This file is indexed.

/usr/share/julia/base/sparse/umfpack.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
# This file is a part of Julia. License is MIT: http://julialang.org/license

module UMFPACK

export UmfpackLU

import Base: (\), Ac_ldiv_B, At_ldiv_B, findnz, getindex, show, size
import Base.LinAlg: A_ldiv_B!, Ac_ldiv_B!, At_ldiv_B!, Factorization, det, lufact

importall Base.SparseMatrix
import Base.SparseMatrix: increment, increment!, decrement, decrement!, nnz

include("umfpack_h.jl")
type MatrixIllConditionedException <: Exception
    message::AbstractString
end

function umferror(status::Integer)
    if status==UMFPACK_OK
        return
    elseif status==UMFPACK_WARNING_singular_matrix
        throw(LinAlg.SingularException(0))
    elseif status==UMFPACK_WARNING_determinant_underflow
        throw(MatrixIllConditionedException("the determinant is nonzero but underflowed"))
    elseif status==UMFPACK_WARNING_determinant_overflow
        throw(MatrixIllConditionedException("the determinant overflowed"))
    elseif status==UMFPACK_ERROR_out_of_memory
        throw(OutOfMemoryError())
    elseif status==UMFPACK_ERROR_invalid_Numeric_object
        throw(ArgumentError("invalid UMFPack numeric object"))
    elseif status==UMFPACK_ERROR_invalid_Symbolic_object
        throw(ArgumentError("invalid UMFPack symbolic object"))
    elseif status==UMFPACK_ERROR_argument_missing
        throw(ArgumentError("a required argument to UMFPack is missing"))
    elseif status==UMFPACK_ERROR_n_nonpositive
        throw(ArgumentError("the number of rows or columns of the matrix must be greater than zero"))
    elseif status==UMFPACK_ERROR_invalid_matrix
        throw(ArgumentError("invalid matrix"))
    elseif status==UMFPACK_ERROR_different_pattern
        throw(ArgumentError("pattern of the matrix changed"))
    elseif status==UMFPACK_ERROR_invalid_system
        throw(ArgumentError("invalid sys argument provided to UMFPack solver"))
    elseif status==UMFPACK_ERROR_invalid_permutation
        throw(ArgumentError("invalid permutation"))
    elseif status==UMFPACK_ERROR_file_IO
        throw(ErrorException("error saving / loading UMFPack decomposition"))
    elseif status==UMFPACK_ERROR_ordering_failed
        throw(ErrorException("the ordering method failed"))
    elseif status==UMFPACK_ERROR_internal_error
        throw(ErrorException("an internal error has occurred, of unknown cause"))
    else
        throw(ErrorException("unknown UMFPack error code: $status"))
    end
end

macro isok(A)
    :(umferror($A))
end

# check the size of SuiteSparse_long
if Int(ccall((:jl_cholmod_sizeof_long,:libsuitesparse_wrapper),Csize_t,())) == 4
    const UmfpackIndexTypes = (:Int32, )
    typealias UMFITypes Union{Int32}
else
    const UmfpackIndexTypes = (:Int32, :Int64)
    typealias UMFITypes Union{Int32, Int64}
end

typealias UMFVTypes Union{Float64,Complex128}

## UMFPACK

# the control and info arrays
const umf_ctrl = Array(Float64, UMFPACK_CONTROL)
ccall((:umfpack_dl_defaults,:libumfpack), Void, (Ptr{Float64},), umf_ctrl)
const umf_info = Array(Float64, UMFPACK_INFO)

function show_umf_ctrl(level::Real)
    old_prt::Float64 = umf_ctrl[1]
    umf_ctrl[1] = Float64(level)
    ccall((:umfpack_dl_report_control, :libumfpack), Void, (Ptr{Float64},), umf_ctrl)
    umf_ctrl[1] = old_prt
end
show_umf_ctrl() = show_umf_ctrl(2.)

function show_umf_info(level::Real)
    old_prt::Float64 = umf_ctrl[1]
    umf_ctrl[1] = Float64(level)
    ccall((:umfpack_dl_report_info, :libumfpack), Void,
          (Ptr{Float64}, Ptr{Float64}), umf_ctrl, umf_info)
    umf_ctrl[1] = old_prt
end
show_umf_info() = show_umf_info(2.)

