This file is indexed.

/usr/share/julia/base/special/gamma.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# This file is a part of Julia. License is MIT: http://julialang.org/license

gamma(x::Float64) = nan_dom_err(ccall((:tgamma,libm),  Float64, (Float64,), x), x)
gamma(x::Float32) = nan_dom_err(ccall((:tgammaf,libm),  Float32, (Float32,), x), x)
gamma(x::Real) = gamma(float(x))
@vectorize_1arg Number gamma

function lgamma_r(x::Float64)
    signp = Array(Int32, 1)
    y = ccall((:lgamma_r,libm),  Float64, (Float64, Ptr{Int32}), x, signp)
    return y, signp[1]
end
function lgamma_r(x::Float32)
    signp = Array(Int32, 1)
    y = ccall((:lgammaf_r,libm),  Float32, (Float32, Ptr{Int32}), x, signp)
    return y, signp[1]
end
lgamma_r(x::Real) = lgamma_r(float(x))

lfact(x::Real) = (x<=1 ? zero(float(x)) : lgamma(x+one(x)))
@vectorize_1arg Number lfact

const clg_coeff = [76.18009172947146,
                   -86.50532032941677,
                   24.01409824083091,
                   -1.231739572450155,
                   0.1208650973866179e-2,
                   -0.5395239384953e-5]

function clgamma_lanczos(z)
    const sqrt2pi = 2.5066282746310005

    y = x = z
    temp = x + 5.5
    zz = log(temp)
    zz = zz * (x+0.5)
    temp -= zz
    ser = complex(1.000000000190015, 0)
    for j=1:6
        y += 1.0
        zz = clg_coeff[j]/y
        ser += zz
    end
    zz = sqrt2pi*ser / x
    return log(zz) - temp
end

function lgamma(z::Complex)
    if real(z) <= 0.5
        a = clgamma_lanczos(1-z)
        b = log(sinpi(z))
        const logpi = 1.14472988584940017
        z = logpi - b - a
    else
        z = clgamma_lanczos(z)
    end
    complex(real(z), angle_restrict_symm(imag(z)))
end

gamma(z::Complex) = exp(lgamma(z))

# Bernoulli numbers B_{2k}, using tabulated numerators and denominators from
# the online encyclopedia of integer sequences.  (They actually have data
# up to k=249, but we stop here at k=20.)  Used for generating the polygamma
# (Stirling series) coefficients below.
#   const A000367 = map(BigInt, split("1,1,-1,1,-1,5,-691,7,-3617,43867,-174611,854513,-236364091,8553103,-23749461029,8615841276005,-7709321041217,2577687858367,-26315271553053477373,2929993913841559,-261082718496449122051", ","))
#   const A002445 = [1,6,30,42,30,66,2730,6,510,798,330,138,2730,6,870,14322,510,6,1919190,6,13530]
#   const bernoulli = A000367 .// A002445 # even-index Bernoulli numbers

function digamma(z::Union{Float64,Complex{Float64}})
    # Based on eq. (12), without looking at the accompanying source
    # code, of: K. S. Kölbig, "Programs for computing the logarithm of
    # the gamma function, and the digamma function, for complex
    # argument," Computer Phys. Commun.  vol. 4, pp. 221–226 (1972).
    x = real(z)
    if x <= 0 # reflection formula
        ψ = -π * cot(π*z)
        z = 1 - z
        x = real(z)
    else
        ψ = zero(z)
    end
    if x < 7
        # shift using recurrence formula
        n = 7 - floor(Int,x)
        for ν = 1:n-1
            ψ -= inv(z + ν)
        end
        ψ -= inv(z)
        z += n
    end
    t = inv(z)
    ψ += log(z) - 0.5*t
    t *= t # 1/z^2
    # the coefficients here are Float64(bernoulli[2:9] .// (2*(1:8)))
    ψ -= t * @evalpoly(t,0.08333333333333333,-0.008333333333333333,0.003968253968253968,-0.004166666666666667,0.007575757575757576,-0.021092796092796094,0.08333333333333333,-0.4432598039215686)
end

