This file is indexed.

/usr/share/julia/base/test.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
# This file is a part of Julia. License is MIT: http://julialang.org/license

module Test

export @test, @test_throws, @test_approx_eq, @test_approx_eq_eps, @inferred

abstract Result
type Success <: Result
    expr
    resultexpr
    res
    Success(expr, resultexpr=nothing, res=nothing) = new(expr, resultexpr, res)
end
type Failure <: Result
    expr
    resultexpr
end
Failure(expr) = Failure(expr, nothing)
type Error <: Result
    expr
    err
    backtrace
end

default_handler(r::Success) = r.res
function default_handler(r::Failure)
    if r.resultexpr !== nothing
        error("test failed: $(r.resultexpr)\n in expression: $(r.expr)")
    else
        error("test failed in expression: $(r.expr)")
    end
end
default_handler(r::Error) = rethrow(r)

handler() = get(task_local_storage(), :TEST_HANDLER, default_handler)

with_handler(f::Function, handler) =
    task_local_storage(f, :TEST_HANDLER, handler)

import Base.showerror

showerror(io::IO, r::Error) = showerror(io, r, [])
function showerror(io::IO, r::Error, bt)
    println(io, "test error in expression: $(r.expr)")
    showerror(io, r.err, r.backtrace)
end

function do_test(body,qex)
    handler()(try
        rex, val = body()
        val ? Success(qex, rex) : Failure(qex,rex)
    catch err
        Error(qex,err,catch_backtrace())
    end)
end

function do_test_throws(body, qex, bt, extype)
    handler()(try
        body()
        Failure(qex, "$qex did not throw $(extype === nothing ? "anything" : extype)")
    catch err
        if extype === nothing
            Base.warn("""
            @test_throws without an exception type is deprecated;
            Use `@test_throws $(typeof(err)) $(qex)` instead.
            """, bt = bt)
            Success(qex, nothing, err)
        else
            if isa(err, extype)
                Success(qex, nothing, err)
            else
                if isa(err,Type)
                    Failure(qex, "the type $err was thrown instead of an instance of $extype")
                else
                    Failure(qex, "$err was thrown instead of $extype")
                end
            end
        end
    end)
end

macro test(ex)
    if typeof(ex) == Expr && ex.head == :comparison
        syms = [gensym() for i = 1:length(ex.args)]
        func_block = Expr(:block)
        # insert assignment into a block
        func_block.args = [:($(syms[i]) = $(esc(ex.args[i]))) for i = 1:length(ex.args)]
        # finish the block with a return
        push!(func_block.args, Expr(:return, :(Expr(:comparison, $(syms...)), $(Expr(:comparison, syms...)))))
        :(do_test(()->($func_block), $(Expr(:quote,ex))))
    else
        :(do_test(()->($(Expr(:quote,ex)), $(esc(ex))), $(Expr(:quote,ex))))
    end
end

macro test_throws(args...)
    ex = nothing
    extype = nothing
    # Users should pass (ExceptionType, Expression) but we give a warning to users that only pass (Expression)
    if length(args) == 1
        ex = args[1]
    elseif length(args) == 2
        ex = args[2]
        extype = args[1]
    end
    :(do_test_throws(()->($(esc(ex))),$(Expr(:quote,ex)),backtrace(),$(esc(extype))))
end

approx_full(x::AbstractArray) = x
approx_full(x::Number) = x
approx_full(x) = full(x)

function test_approx_eq(va, vb, Eps, astr, bstr)
    va = approx_full(va)
    vb = approx_full(vb)
    if length(va) != length(vb)
        error("lengths of ", astr, " and ", bstr, " do not match: ",
              "\n  ", astr, " (length $(length(va))) = ", va,
              "\n  ", bstr, " (length $(length(vb))) = ", vb)
    end
    diff = real(zero(eltype(va)))
    for i = 1:length(va)
        xa = va[i]; xb = vb[i]
        if isfinite(xa) && isfinite(xb)
            diff = max(diff, abs(xa-xb))
        elseif !isequal(xa,xb)
            error("mismatch of non-finite elements: ",
                  "\n  ", astr, " = ", va,
                  "\n  ", bstr, " = ", vb)
        end
    end

