/usr/share/julia/base/special/gamma.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 | # This file is a part of Julia. License is MIT: http://julialang.org/license
gamma(x::Float64) = nan_dom_err(ccall((:tgamma,libm), Float64, (Float64,), x), x)
gamma(x::Float32) = nan_dom_err(ccall((:tgammaf,libm), Float32, (Float32,), x), x)
gamma(x::Real) = gamma(float(x))
@vectorize_1arg Number gamma
function lgamma_r(x::Float64)
signp = Array(Int32, 1)
y = ccall((:lgamma_r,libm), Float64, (Float64, Ptr{Int32}), x, signp)
return y, signp[1]
end
function lgamma_r(x::Float32)
signp = Array(Int32, 1)
y = ccall((:lgammaf_r,libm), Float32, (Float32, Ptr{Int32}), x, signp)
return y, signp[1]
end
lgamma_r(x::Real) = lgamma_r(float(x))
lfact(x::Real) = (x<=1 ? zero(float(x)) : lgamma(x+one(x)))
@vectorize_1arg Number lfact
const clg_coeff = [76.18009172947146,
-86.50532032941677,
24.01409824083091,
-1.231739572450155,
0.1208650973866179e-2,
-0.5395239384953e-5]
function clgamma_lanczos(z)
const sqrt2pi = 2.5066282746310005
y = x = z
temp = x + 5.5
zz = log(temp)
zz = zz * (x+0.5)
temp -= zz
ser = complex(1.000000000190015, 0)
for j=1:6
y += 1.0
zz = clg_coeff[j]/y
ser += zz
end
zz = sqrt2pi*ser / x
return log(zz) - temp
end
function lgamma(z::Complex)
if real(z) <= 0.5
a = clgamma_lanczos(1-z)
b = log(sinpi(z))
const logpi = 1.14472988584940017
z = logpi - b - a
else
z = clgamma_lanczos(z)
end
complex(real(z), angle_restrict_symm(imag(z)))
end
gamma(z::Complex) = exp(lgamma(z))
# Bernoulli numbers B_{2k}, using tabulated numerators and denominators from
# the online encyclopedia of integer sequences. (They actually have data
# up to k=249, but we stop here at k=20.) Used for generating the polygamma
# (Stirling series) coefficients below.
# const A000367 = map(BigInt, split("1,1,-1,1,-1,5,-691,7,-3617,43867,-174611,854513,-236364091,8553103,-23749461029,8615841276005,-7709321041217,2577687858367,-26315271553053477373,2929993913841559,-261082718496449122051", ","))
# const A002445 = [1,6,30,42,30,66,2730,6,510,798,330,138,2730,6,870,14322,510,6,1919190,6,13530]
# const bernoulli = A000367 .// A002445 # even-index Bernoulli numbers
function digamma(z::Union{Float64,Complex{Float64}})
