4 = pf(m4,1)

    fft_m4 = f(m4,1)
    fftd2_m4 = f(m4,2)
    ifft_fft_m4 = fi(f(m4,1),1)
    fftn_m4 = f(m4)
    ifftn_fftn_m4 = fi(f(m4))

    fft!_m4 = complex(m4); fft!(fft!_m4,1)
    fft!d2_m4 = complex(m4); fft!(fft!d2_m4,2)
    ifft!_fft_m4 = f(m4,1); ifft!(ifft!_fft_m4,1)
    fft!n_m4 = complex(m4); fft!(fft!n_m4)
    ifft!n_fftn_m4 = f(m4); ifft!(ifft!n_fftn_m4)

    pfft_m4 = pf(m4,1)*m4
    pfftd2_m4 = pf(m4,2)*m4
    pifft_fft_m4 = pfi(fft_m4,1)*fft_m4
    pfftn_m4 = pf(m4)*m4
    pifftn_fftn_m4 = pfi(fftn_m4)*fftn_m4

    pfft!_m4 = complex(m4); plan_fft!(pfft!_m4,1)*pfft!_m4
    pfft!d2_m4 = complex(m4); plan_fft!(pfft!d2_m4,2)*pfft!d2_m4
    pifft!_fft_m4 = f(m4,1); plan_ifft!(pifft!_fft_m4,1)*pifft!_fft_m4
    pfft!n_m4 = complex(m4); plan_fft!(pfft!n_m4)*pfft!n_m4
    pifft!n_fftn_m4 = f(m4); plan_ifft!(pifft!n_fftn_m4)*pifft!n_fftn_m4

    sfftn_m4 = f(sm4)
    psfftn_m4 = pf(sm4)*sm4
    sfft!n_b = map(Complex128,b)
    sfft!n_m4 = slice(sfft!n_b,3:6,9:12); fft!(sfft!n_m4)
    psfft!n_b = map(Complex128,b)
    psfft!n_m4 = slice(psfft!n_b,3:6,9:12); plan_fft!(psfft!n_m4)*psfft!n_m4

    for i = 1:length(m4)
        @test_approx_eq fft_m4[i] true_fft_m4[i]
        @test_approx_eq fftd2_m4[i] true_fftd2_m4[i]
        @test_approx_eq ifft_fft_m4[i] m4[i]
        @test_approx_eq fftn_m4[i] true_fftn_m4[i]
        @test_approx_eq ifftn_fftn_m4[i] m4[i]

        @test_approx_eq fft!_m4[i] true_fft_m4[i]
        @test_approx_eq fft!d2_m4[i] true_fftd2_m4[i]
        @test_approx_eq ifft!_fft_m4[i] m4[i]
        @test_approx_eq fft!n_m4[i] true_fftn_m4[i]
        @test_approx_eq ifft!n_fftn_m4[i] m4[i]

        @test_approx_eq pfft_m4[i] true_fft_m4[i]
        @test_approx_eq pfftd2_m4[i] true_fftd2_m4[i]
        @test_approx_eq pifft_fft_m4[i] m4[i]
        @test_approx_eq pfftn_m4[i] true_fftn_m4[i]
        @test_approx_eq pifftn_fftn_m4[i] m4[i]

        @test_approx_eq pfft!_m4[i] true_fft_m4[i]
        @test_approx_eq pfft!d2_m4[i] true_fftd2_m4[i]
        @test_approx_eq pifft!_fft_m4[i] m4[i]
        @test_approx_eq pfft!n_m4[i] true_fftn_m4[i]
        @test_approx_eq pifft!n_fftn_m4[i] m4[i]

        @test_approx_eq sfftn_m4[i] true_fftn_m4[i]
        @test_approx_eq sfft!n_m4[i] true_fftn_m4[i]
        @test_approx_eq psfftn_m4[i] true_fftn_m4[i]
        @test_approx_eq psfft!n_m4[i] true_fftn_m4[i]
    end

    ifft!(sfft!n_m4)
    plan_ifft!(psfft!n_m4)*psfft!n_m4
    @test norm(sfft!n_m4 - m4) < 1e-8
    @test norm(psfft!n_m4 - m4) < 1e-8