function trigamma(z::Union{Float64,Complex{Float64}})
    # via the derivative of the Kölbig digamma formulation
    x = real(z)
    if x <= 0 # reflection formula
        return (π * csc(π*z))^2 - trigamma(1 - z)
    end
    ψ = zero(z)
    if x < 8
        # shift using recurrence formula
        n = 8 - floor(Int,x)
        ψ += inv(z)^2
        for ν = 1:n-1
            ψ += inv(z + ν)^2
        end
        z += n
    end
    t = inv(z)
    w = t * t # 1/z^2
    ψ += t + 0.5*w
    # the coefficients here are Float64(bernoulli[2:9])
    ψ += t*w * @evalpoly(w,0.16666666666666666,-0.03333333333333333,0.023809523809523808,-0.03333333333333333,0.07575757575757576,-0.2531135531135531,1.1666666666666667,-7.092156862745098)
end

signflip(m::Number, z) = (-1+0im)^m * z
signflip(m::Integer, z) = iseven(m) ? z : -z

# (-1)^m d^m/dz^m cot(z) = p_m(cot z), where p_m is a polynomial
# that satisfies the recurrence p_{m+1}(x) = p_m′(x) * (1 + x^2).
# Note that p_m(x) has only even powers of x if m is odd, and
# only odd powers of x if m is even.  Therefore, we write p_m(x)
# as p_m(x) = q_m(x^2) m! for m odd and p_m(x) = x q_m(x^2) m! if m is even.
# Hence the polynomials q_m(y) satisfy the recurrence:
#     m odd:  q_{m+1}(y) = 2 q_m′(y) * (1+y) / (m+1)
#    m even:  q_{m+1}(y) = [q_m(y) + 2 y q_m′(y)] * (1+y) / (m+1)
# This function computes the coefficients of the polynomial q_m(y),
# returning an array of the coefficients of 1, y, y^2, ...,
function cotderiv_q(m::Int)
    m < 0 && throw(ArgumentError("$m < 0 not allowed"))
    m == 0 && return [1.0]
    m == 1 && return [1.0, 1.0]
    q₋ = cotderiv_q(m-1)
    d = length(q₋) - 1 # degree of q₋
    if isodd(m-1)
        q = Array(Float64, length(q₋))
        q[end] = d * q₋[end] * 2/m
        for i = 1:length(q)-1
            q[i] = ((i-1)*q₋[i] + i*q₋[i+1]) * 2/m
        end
    else # iseven(m-1)
        q = Array(Float64, length(q₋) + 1)
        q[1] = q₋[1] / m
        q[end] = (1 + 2d) * q₋[end] / m
        for i = 2:length(q)-1
            q[i] = ((1 + 2(i-1))*q₋[i] + (1 + 2(i-2))*q₋[i-1]) / m
        end
    end
    return q
end

# precompute a table of cot derivative polynomials
const cotderiv_Q = [cotderiv_q(m) for m in 1:100]

# Evaluate (-1)^m d^m/dz^m [π cot(πz)] / m!.  If m is small, we
# use the explicit derivative formula (a polynomial in cot(πz));
# if m is large, we use the derivative of Euler's harmonic series:
#          π cot(πz) = ∑ inv(z + n)
function cotderiv(m::Integer, z)
    isinf(imag(z)) && return zero(z)
    if m <= 0
        m == 0 && return π * cot(π*z)
        throw(DomainError())
    end
    if m <= length(cotderiv_Q)
        q = cotderiv_Q[m]
        x = cot(π*z)
        y = x*x
        s = q[1] + q[2] * y
        t = y
        # evaluate q(y) using Horner (TODO: Knuth for complex z?)
        for i = 3:length(q)
            t *= y
            s += q[i] * t
        end
        return π^(m+1) * (isodd(m) ? s : x*s)
    else # m is large, series derivative should converge quickly
        p = m+1
        z -= round(real(z))
        s = inv(z^p)
        n = 1
        sₒ = zero(s)
        while s != sₒ
            sₒ = s
            a = (z+n)^p
            b = (z-n)^p
            s += (a + b) / (a * b)
            n += 1
        end
        return s
    end
end