# Based on eq. (12), without looking at the accompanying source
# code, of: K. S. Kölbig, "Programs for computing the logarithm of
# the gamma function, and the digamma function, for complex
# argument," Computer Phys. Commun. vol. 4, pp. 221–226 (1972).
x = real(z)
if x <= 0 # reflection formula
ψ = -π * cot(π*z)
z = 1 - z
x = real(z)
else
ψ = zero(z)
end
if x < 7
# shift using recurrence formula
n = 7 - floor(Int,x)
for ν = 1:n-1
ψ -= inv(z + ν)
end
ψ -= inv(z)
z += n
end
t = inv(z)
ψ += log(z) - 0.5*t
t *= t # 1/z^2
# the coefficients here are Float64(bernoulli[2:9] .// (2*(1:8)))
ψ -= t * @evalpoly(t,0.08333333333333333,-0.008333333333333333,0.003968253968253968,-0.004166666666666667,0.007575757575757576,-0.021092796092796094,0.08333333333333333,-0.4432598039215686)
end
function trigamma(z::Union{Float64,Complex{Float64}})
# via the derivative of the Kölbig digamma formulation
x = real(z)
if x <= 0 # reflection formula
return (π * csc(π*z))^2 - trigamma(1 - z)
end
ψ = zero(z)
if x < 8
# shift using recurrence formula
n = 8 - floor(Int,x)
ψ += inv(z)^2
for ν = 1:n-1
ψ += inv(z + ν)^2
end
z += n
end
t = inv(z)
w = t * t # 1/z^2
ψ += t + 0.5*w
# the coefficients here are Float64(bernoulli[2:9])
ψ += t*w * @evalpoly(w,0.16666666666666666,-0.03333333333333333,0.023809523809523808,-0.03333333333333333,0.07575757575757576,-0.2531135531135531,1.1666666666666667,-7.092156862745098)
end
signflip(m::Number, z) = (-1+0im)^m * z
signflip(m::Integer, z) = iseven(m) ? z : -z
# (-1)^m d^m/dz^m cot(z) = p_m(cot z), where p_m is a polynomial
# that satisfies the recurrence p_{m+1}(x) = p_m′(x) * (1 + x^2).
# Note that p_m(x) has only even powers of x if m is odd, and
# only odd powers of x if m is even. Therefore, we write p_m(x)
# as p_m(x) = q_m(x^2) m! for m odd and p_m(x) = x q_m(x^2) m! if m is even.
# Hence the polynomials q_m(y) satisfy the recurrence:
# m odd: q_{m+1}(y) = 2 q_m′(y) * (1+y) / (m+1)
# m even: q_{m+1}(y) = [q_m(y) + 2 y q_m′(y)] * (1+y) / (m+1)
# This function computes the coefficients of the polynomial q_m(y),
# returning an array of the coefficients of 1, y, y^2, ...,
function cotderiv_q(m::Int)
m < 0 && throw(ArgumentError("$m < 0 not allowed"))
m == 0 && return [1.0]
m == 1 && return [1.0, 1.0]
q₋ = cotderiv_q(m-1)
d = length(q₋) - 1 # degree of q₋
if isodd(m-1)
q = Array(Float64, length(q₋))
q[end] = d * q₋[end] * 2/m
for i = 1:length(q)-1
q[i] = ((i-1)*q₋[i] + i*q₋[i+1]) * 2/m
end
else # iseven(m-1)
q = Array(Float64, length(q₋) + 1)
q[1] = q₋[1] / m
q[end] = (1 + 2d) * q₋[end] / m
for i = 2:length(q)-1
q[i] = ((1 + 2(i-1))*q₋[i] + (1 + 2(i-2))*q₋[i-1]) / m
end
end
return q
end
# precompute a table of cot derivative polynomials
const cotderiv_Q = [cotderiv_q(m) for m in 1:100]
# Evaluate (-1)^m d^m/dz^m [π cot(πz)] / m!. If m is small, we
# use the explicit derivative formula (a polynomial in cot(πz));
# if m is large, we use the derivative of Euler's harmonic series:
# π cot(πz) = ∑ inv(z + n)
function cotderiv(m::Integer, z)
isinf(imag(z)) && return zero(z)
if m <= 0
m == 0 && return π * cot(π*z)
throw(DomainError())
end
if m <= length(cotderiv_Q)
q = cotderiv_Q[m]
x = cot(π*z)
y = x*x
s = q[1] + q[2] * y
t = y
# evaluate q(y) using Horner (TODO: Knuth for complex z?)
for i = 3:length(q)
t *= y
s += q[i] * t
end
return π^(m+1) * (isodd(m) ? s : x*s)
else # m is large, series derivative should converge quickly
p = m+1
z -= round(real(z))
s = inv(z^p)
n = 1
sₒ = zero(s)
while s != sₒ
sₒ = s
a = (z+n)^p
b = (z-n)^p
s += (a + b) / (a * b)
n += 1
end
return s
end
end
# Helper macro for polygamma(m, z):
# Evaluate p[1]*c[1] + x*p[2]*c[2] + x^2*p[3]*c[3] + ...
# where c[1] = m + 1
# c[k] = c[k-1] * (2k+m-1)*(2k+m-2) / ((2k-1)*(2k-2)) = c[k-1] * d[k]
# i.e. d[k] = c[k]/c[k-1] = (2k+m-1)*(2k+m-2) / ((2k-1)*(2k-2))
# by a modified version of Horner's rule:
# c[1] * (p[1] + d[2]*x * (p[2] + d[3]*x * (p[3] + ...))).
# The entries of p must be literal constants and there must be > 1 of them.
macro pg_horner(x, m, p...)