## Should this type be immutable?
type UmfpackLU{Tv<:UMFVTypes,Ti<:UMFITypes} <: Factorization{Tv}
    symbolic::Ptr{Void}
    numeric::Ptr{Void}
    m::Int
    n::Int
    colptr::Vector{Ti}                  # 0-based column pointers
    rowval::Vector{Ti}                  # 0-based row indices
    nzval::Vector{Tv}
end

function lufact{Tv<:UMFVTypes,Ti<:UMFITypes}(S::SparseMatrixCSC{Tv,Ti})

    zerobased = S.colptr[1] == 0
    res = UmfpackLU(C_NULL, C_NULL, S.m, S.n,
                    zerobased ? copy(S.colptr) : decrement(S.colptr),
                    zerobased ? copy(S.rowval) : decrement(S.rowval),
                    copy(S.nzval))
    finalizer(res, umfpack_free_symbolic)
    umfpack_numeric!(res)
end
lufact(A::SparseMatrixCSC) = lufact(float(A))

function show(io::IO, f::UmfpackLU)
    println(io, "UMFPACK LU Factorization of a $(f.m)-by-$(f.n) sparse matrix")
    f.numeric != C_NULL && println(io, f.numeric)
end

## Wrappers for UMFPACK functions

# generate the name of the C function according to the value and integer types
umf_nm(nm,Tv,Ti) = "umfpack_" * (Tv == :Float64 ? "d" : "z") * (Ti == :Int64 ? "l_" : "i_") * nm

