/usr/share/julia/test/broadcast.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 | # This file is a part of Julia. License is MIT: http://julialang.org/license
function as_sub(x::AbstractVector)
y = similar(x, eltype(x), tuple(([size(x)...]*2)...))
y = sub(y, 2:2:length(y))
y[:] = x[:]
y
end
function as_sub(x::AbstractMatrix)
y = similar(x, eltype(x), tuple(([size(x)...]*2)...))
y = sub(y, 2:2:size(y,1), 2:2:size(y,2))
for j=1:size(x,2)
for i=1:size(x,1)
y[i,j] = x[i,j]
end
end
y
end
function as_sub{T}(x::AbstractArray{T,3})
y = similar(x, eltype(x), tuple(([size(x)...]*2)...))
y = sub(y, 2:2:size(y,1), 2:2:size(y,2), 2:2:size(y,3))
for k=1:size(x,3)
for j=1:size(x,2)
for i=1:size(x,1)
y[i,j,k] = x[i,j,k]
end
end
end
y
end
bittest(f::Function, ewf::Function, a...) = (@test ewf(a...) == bitpack(broadcast(f, a...)))
n1 = 21
n2 = 32
n3 = 17
rb = 1:5
for arr in (identity, as_sub)
@test broadcast(+, arr(eye(2)), arr([1, 4])) == [2 1; 4 5]
@test broadcast(+, arr(eye(2)), arr([1 4])) == [2 4; 1 5]
@test broadcast(+, arr([1 0]), arr([1, 4])) == [2 1; 5 4]
@test broadcast(+, arr([1, 0]), arr([1 4])) == [2 5; 1 4]
@test broadcast(+, arr([1, 0]), arr([1, 4])) == [2, 4]
@test broadcast(+, arr([1, 0]), 2) == [3, 2]
@test @inferred(arr(eye(2)) .+ arr([1, 4])) == arr([2 1; 4 5])
@test arr(eye(2)) .+ arr([1 4]) == arr([2 4; 1 5])
@test arr([1 0]) .+ arr([1, 4]) == arr([2 1; 5 4])
@test arr([1, 0]) .+ arr([1 4]) == arr([2 5; 1 4])
@test arr([1, 0]) .+ arr([1, 4]) == arr([2, 4])
@test arr([1]) .+ arr([]) == arr([])
A = arr(eye(2)); @test broadcast!(+, A, A, arr([1, 4])) == arr([2 1; 4 5])
A = arr(eye(2)); @test broadcast!(+, A, A, arr([1 4])) == arr([2 4; 1 5])
A = arr([1 0]); @test_throws DimensionMismatch broadcast!(+, A, A, arr([1, 4]))
A = arr([1 0]); @test broadcast!(+, A, A, arr([1 4])) == arr([2 4])
A = arr([1 0]); @test broadcast!(+, A, A, 2) == arr([3 2])
@test arr([ 1 2]) .* arr([3, 4]) == [ 3 6; 4 8]
@test arr([24.0 12.0]) ./ arr([2.0, 3.0]) == [12 6; 8 4]
@test arr([1 2]) ./ arr([3, 4]) == [1/3 2/3; 1/4 2/4]
@test arr([1 2]) .\ arr([3, 4]) == [3 1.5; 4 2]
@test arr([3 4]) .^ arr([1, 2]) == [3 4; 9 16]
@test arr(bitpack([true false])) .* arr(bitpack([true, true])) == [true false; true false]
@test arr(bitpack([true false])) .^ arr(bitpack([false, true])) == [true true; true false]
@test arr(bitpack([true false])) .^ arr([0, 3]) == [true true; true false]
M = arr([11 12; 21 22])
@test broadcast_getindex(M, eye(Int, 2).+1,arr([1, 2])) == [21 11; 12 22]
@test_throws BoundsError broadcast_getindex(M, eye(Int, 2).+1,arr([1, -1]))
@test_throws BoundsError broadcast_getindex(M, eye(Int, 2).+1,arr([1, 2]), [2])
@test broadcast_getindex(M, eye(Int, 2).+1,arr([2, 1]), [1]) == [22 12; 11 21]
A = arr(zeros(2,2))
broadcast_setindex!(A, arr([21 11; 12 22]), eye(Int, 2).+1,arr([1, 2]))
@test A == M
broadcast_setindex!(A, 5, [1,2], [2 2])
@test A == [11 5; 21 5]
broadcast_setindex!(A, 7, [1,2], [1 2])
@test A == fill(7, 2, 2)
A = arr(zeros(3,3))
broadcast_setindex!(A, 10:12, 1:3, 1:3)
@test A == diagm(10:12)
@test_throws BoundsError broadcast_setindex!(A, 7, [1,-1], [1 2])
for (f, ewf) in (((==), (.==)),
((<) , (.<) ),
((!=), (.!=)),
((<=), (.<=)))
bittest(f, ewf, arr(eye(2)), arr([1, 4]))
bittest(f, ewf, arr(eye(2)), arr([1 4]))
bittest(f, ewf, arr([0, 1]), arr([1 4]))
bittest(f, ewf, arr([0 1]), arr([1, 4]))
bittest(f, ewf, arr([1, 0]), arr([1, 4]))
bittest(f, ewf, arr(rand(rb, n1, n2, n3)), arr(rand(rb, n1, n2, n3)))
bittest(f, ewf, arr(rand(rb, 1, n2, n3)), arr(rand(rb, n1, 1, n3)))
bittest(f, ewf, arr(rand(rb, 1, n2, 1)), arr(rand(rb, n1, 1, n3)))
bittest(f, ewf, arr(bitrand(n1, n2, n3)), arr(bitrand(n1, n2, n3)))
end
end
r1 = 1:1
r2 = 1:5
ratio = [1,1/2,1/3,1/4,1/5]
@test r1.*r2 == [1:5;]
@test r1./r2 == ratio
m = [1:2;]'
@test m.*r2 == [1:5 2:2:10]
@test_approx_eq m./r2 [ratio 2ratio]
@test_approx_eq m./[r2;] [ratio 2ratio]
@test @inferred([0,1.2].+reshape([0,-2],1,1,2)) == reshape([0 -2; 1.2 -0.8],2,1,2)
rt = Base.return_types(.+, Tuple{Array{Float64, 3}, Array{Int, 1}})
@test length(rt) == 1 && rt[1] == Array{Float64, 3}
rt = Base.return_types(broadcast, Tuple{Function, Array{Float64, 3}, Array{Int, 1}})
@test length(rt) == 1 && rt[1] == Array{Float64, 3}
rt = Base.return_types(broadcast!, Tuple{Function, Array{Float64, 3}, Array{Float64, 3}, Array{Int, 1}})
@test length(rt) == 1 && rt[1] == Array{Float64, 3}
|