k = length(p)
me = esc(m)
xe = esc(x)
ex = :(($me + $(2k-1)) * ($me + $(2k-2)) * $(p[end]/((2k-1)*(2k-2))))
for k = length(p)-1:-1:2
cdiv = 1 / ((2k-1)*(2k-2))
ex = :(($cdiv * ($me + $(2k-1)) * ($me + $(2k-2))) *
($(p[k]) + $xe * $ex))
end
:(($me + 1) * ($(p[1]) + $xe * $ex))
end
# compute inv(oftype(x, y)) efficiently, choosing the correct branch cut
inv_oftype(x::Complex, y::Complex) = oftype(x, inv(y))
function inv_oftype(x::Complex, y::Real)
yi = inv(y) # using real arithmetic for efficiency
oftype(x, Complex(yi, -zero(yi))) # get correct sign of zero!
end
inv_oftype(x::Real, y::Real) = oftype(x, inv(y))
# Hurwitz zeta function, which is related to polygamma
# (at least for integer m > 0 and real(z) > 0) by:
# polygamma(m, z) = (-1)^(m+1) * gamma(m+1) * zeta(m+1, z).
# Our algorithm for the polygamma is just the m-th derivative
# of our digamma approximation, and this derivative process yields
# a function of the form
# (-1)^(m) * gamma(m+1) * (something)
# So identifying the (something) with the -zeta function, we get
# the zeta function for free and might as well export it, especially
# since this is a common generalization of the Riemann zeta function
# (which Julia already exports).
function zeta(s::Union{Int,Float64,Complex{Float64}},
z::Union{Float64,Complex{Float64}})
ζ = zero(promote_type(typeof(s), typeof(z)))
# like sqrt, require complex inputs to get complex outputs
!isa(s,Integer) && isa(ζ, Real) && z < 0 && throw(DomainError())
z == 1 && return oftype(ζ, zeta(s))
s == 2 && return oftype(ζ, trigamma(z))
x = real(z)
# annoying s = Inf or NaN cases:
if !isfinite(s)
(isnan(s) || isnan(z)) && return (s*z)^2 # type-stable NaN+Nan*im
if real(s) == Inf
z == 1 && return one(ζ)
if x > 1 || (x >= 0.5 ? abs(z) > 1 : abs(z - round(x)) > 1)
return zero(ζ) # distance to poles is > 1
end
x > 0 && imag(z) == 0 && imag(s) == 0 && return oftype(ζ, Inf)
end
throw(DomainError()) # nothing clever to return
end
# We need a different algorithm for the real(s) < 1 domain
real(s) < 1 && throw(ArgumentError("order $s < 1 is not implemented (issue #7228)"))
m = s - 1
# Algorithm is just the m-th derivative of digamma formula above,
# with a modified cutoff of the final asymptotic expansion.
# Note: we multiply by -(-1)^m m! in polygamma below, so this factor is
# pulled out of all of our derivatives.
isnan(x) && return oftype(ζ, imag(z)==0 && isa(s,Int) ? x : Complex(x,x))
cutoff = 7 + real(m) + imag(m) # TODO: this cutoff is too conservative?
if x < cutoff
# shift using recurrence formula
xf = floor(x)
if x <= 0 && xf == z
if isa(s, Int)
iseven(s) && return oftype(ζ, Inf)
x == 0 && return oftype(ζ, inv(x))
end
throw(DomainError()) # or return NaN?