    # The following capabilities are FFTW only.
    # They are not available in MKL, and hence do not test them.
    if Base.fftw_vendor() != :mkl

        ifft3_fft3_m3d = fi(f(m3d))

        fftd3_m3d = f(m3d,3)
        ifftd3_fftd3_m3d = fi(fftd3_m3d,3)

        fft!d3_m3d = complex(m3d); fft!(fft!d3_m3d,3)
        ifft!d3_fftd3_m3d = copy(fft!d3_m3d); ifft!(ifft!d3_fftd3_m3d,3)

        pfftd3_m3d = pf(m3d,3)*m3d
        pifftd3_fftd3_m3d = pfi(fftd3_m3d,3)*fftd3_m3d

        pfft!d3_m3d = complex(m3d); plan_fft!(pfft!d3_m3d,3)*pfft!d3_m3d
        pifft!d3_fftd3_m3d = copy(fft!d3_m3d); plan_ifft!(pifft!d3_fftd3_m3d,3)*pifft!d3_fftd3_m3d

        @test isa(fftd3_m3d, Array{Complex64,3})
        @test isa(ifftd3_fftd3_m3d, Array{Complex64,3})
        @test isa(fft!d3_m3d, Array{Complex64,3})
        @test isa(ifft!d3_fftd3_m3d, Array{Complex64,3})
        @test isa(pfftd3_m3d, Array{Complex64,3})
        @test isa(pifftd3_fftd3_m3d, Array{Complex64,3})
        @test isa(pfft!d3_m3d, Array{Complex64,3})
        @test isa(pifft!d3_fftd3_m3d, Array{Complex64,3})

        for i = 1:length(m3d)
            @test_approx_eq fftd3_m3d[i] true_fftd3_m3d[i]
            @test_approx_eq ifftd3_fftd3_m3d[i] m3d[i]
            @test_approx_eq ifft3_fft3_m3d[i] m3d[i]

            @test_approx_eq fft!d3_m3d[i] true_fftd3_m3d[i]
            @test_approx_eq ifft!d3_fftd3_m3d[i] m3d[i]

            @test_approx_eq pfftd3_m3d[i] true_fftd3_m3d[i]
            @test_approx_eq pifftd3_fftd3_m3d[i] m3d[i]
            @test_approx_eq pfft!d3_m3d[i] true_fftd3_m3d[i]
        @test_approx_eq pifft!d3_fftd3_m3d[i] m3d[i]
        end

    end  # if fftw_vendor() != :mkl ...

    # rfft/rfftn

    rfft_m4 = rfft(m4,1)
    rfftd2_m4 = rfft(m4,2)
    rfftn_m4 = rfft(m4)

    prfft_m4 = plan_rfft(m4,1)*m4
    prfftd2_m4 = plan_rfft(m4,2)*m4
    prfftn_m4 = plan_rfft(m4)*m4

    srfftn_m4 = rfft(sm4)
    psrfftn_m4 = plan_rfft(sm4)*sm4

    for i = 1:3, j = 1:4
        @test_approx_eq rfft_m4[i,j] true_fft_m4[i,j]
        @test_approx_eq rfftd2_m4[j,i] true_fftd2_m4[j,i]
        @test_approx_eq rfftn_m4[i,j] true_fftn_m4[i,j]

        @test_approx_eq prfft_m4[i,j] true_fft_m4[i,j]
        @test_approx_eq prfftd2_m4[j,i] true_fftd2_m4[j,i]
        @test_approx_eq prfftn_m4[i,j] true_fftn_m4[i,j]

        @test_approx_eq srfftn_m4[i,j] true_fftn_m4[i,j]
        @test_approx_eq psrfftn_m4[i,j] true_fftn_m4[i,j]
    end

    irfft_rfft_m4 = irfft(rfft_m4,size(m4,1),1)
    irfft_rfftd2_m4 = irfft(rfftd2_m4,size(m4,2),2)
    irfftn_rfftn_m4 = irfft(rfftn_m4,size(m4,1))

    pirfft_rfft_m4 = plan_irfft(rfft_m4,size(m4,1),1)*rfft_m4
    pirfft_rfftd2_m4 = plan_irfft(rfftd2_m4,size(m4,2),2)*rfftd2_m4
    pirfftn_rfftn_m4 = plan_irfft(rfftn_m4,size(m4,1))*rfftn_m4

    for i = 1:length(m4)
        @test_approx_eq irfft_rfft_m4[i] m4[i]
        @test_approx_eq irfft_rfftd2_m4[i] m4[i]
        @test_approx_eq irfftn_rfftn_m4[i] m4[i]

