This file is indexed.

/usr/share/julia/base/special/erf.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# This file is a part of Julia. License is MIT: http://julialang.org/license

for f in (:erf, :erfc, :erfcx, :erfi, :Dawson)
    fname = (f === :Dawson) ? :dawson : f
    @eval begin
        ($fname)(z::Complex128) = Complex128(ccall(($(string("Faddeeva_",f)),openspecfun), Complex{Float64}, (Complex{Float64}, Float64), z, zero(Float64)))
        ($fname)(z::Complex64) = Complex64(ccall(($(string("Faddeeva_",f)),openspecfun), Complex{Float64}, (Complex{Float64}, Float64), Complex128(z), Float64(eps(Float32))))
        ($fname)(z::Complex) = ($fname)(Complex128(z))
    end
end
for f in (:erfcx, :erfi, :Dawson)
    fname = (f === :Dawson) ? :dawson : f
    @eval begin
        ($fname)(x::Float64) = ccall(($(string("Faddeeva_",f,"_re")),openspecfun), Float64, (Float64,), x)
        ($fname)(x::Float32) = Float32(ccall(($(string("Faddeeva_",f,"_re")),openspecfun), Float64, (Float64,), Float64(x)))
        ($fname)(x::Integer) = ($fname)(float(x))
        @vectorize_1arg Number $fname
    end
end

# Compute the inverse of the error function: erf(erfinv(x)) == x,
# using the rational approximants tabulated in:
#     J. M. Blair, C. A. Edwards, and J. H. Johnson, "Rational Chebyshev
#     approximations for the inverse of the error function," Math. Comp. 30,
#     pp. 827--830 (1976).
#         http://dx.doi.org/10.1090/S0025-5718-1976-0421040-7
#         http://www.jstor.org/stable/2005402
function erfinv(x::Float64)
    a = abs(x)
    if a >= 1.0
        if x == 1.0
            return Inf
        elseif x == -1.0
            return -Inf
        end
        throw(DomainError())
    elseif a <= 0.75 # Table 17 in Blair et al.
        t = x*x - 0.5625
        return x * @horner(t, 0.16030_49558_44066_229311e2,
                             -0.90784_95926_29603_26650e2,
                              0.18644_91486_16209_87391e3,
                             -0.16900_14273_46423_82420e3,
                              0.65454_66284_79448_7048e2,
                             -0.86421_30115_87247_794e1,
                              0.17605_87821_39059_0) /
                   @horner(t, 0.14780_64707_15138_316110e2,
                             -0.91374_16702_42603_13936e2,
                              0.21015_79048_62053_17714e3,
                             -0.22210_25412_18551_32366e3,
                              0.10760_45391_60551_23830e3,
                             -0.20601_07303_28265_443e2,
                              0.1e1)
    elseif a <= 0.9375 # Table 37 in Blair et al.
        t = x*x - 0.87890625
        return x * @horner(t, -0.15238_92634_40726_128e-1,
                               0.34445_56924_13612_5216,
                              -0.29344_39867_25424_78687e1,
                               0.11763_50570_52178_27302e2,
                              -0.22655_29282_31011_04193e2,
                               0.19121_33439_65803_30163e2,
                              -0.54789_27619_59831_8769e1,
                               0.23751_66890_24448) /
                   @horner(t, -0.10846_51696_02059_954e-1,
                               0.26106_28885_84307_8511,
                              -0.24068_31810_43937_57995e1,
                               0.10695_12997_33870_14469e2,
                              -0.23716_71552_15965_81025e2,
                               0.24640_15894_39172_84883e2,
                              -0.10014_37634_97830_70835e2,
                               0.1e1)
    else # Table 57 in Blair et al.
        t = 1.0 / sqrt(-log(1.0 - a))
        return @horner(t, 0.10501_31152_37334_38116e-3,
                          0.10532_61131_42333_38164_25e-1,
                          0.26987_80273_62432_83544_516,
                          0.23268_69578_89196_90806_414e1,
                          0.71678_54794_91079_96810_001e1,
                          0.85475_61182_21678_27825_185e1,
                          0.68738_08807_35438_39802_913e1,
                          0.36270_02483_09587_08930_02e1,
                          0.88606_27392_96515_46814_9) /
              (copysign(t, x) *
               @horner(t, 0.10501_26668_70303_37690e-3,
                          0.10532_86230_09333_27531_11e-1,
                          0.27019_86237_37515_54845_553,
                          0.23501_43639_79702_53259_123e1,
                          0.76078_02878_58012_77064_351e1,
                          0.11181_58610_40569_07827_3451e2,
                          0.11948_78791_84353_96667_8438e2,
                          0.81922_40974_72699_07893_913e1,
                          0.40993_87907_63680_15361_45e1,
                          0.1e1))
    end
end