# Helper macro for polygamma(m, z):
#   Evaluate p[1]*c[1] + x*p[2]*c[2] + x^2*p[3]*c[3] + ...
#   where c[1] = m + 1
#         c[k] = c[k-1] * (2k+m-1)*(2k+m-2) / ((2k-1)*(2k-2)) = c[k-1] * d[k]
#         i.e. d[k] = c[k]/c[k-1] = (2k+m-1)*(2k+m-2) / ((2k-1)*(2k-2))
#   by a modified version of Horner's rule:
#      c[1] * (p[1] + d[2]*x * (p[2] + d[3]*x * (p[3] + ...))).
# The entries of p must be literal constants and there must be > 1 of them.
macro pg_horner(x, m, p...)
    k = length(p)
    me = esc(m)
    xe = esc(x)
    ex = :(($me + $(2k-1)) * ($me + $(2k-2)) * $(p[end]/((2k-1)*(2k-2))))
    for k = length(p)-1:-1:2
        cdiv = 1 / ((2k-1)*(2k-2))
        ex = :(($cdiv * ($me + $(2k-1)) * ($me + $(2k-2))) *
               ($(p[k]) + $xe * $ex))
    end
    :(($me + 1) * ($(p[1]) + $xe * $ex))
end

# compute inv(oftype(x, y)) efficiently, choosing the correct branch cut
inv_oftype(x::Complex, y::Complex) = oftype(x, inv(y))
function inv_oftype(x::Complex, y::Real)
    yi = inv(y) # using real arithmetic for efficiency
    oftype(x, Complex(yi, -zero(yi))) # get correct sign of zero!
end
inv_oftype(x::Real, y::Real) = oftype(x, inv(y))

# Hurwitz zeta function, which is related to polygamma
# (at least for integer m > 0 and real(z) > 0) by:
#    polygamma(m, z) = (-1)^(m+1) * gamma(m+1) * zeta(m+1, z).
# Our algorithm for the polygamma is just the m-th derivative
# of our digamma approximation, and this derivative process yields
# a function of the form
#          (-1)^(m) * gamma(m+1) * (something)
# So identifying the (something) with the -zeta function, we get
# the zeta function for free and might as well export it, especially
# since this is a common generalization of the Riemann zeta function
# (which Julia already exports).
function zeta(s::Union{Int,Float64,Complex{Float64}},
              z::Union{Float64,Complex{Float64}})
    ζ = zero(promote_type(typeof(s), typeof(z)))

    # like sqrt, require complex inputs to get complex outputs
    !isa(s,Integer) && isa(ζ, Real) && z < 0 && throw(DomainError())

    z == 1 && return oftype(ζ, zeta(s))
    s == 2 && return oftype(ζ, trigamma(z))

    x = real(z)

    # annoying s = Inf or NaN cases:
    if !isfinite(s)
        (isnan(s) || isnan(z)) && return (s*z)^2 # type-stable NaN+Nan*im
        if real(s) == Inf
            z == 1 && return one(ζ)
            if x > 1 || (x >= 0.5 ? abs(z) > 1 : abs(z - round(x)) > 1)
                return zero(ζ) # distance to poles is > 1
            end
            x > 0 && imag(z) == 0 && imag(s) == 0 && return oftype(ζ, Inf)
        end
        throw(DomainError()) # nothing clever to return
    end

    # We need a different algorithm for the real(s) < 1 domain
    real(s) < 1 && throw(ArgumentError("order $s < 1 is not implemented (issue #7228)"))

    m = s - 1

    # Algorithm is just the m-th derivative of digamma formula above,
    # with a modified cutoff of the final asymptotic expansion.

    # Note: we multiply by -(-1)^m m! in polygamma below, so this factor is
    #       pulled out of all of our derivatives.