    if !isnan(Eps) && !(diff <= Eps)
        sdiff = string("|", astr, " - ", bstr, "| <= ", Eps)
        error("assertion failed: ", sdiff,
              "\n  ", astr, " = ", va,
              "\n  ", bstr, " = ", vb,
              "\n  difference = ", diff, " > ", Eps)
    end
end

array_eps{T}(a::AbstractArray{Complex{T}}) = eps(float(maximum(x->(isfinite(x) ? abs(x) : T(NaN)), a)))
array_eps(a) = eps(float(maximum(x->(isfinite(x) ? abs(x) : oftype(x,NaN)), a)))

test_approx_eq(va, vb, astr, bstr) =
    test_approx_eq(va, vb, 1E4*length(va)*max(array_eps(va), array_eps(vb)), astr, bstr)

macro test_approx_eq_eps(a, b, c)
    :(test_approx_eq($(esc(a)), $(esc(b)), $(esc(c)), $(string(a)), $(string(b))))
end

macro test_approx_eq(a, b)
    :(test_approx_eq($(esc(a)), $(esc(b)), $(string(a)), $(string(b))))
end

"""
    @inferred f(x)

Tests that the call expression `f(x)` returns a value of the same type
inferred by the compiler. It's useful to check for type stability.

`f(x)` can be any call expression.
Returns the result of `f(x)` if the types match,
and an `Error` `Result` if it finds different types.

```jldoctest
julia> using Base.Test

julia> f(a,b,c) = b > 1 ? 1 : 1.0
f (generic function with 1 method)

julia> typeof(f(1,2,3))
Int64

julia> @code_warntype f(1,2,3)
Variables:
  a::Int64
  b::Int64
  c::Int64
<BLANKLINE>
Body:
  begin  # none, line 1:
      unless (Base.slt_int)(1,b::Int64)::Bool goto 0
      return 1
      0:
      return 1.0
  end::UNION{FLOAT64,INT64}

julia> @inferred f(1,2,3)
ERROR: return type Int64 does not match inferred return type Union{Float64,Int64}
 in error at ./error.jl:21

julia> @inferred max(1,2)
2
```
"""
macro inferred(ex)
    ex.head == :call || error("@inferred requires a call expression")
    quote
        vals = ($([esc(ex.args[i]) for i = 2:length(ex.args)]...),)
        inftypes = Base.return_types($(esc(ex.args[1])), Base.typesof(vals...))
        @assert length(inftypes) == 1
        result = $(esc(ex.args[1]))(vals...)
        rettype = isa(result, Type) ? Type{result} : typeof(result)
        rettype == inftypes[1] || error("return type $rettype does not match inferred return type $(inftypes[1])")
        result
    end
end

# Test approximate equality of vectors or columns of matrices modulo floating
# point roundoff and phase (sign) differences.
#
# This function is design to test for equality between vectors of floating point
# numbers when the vectors are defined only up to a global phase or sign, such as
# normalized eigenvectors or singular vectors. The global phase is usually
# defined consistently, but may occasionally change due to small differences in
# floating point rounding noise or rounding modes, or through the use of
# different conventions in different algorithms. As a result, most tests checking
# such vectors have to detect and discard such overall phase differences.
#
# Inputs:
#     a, b:: StridedVecOrMat to be compared
#     err :: Default: m^3*(eps(S)+eps(T)), where m is the number of rows
#
# Raises an error if any columnwise vector norm exceeds err. Otherwise, returns
# nothing.
function test_approx_eq_modphase{S<:Real,T<:Real}(
        a::StridedVecOrMat{S}, b::StridedVecOrMat{T}, err=nothing)

    m, n = size(a)
    @test n==size(b, 2) && m==size(b, 1)
    err === nothing && (err=m^3*(eps(S)+eps(T)))
    for i=1:n
        v1, v2 = a[:, i], b[:, i]
        @test_approx_eq_eps min(abs(norm(v1-v2)), abs(norm(v1+v2))) 0.0 err
    end
end

end # module