end
nx = Int(xf)
n = ceil(Int,cutoff - nx)
ζ += inv_oftype(ζ, z)^s
for ν = -nx:-1:1
ζₒ= ζ
ζ += inv_oftype(ζ, z + ν)^s
ζ == ζₒ && break # prevent long loop for large -x > 0
# FIXME: still slow for small m, large Im(z)
end
for ν = max(1,1-nx):n-1
ζₒ= ζ
ζ += inv_oftype(ζ, z + ν)^s
ζ == ζₒ && break # prevent long loop for large m
end
z += n
end
t = inv(z)
w = isa(t, Real) ? conj(oftype(ζ, t))^m : oftype(ζ, t)^m
ζ += w * (inv(m) + 0.5*t)
t *= t # 1/z^2
ζ += w*t * @pg_horner(t,m,0.08333333333333333,-0.008333333333333333,0.003968253968253968,-0.004166666666666667,0.007575757575757576,-0.021092796092796094,0.08333333333333333,-0.4432598039215686,3.0539543302701198)
return ζ
end
function polygamma(m::Integer, z::Union{Float64,Complex{Float64}})
m == 0 && return digamma(z)
m == 1 && return trigamma(z)
# In principle, we could support non-integer m here, but the
# extension to complex m seems to be non-unique, the obvious
# extension (just plugging in a complex m below) does not seem to
# be the one used by Mathematica or Maple, and sources do not
# agree on what the "right" extension is (e.g. Mathematica & Maple
# disagree). So, at least for now, we require integer m.
# real(m) < 0 is valid, but I don't think our asymptotic expansion
# here works in this case. m < 0 polygamma is called a
# "negapolygamma" function in the literature, and there are
# multiple possible definitions arising from different integration
# constants. We throw a DomainError() since the definition is unclear.
real(m) < 0 && throw(DomainError())
s = m+1
if real(z) <= 0 # reflection formula
(zeta(s, 1-z) + signflip(m, cotderiv(m,z))) * (-gamma(s))
else
signflip(m, zeta(s,z) * (-gamma(s)))
end
end
# TODO: better way to do this
f64(x::Real) = Float64(x)
f64(z::Complex) = Complex128(z)
f32(x::Real) = Float32(x)
f32(z::Complex) = Complex64(z)
f16(x::Real) = Float16(x)
f16(z::Complex) = Complex32(z)
# If we really cared about single precision, we could make a faster
# Float32 version by truncating the Stirling series at a smaller cutoff.
for (f,T) in ((:f32,Float32),(:f16,Float16))
@eval begin
zeta(s::Integer, z::Union{$T,Complex{$T}}) = $f(zeta(Int(s), f64(z)))
zeta(s::Union{Float64,Complex128}, z::Union{$T,Complex{$T}}) = zeta(s, f64(z))
zeta(s::Number, z::Union{$T,Complex{$T}}) = $f(zeta(f64(s), f64(z)))
polygamma(m::Integer, z::Union{$T,Complex{$T}}) = $f(polygamma(Int(m), f64(z)))
digamma(z::Union{$T,Complex{$T}}) = $f(digamma(f64(z)))
trigamma(z::Union{$T,Complex{$T}}) = $f(trigamma(f64(z)))
end
end
zeta(s::Integer, z::Number) = zeta(Int(s), f64(z))
zeta(s::Number, z::Number) = zeta(f64(s), f64(z))
for f in (:digamma, :trigamma)
@eval begin
$f(z::Number) = $f(f64(z))
@vectorize_1arg Number $f
end
end
polygamma(m::Integer, z::Number) = polygamma(m, f64(z))
@vectorize_2arg Number polygamma
@vectorize_2arg Number zeta
# Inverse digamma function:
# Implementation of fixed point algorithm described in
# "Estimating a Dirichlet distribution" by Thomas P. Minka, 2000
function invdigamma(y::Float64)
# Closed form initial estimates
if y >= -2.22
x_old = exp(y) + 0.5
x_new = x_old
else
x_old = -1.0 / (y - digamma(1.0))
x_new = x_old
end
# Fixed point algorithm
delta = Inf
iteration = 0
while delta > 1e-12 && iteration < 25
iteration += 1
x_new = x_old - (digamma(x_old) - y) / trigamma(x_old)
delta = abs(x_new - x_old)
x_old = x_new
end
return x_new
end
invdigamma(x::Float32) = Float32(invdigamma(Float64(x)))
invdigamma(x::Real) = invdigamma(Float64(x))
@vectorize_1arg Real invdigamma
function beta(x::Number, w::Number)
yx, sx = lgamma_r(x)
yw, sw = lgamma_r(w)
yxw, sxw = lgamma_r(x+w)
return copysign(exp(yx + yw - yxw), sx*sw*sxw)
end
lbeta(x::Number, w::Number) = lgamma(x)+lgamma(w)-lgamma(x+w)