    isnan(x) && return oftype(ζ, imag(z)==0 && isa(s,Int) ? x : Complex(x,x))

    cutoff = 7 + real(m) + imag(m) # TODO: this cutoff is too conservative?
    if x < cutoff
        # shift using recurrence formula
        xf = floor(x)
        if x <= 0 && xf == z
            if isa(s, Int)
                iseven(s) && return oftype(ζ, Inf)
                x == 0 && return oftype(ζ, inv(x))
            end
            throw(DomainError()) # or return NaN?
        end
        nx = Int(xf)
        n = ceil(Int,cutoff - nx)
        ζ += inv_oftype(ζ, z)^s
        for ν = -nx:-1:1
            ζₒ= ζ
            ζ += inv_oftype(ζ, z + ν)^s
            ζ == ζₒ && break # prevent long loop for large -x > 0
                             # FIXME: still slow for small m, large Im(z)
        end
        for ν = max(1,1-nx):n-1
            ζₒ= ζ
            ζ += inv_oftype(ζ, z + ν)^s
            ζ == ζₒ && break # prevent long loop for large m
        end
        z += n
    end

    t = inv(z)
    w = isa(t, Real) ? conj(oftype(ζ, t))^m : oftype(ζ, t)^m
    ζ += w * (inv(m) + 0.5*t)

    t *= t # 1/z^2
    ζ += w*t * @pg_horner(t,m,0.08333333333333333,-0.008333333333333333,0.003968253968253968,-0.004166666666666667,0.007575757575757576,-0.021092796092796094,0.08333333333333333,-0.4432598039215686,3.0539543302701198)

    return ζ
end

function polygamma(m::Integer, z::Union{Float64,Complex{Float64}})

    m == 0 && return digamma(z)
    m == 1 && return trigamma(z)

    # In principle, we could support non-integer m here, but the
    # extension to complex m seems to be non-unique, the obvious
    # extension (just plugging in a complex m below) does not seem to
    # be the one used by Mathematica or Maple, and sources do not
    # agree on what the "right" extension is (e.g. Mathematica & Maple
    # disagree).   So, at least for now, we require integer m.

    # real(m) < 0 is valid, but I don't think our asymptotic expansion
    # here works in this case.  m < 0 polygamma is called a
    # "negapolygamma" function in the literature, and there are
    # multiple possible definitions arising from different integration
    # constants. We throw a DomainError() since the definition is unclear.
    real(m) < 0 && throw(DomainError())

    s = m+1
    if real(z) <= 0 # reflection formula
        (zeta(s, 1-z) + signflip(m, cotderiv(m,z))) * (-gamma(s))
    else
        signflip(m, zeta(s,z) * (-gamma(s)))
    end
end

# TODO: better way to do this
f64(x::Real) = Float64(x)
f64(z::Complex) = Complex128(z)
f32(x::Real) = Float32(x)
f32(z::Complex) = Complex64(z)
f16(x::Real) = Float16(x)
f16(z::Complex) = Complex32(z)

# If we really cared about single precision, we could make a faster
# Float32 version by truncating the Stirling series at a smaller cutoff.
for (f,T) in ((:f32,Float32),(:f16,Float16))
    @eval begin
        zeta(s::Integer, z::Union{$T,Complex{$T}}) = $f(zeta(Int(s), f64(z)))
        zeta(s::Union{Float64,Complex128}, z::Union{$T,Complex{$T}}) = zeta(s, f64(z))
        zeta(s::Number, z::Union{$T,Complex{$T}}) = $f(zeta(f64(s), f64(z)))
        polygamma(m::Integer, z::Union{$T,Complex{$T}}) = $f(polygamma(Int(m), f64(z)))
        digamma(z::Union{$T,Complex{$T}}) = $f(digamma(f64(z)))
        trigamma(z::Union{$T,Complex{$T}}) = $f(trigamma(f64(z)))
    end
end

zeta(s::Integer, z::Number) = zeta(Int(s), f64(z))
zeta(s::Number, z::Number) = zeta(f64(s), f64(z))
for f in (:digamma, :trigamma)
    @eval begin
        $f(z::Number) = $f(f64(z))
        @vectorize_1arg Number $f
    end
end
polygamma(m::Integer, z::Number) = polygamma(m, f64(z))
@vectorize_2arg Number polygamma
@vectorize_2arg Number zeta

# Inverse digamma function:
# Implementation of fixed point algorithm described in
#  "Estimating a Dirichlet distribution" by Thomas P. Minka, 2000
function invdigamma(y::Float64)
    # Closed form initial estimates
    if y >= -2.22
        x_old = exp(y) + 0.5
        x_new = x_old
    else
        x_old = -1.0 / (y - digamma(1.0))
        x_new = x_old
    end