function erfinv(x::Float32)
    a = abs(x)
    if a >= 1.0f0
        if x == 1.0f0
            return Inf32
        elseif x == -1.0f0
            return -Inf32
        end
        throw(DomainError())
    elseif a <= 0.75f0 # Table 10 in Blair et al.
        t = x*x - 0.5625f0
        return x * @horner(t, -0.13095_99674_22f2,
                               0.26785_22576_0f2,
                              -0.92890_57365f1) /
                   @horner(t, -0.12074_94262_97f2,
                               0.30960_61452_9f2,
                              -0.17149_97799_1f2,
                               0.1f1)
    elseif a <= 0.9375f0 # Table 29 in Blair et al.
        t = x*x - 0.87890625f0
        return x * @horner(t, -0.12402_56522_1f0,
                               0.10688_05957_4f1,
                              -0.19594_55607_8f1,
                               0.42305_81357f0) /
                   @horner(t, -0.88276_97997f-1,
                               0.89007_43359f0,
                              -0.21757_03119_6f1,
                               0.1f1)
    else # Table 50 in Blair et al.
        t = 1.0f0 / sqrt(-log(1.0f0 - a))
        return @horner(t, 0.15504_70003_116f0,
                          0.13827_19649_631f1,
                          0.69096_93488_87f0,
                         -0.11280_81391_617f1,
                          0.68054_42468_25f0,
                         -0.16444_15679_1f0) /
              (copysign(t, x) *
               @horner(t, 0.15502_48498_22f0,
                          0.13852_28141_995f1,
                          0.1f1))
    end
end

erfinv(x::Integer) = erfinv(float(x))
@vectorize_1arg Real erfinv

# Inverse complementary error function: use Blair tables for y = 1-x,
# exploiting the greater accuracy of y (vs. x) when y is small.
function erfcinv(y::Float64)
    if y > 0.0625
        return erfinv(1.0 - y)
    elseif y <= 0.0
        if y == 0.0
            return Inf
        end
        throw(DomainError())
    elseif y >= 1e-100 # Table 57 in Blair et al.
        t = 1.0 / sqrt(-log(y))
        return @horner(t, 0.10501_31152_37334_38116e-3,
                          0.10532_61131_42333_38164_25e-1,
                          0.26987_80273_62432_83544_516,
                          0.23268_69578_89196_90806_414e1,
                          0.71678_54794_91079_96810_001e1,
                          0.85475_61182_21678_27825_185e1,
                          0.68738_08807_35438_39802_913e1,
                          0.36270_02483_09587_08930_02e1,
                          0.88606_27392_96515_46814_9) /
              (t *
               @horner(t, 0.10501_26668_70303_37690e-3,
                          0.10532_86230_09333_27531_11e-1,
                          0.27019_86237_37515_54845_553,
                          0.23501_43639_79702_53259_123e1,
                          0.76078_02878_58012_77064_351e1,
                          0.11181_58610_40569_07827_3451e2,
                          0.11948_78791_84353_96667_8438e2,
                          0.81922_40974_72699_07893_913e1,
                          0.40993_87907_63680_15361_45e1,
                          0.1e1))
    else # Table 80 in Blair et al.
        t = 1.0 / sqrt(-log(y))
        return @horner(t, 0.34654_29858_80863_50177e-9,
                          0.25084_67920_24075_70520_55e-6,
                          0.47378_13196_37286_02986_534e-4,
                          0.31312_60375_97786_96408_3388e-2,
                          0.77948_76454_41435_36994_854e-1,
                          0.70045_68123_35816_43868_271e0,
                          0.18710_42034_21679_31668_683e1,
                          0.71452_54774_31351_45428_3e0) /
          (t * @horner(t, 0.34654_29567_31595_11156e-9,
                          0.25084_69079_75880_27114_87e-6,
                          0.47379_53129_59749_13536_339e-4,
                          0.31320_63536_46177_68848_0813e-2,
                          0.78073_48906_27648_97214_733e-1,
                          0.70715_04479_95337_58619_993e0,
                          0.19998_51543_49112_15105_214e1,
                          0.15072_90269_27316_80008_56e1,
                          0.1e1))
    end
end

function erfcinv(y::Float32)
    if y > 0.0625f0
        return erfinv(1.0f0 - y)
    elseif y <= 0.0f0
        if y == 0.0f0
            return Inf32
        end
        throw(DomainError())
    else # Table 50 in Blair et al.
        t = 1.0f0 / sqrt(-log(y))
        return @horner(t, 0.15504_70003_116f0,
                          0.13827_19649_631f1,
                          0.69096_93488_87f0,
                         -0.11280_81391_617f1,
                          0.68054_42468_25f0,
                         -0.16444_15679_1f0) /
        (t *
         @horner(t, 0.15502_48498_22f0,
                    0.13852_28141_995f1,
                    0.1f1))
    end
end

erfcinv(x::Integer) = erfcinv(float(x))
@vectorize_1arg Real erfcinv