@vectorize_2arg Number beta
@vectorize_2arg Number lbeta
# Riemann zeta function; algorithm is based on specializing the Hurwitz
# zeta function above for z==1.
function zeta(s::Union{Float64,Complex{Float64}})
# blows up to ±Inf, but get correct sign of imaginary zero
s == 1 && return NaN + zero(s) * imag(s)
if !isfinite(s) # annoying NaN and Inf cases
isnan(s) && return imag(s) == 0 ? s : s*s
if isfinite(imag(s))
real(s) > 0 && return 1.0 - zero(s)*imag(s)
imag(s) == 0 && return NaN + zero(s)
end
return NaN*zero(s) # NaN + NaN*im
elseif real(s) < 0.5
if abs(real(s)) + abs(imag(s)) < 1e-3 # Taylor series for small |s|
return @evalpoly(s, -0.5,
-0.918938533204672741780329736405617639861,
-1.0031782279542924256050500133649802190,
-1.00078519447704240796017680222772921424,
-0.9998792995005711649578008136558752359121)
end
return zeta(1 - s) * gamma(1 - s) * sinpi(s*0.5) * (2π)^s / π
end
m = s - 1
# shift using recurrence formula:
# n is a semi-empirical cutoff for the Stirling series, based
# on the error term ~ (|m|/n)^18 / n^real(m)
n = ceil(Int,6 + 0.7*abs(imag(s-1))^inv(1 + real(m)*0.05))
ζ = one(s)
for ν = 2:n
ζₒ= ζ
ζ += inv(ν)^s
ζ == ζₒ && break # prevent long loop for large m
end
z = 1 + n
t = inv(z)
w = t^m
ζ += w * (inv(m) + 0.5*t)
t *= t # 1/z^2
ζ += w*t * @pg_horner(t,m,0.08333333333333333,-0.008333333333333333,0.003968253968253968,-0.004166666666666667,0.007575757575757576,-0.021092796092796094,0.08333333333333333,-0.4432598039215686,3.0539543302701198)
return ζ
end
zeta(x::Integer) = zeta(Float64(x))
zeta(x::Real) = oftype(float(x),zeta(Float64(x)))
zeta(z::Complex) = oftype(float(z),zeta(Complex128(z)))
@vectorize_1arg Number zeta
function eta(z::Union{Float64,Complex{Float64}})
δz = 1 - z
if abs(real(δz)) + abs(imag(δz)) < 7e-3 # Taylor expand around z==1
return 0.6931471805599453094172321214581765 *
@evalpoly(δz,
1.0,
-0.23064207462156020589789602935331414700440,
-0.047156357547388879740146103148112380421254,
-0.002263576552598880778433550956278702759143568,
0.001081837223249910136105931217561387128141157)
else
return -zeta(z) * expm1(0.6931471805599453094172321214581765*δz)
end
end
eta(x::Integer) = eta(Float64(x))
eta(x::Real) = oftype(float(x),eta(Float64(x)))
eta(z::Complex) = oftype(float(z),eta(Complex128(z)))
@vectorize_1arg Number eta
|