        @test_approx_eq pirfft_rfft_m4[i] m4[i]
        @test_approx_eq pirfft_rfftd2_m4[i] m4[i]
        @test_approx_eq pirfftn_rfftn_m4[i] m4[i]
    end

    if Base.fftw_vendor() != :mkl

        rfftn_m3d = rfft(m3d)
        rfftd3_m3d = rfft(m3d,3)
        @test size(rfftd3_m3d) == size(fftd3_m3d)
        irfft_rfftd3_m3d = irfft(rfftd3_m3d,size(m3d,3),3)
        irfftn_rfftn_m3d = irfft(rfftn_m3d,size(m3d,1))
        for i = 1:length(m3d)
            @test_approx_eq rfftd3_m3d[i] true_fftd3_m3d[i]
            @test_approx_eq irfft_rfftd3_m3d[i] m3d[i]
            @test_approx_eq irfftn_rfftn_m3d[i] m3d[i]
        end

        fftn_m3d = fft(m3d)
        @test size(fftn_m3d) == (5,3,2)
        rfftn_m3d = rfft(m3d)
        @test size(rfftn_m3d) == (3,3,2)
        for i = 1:3, j = 1:3, k = 1:2
            @test_approx_eq rfftn_m3d[i,j,k] fftn_m3d[i,j,k]
        end

    end # !mkl
end

# FFT self-test algorithm (for unscaled 1d forward FFTs):
#   Funda Ergün, "Testing multivariate linear functions: Overcoming
#   the generator bottleneck," Proc. 27th ACM Symposium on the Theory
#   of Computing, pp. 407-416 (1995).
# Check linearity, impulse-response, and time-shift properties.
function fft_test{T<:Complex}(p::Base.DFT.Plan{T}, ntrials=4,
                              tol=1e5 * eps(real(T)))
    ndims(p) == 1 || throw(ArgumentError("not a 1d FFT"))
    n = length(p)
    twopi_i = (-2 * convert(real(T), π)/n * (0:n-1)) * im
    for trial = 1:ntrials
        # linearity:
        x = rand(T, n)
        y = rand(T, n)
        α = rand(T)
        β = rand(T)
        X = p * (α*x + β*y)
        err = norm(α * (p*x) + β * (p*y) - X, Inf) / norm(X, Inf)
        err <= tol || error("linearity error $err in $p")

        # impulse-response:
        z = zeros(T, n)
        i = rand(0:n-1)
        z[i+1] = 1
        X = exp(twopi_i*i)
        err = norm(p*z - X, Inf) / norm(X, Inf)
        err <= tol || error("impulse-response error $err in $p")

        # time-shift:
        if n > 1
            s = rand(1:n-1)
            X = (p*x).*exp(twopi_i*s)
            err = norm(p*circshift(x,s) - X, Inf) / norm(X, Inf)
            err <= tol || error("time-shift error $err in $p")
        end
    end
end

for T in (Complex64, Complex128)
    for n in [1:100; 121; 143; 1000; 1024; 1031; 2000; 2048]
        x = zeros(T, n)
        fft_test(plan_fft(x))
        fft_test(plan_fft_(x))
    end
end

# test inversion, scaling, and pre-allocated variants
for T in (Complex64, Complex128)
    for x in (T[1:100;], reshape(T[1:200;], 20,10))
        y = similar(x)
        for planner in (plan_fft, plan_fft_, plan_ifft, plan_ifft_)
            p = planner(x)
            pi = inv(p)
            p3 = 3*p
            p3i = inv(p3)
            @test eltype(p) == eltype(pi) == eltype(p3) == eltype(p3i) == T
            @test vecnorm(x - p3i * (p * 3x)) < eps(real(T)) * 10000
            @test vecnorm(3x - pi * (p3 * x)) < eps(real(T)) * 10000
            A_mul_B!(y, p, x)
            @test y == p * x
            A_ldiv_B!(y, p, x)
            @test y == p \ x
        end
    end
end

let
    plan32 = plan_fft([1.0:2048.0;])
    plan64 = plan_fft([1f0:2048f0;])
    FFTW.flops(plan32)
    FFTW.flops(plan64)
end

# issue #9772
for x in (randn(10),randn(10,12))
    z = complex(x)
    y = rfft(x)
    @inferred rfft(x)
    @inferred brfft(x,18)
    @inferred brfft(y,10)
    for f in (plan_bfft!, plan_fft!, plan_ifft!,
              plan_bfft, plan_fft, plan_ifft,
              fft, bfft, fft_, ifft)
        p = @inferred f(z)
        if isa(p, FFTW.Plan)
            @inferred FFTW.plan_inv(p)
        end
    end
    for f in (plan_bfft, plan_fft, plan_ifft,
              plan_rfft, fft, bfft, fft_, ifft)
        p = @inferred f(x)
        if isa(p, FFTW.Plan)
            @inferred FFTW.plan_inv(p)
        end
    end
    # note: inference doesn't work for plan_fft_ since the
    #       algorithm steps are included in the CTPlan type
end