    # Fixed point algorithm
    delta = Inf
    iteration = 0
    while delta > 1e-12 && iteration < 25
        iteration += 1
        x_new = x_old - (digamma(x_old) - y) / trigamma(x_old)
        delta = abs(x_new - x_old)
        x_old = x_new
    end

    return x_new
end
invdigamma(x::Float32) = Float32(invdigamma(Float64(x)))
invdigamma(x::Real) = invdigamma(Float64(x))
@vectorize_1arg Real invdigamma

function beta(x::Number, w::Number)
    yx, sx = lgamma_r(x)
    yw, sw = lgamma_r(w)
    yxw, sxw = lgamma_r(x+w)
    return copysign(exp(yx + yw - yxw), sx*sw*sxw)
end
lbeta(x::Number, w::Number) = lgamma(x)+lgamma(w)-lgamma(x+w)
@vectorize_2arg Number beta
@vectorize_2arg Number lbeta

# Riemann zeta function; algorithm is based on specializing the Hurwitz
# zeta function above for z==1.
function zeta(s::Union{Float64,Complex{Float64}})
    # blows up to ±Inf, but get correct sign of imaginary zero
    s == 1 && return NaN + zero(s) * imag(s)

    if !isfinite(s) # annoying NaN and Inf cases
        isnan(s) && return imag(s) == 0 ? s : s*s
        if isfinite(imag(s))
            real(s) > 0 && return 1.0 - zero(s)*imag(s)
            imag(s) == 0 && return NaN + zero(s)
        end
        return NaN*zero(s) # NaN + NaN*im
    elseif real(s) < 0.5
        if abs(real(s)) + abs(imag(s)) < 1e-3 # Taylor series for small |s|
            return @evalpoly(s, -0.5,
                             -0.918938533204672741780329736405617639861,
                             -1.0031782279542924256050500133649802190,
                             -1.00078519447704240796017680222772921424,
                             -0.9998792995005711649578008136558752359121)
        end
        return zeta(1 - s) * gamma(1 - s) * sinpi(s*0.5) * (2π)^s / π
    end

    m = s - 1

    # shift using recurrence formula:
    #   n is a semi-empirical cutoff for the Stirling series, based
    #   on the error term ~ (|m|/n)^18 / n^real(m)
    n = ceil(Int,6 + 0.7*abs(imag(s-1))^inv(1 + real(m)*0.05))
    ζ = one(s)
    for ν = 2:n
        ζₒ= ζ
        ζ += inv(ν)^s
        ζ == ζₒ && break # prevent long loop for large m
    end
    z = 1 + n
    t = inv(z)
    w = t^m
    ζ += w * (inv(m) + 0.5*t)

    t *= t # 1/z^2
    ζ += w*t * @pg_horner(t,m,0.08333333333333333,-0.008333333333333333,0.003968253968253968,-0.004166666666666667,0.007575757575757576,-0.021092796092796094,0.08333333333333333,-0.4432598039215686,3.0539543302701198)

    return ζ
end

zeta(x::Integer) = zeta(Float64(x))
zeta(x::Real)    = oftype(float(x),zeta(Float64(x)))
zeta(z::Complex) = oftype(float(z),zeta(Complex128(z)))
@vectorize_1arg Number zeta

function eta(z::Union{Float64,Complex{Float64}})
    δz = 1 - z
    if abs(real(δz)) + abs(imag(δz)) < 7e-3 # Taylor expand around z==1
        return 0.6931471805599453094172321214581765 *
               @evalpoly(δz,
                         1.0,
                         -0.23064207462156020589789602935331414700440,
                         -0.047156357547388879740146103148112380421254,
                         -0.002263576552598880778433550956278702759143568,
                         0.001081837223249910136105931217561387128141157)
    else
        return -zeta(z) * expm1(0.6931471805599453094172321214581765*δz)
    end
end
eta(x::Integer) = eta(Float64(x))
eta(x::Real)    = oftype(float(x),eta(Float64(x)))
eta(z::Complex) = oftype(float(z),eta(Complex128(z)))
@vectorize_1arg Number eta