for itype in UmfpackIndexTypes
    sym_r = umf_nm("symbolic", :Float64, itype)
    sym_c = umf_nm("symbolic", :Complex128, itype)
    num_r = umf_nm("numeric", :Float64, itype)
    num_c = umf_nm("numeric", :Complex128, itype)
    sol_r = umf_nm("solve", :Float64, itype)
    sol_c = umf_nm("solve", :Complex128, itype)
    det_r = umf_nm("get_determinant", :Float64, itype)
    det_z = umf_nm("get_determinant", :Complex128, itype)
    lunz_r = umf_nm("get_lunz", :Float64, itype)
    lunz_z = umf_nm("get_lunz", :Complex128, itype)
    get_num_r = umf_nm("get_numeric", :Float64, itype)
    get_num_z = umf_nm("get_numeric", :Complex128, itype)
    @eval begin
        function umfpack_symbolic!(U::UmfpackLU{Float64,$itype})
            if U.symbolic != C_NULL return U end
            tmp = Array(Ptr{Void},1)
            @isok ccall(($sym_r, :libumfpack), $itype,
                        ($itype, $itype, Ptr{$itype}, Ptr{$itype}, Ptr{Float64}, Ptr{Void},
                         Ptr{Float64}, Ptr{Float64}),
                        U.m, U.n, U.colptr, U.rowval, U.nzval, tmp,
                        umf_ctrl, umf_info)
            U.symbolic = tmp[1]
            return U
        end
        function umfpack_symbolic!(U::UmfpackLU{Complex128,$itype})
            if U.symbolic != C_NULL return U end
            tmp = Array(Ptr{Void},1)
            @isok ccall(($sym_c, :libumfpack), $itype,
                        ($itype, $itype, Ptr{$itype}, Ptr{$itype}, Ptr{Float64}, Ptr{Float64}, Ptr{Void},
                         Ptr{Float64}, Ptr{Float64}),
                        U.m, U.n, U.colptr, U.rowval, real(U.nzval), imag(U.nzval), tmp,
                        umf_ctrl, umf_info)
            U.symbolic = tmp[1]
            return U
        end
        function umfpack_numeric!(U::UmfpackLU{Float64,$itype})
            if U.numeric != C_NULL return U end
            if U.symbolic == C_NULL umfpack_symbolic!(U) end
            tmp = Array(Ptr{Void}, 1)
            status = ccall(($num_r, :libumfpack), $itype,
                           (Ptr{$itype}, Ptr{$itype}, Ptr{Float64}, Ptr{Void}, Ptr{Void},
                            Ptr{Float64}, Ptr{Float64}),
                           U.colptr, U.rowval, U.nzval, U.symbolic, tmp,
                           umf_ctrl, umf_info)
            if status != UMFPACK_WARNING_singular_matrix
                umferror(status)
            end
            U.numeric = tmp[1]
            return U
        end
        function umfpack_numeric!(U::UmfpackLU{Complex128,$itype})
            if U.numeric != C_NULL return U end
            if U.symbolic == C_NULL umfpack_symbolic!(U) end
            tmp = Array(Ptr{Void}, 1)
            status = ccall(($num_c, :libumfpack), $itype,
                           (Ptr{$itype}, Ptr{$itype}, Ptr{Float64}, Ptr{Float64}, Ptr{Void}, Ptr{Void},
                            Ptr{Float64}, Ptr{Float64}),
                           U.colptr, U.rowval, real(U.nzval), imag(U.nzval), U.symbolic, tmp,
                           umf_ctrl, umf_info)
            if status != UMFPACK_WARNING_singular_matrix
                umferror(status)
            end
            U.numeric = tmp[1]
            return U
        end
        function solve(lu::UmfpackLU{Float64,$itype}, b::VecOrMat{Float64}, typ::Integer)
            umfpack_numeric!(lu)
            size(b,1)==lu.m || throw(DimensionMismatch())
            x = similar(b)
            joff = 1
            for k = 1:size(b,2)
                @isok ccall(($sol_r, :libumfpack), $itype,
                            ($itype, Ptr{$itype}, Ptr{$itype}, Ptr{Float64}, Ptr{Float64},
                             Ptr{Float64}, Ptr{Void}, Ptr{Float64}, Ptr{Float64}),
                            typ, lu.colptr, lu.rowval, lu.nzval, pointer(x,joff), pointer(b,joff), lu.numeric, umf_ctrl, umf_info)
                joff += size(b,1)
            end
            x
        end
        function solve(lu::UmfpackLU{Complex128,$itype}, b::VecOrMat{Complex128}, typ::Integer)
            umfpack_numeric!(lu)
            size(b,1)==lu.m || throw(DimensionMismatch())
            x = similar(b)
            n = size(b,1)
            br = Array(Float64, n)
            bi = Array(Float64, n)
            xr = Array(Float64, n)
            xi = Array(Float64, n)
            joff = 0
            for k = 1:size(b,2)
                for j = 1:n
                    bj = b[joff+j]
                    br[j] = real(bj)
                    bi[j] = imag(bj)
                end
                @isok ccall(($sol_c, :libumfpack), $itype,
                            ($itype, Ptr{$itype}, Ptr{$itype}, Ptr{Float64}, Ptr{Float64},
                             Ptr{Float64}, Ptr{Float64}, Ptr{Float64}, Ptr{Float64},
                             Ptr{Void}, Ptr{Float64}, Ptr{Float64}),
                            typ, lu.colptr, lu.rowval, real(lu.nzval), imag(lu.nzval),
                            xr, xi, br, bi,
                            lu.numeric, umf_ctrl, umf_info)
                for j = 1:n
                    x[joff+j] = complex(xr[j],xi[j])
                end
                joff += n
            end
            x
        end
        function det(lu::UmfpackLU{Float64,$itype})
            mx = Array(Float64,1)
            @isok ccall(($det_r,:libumfpack), $itype,
                           (Ptr{Float64},Ptr{Float64},Ptr{Void},Ptr{Float64}),
                           mx, C_NULL, lu.numeric, umf_info)
            mx[1]
        end
        function det(lu::UmfpackLU{Complex128,$itype})
            mx = Array(Float64,1)
            mz = Array(Float64,1)
            @isok ccall(($det_z,:libumfpack), $itype,
                        (Ptr{Float64},Ptr{Float64},Ptr{Float64},Ptr{Void},Ptr{Float64}),
                        mx, mz, C_NULL, lu.numeric, umf_info)
            complex(mx[1], mz[1])
        end
        function umf_lunz(lu::UmfpackLU{Float64,$itype})
            lnz = Array($itype, 1)
            unz = Array($itype, 1)
            n_row = Array($itype, 1)
            n_col = Array($itype, 1)
            nz_diag = Array($itype, 1)
            @isok ccall(($lunz_r,:libumfpack), $itype,
                           (Ptr{$itype},Ptr{$itype},Ptr{$itype},Ptr{$itype},Ptr{$itype},Ptr{Void}),
                           lnz, unz, n_row, n_col, nz_diag, lu.numeric)
            (lnz[1], unz[1], n_row[1], n_col[1], nz_diag[1])
        end
        function umf_lunz(lu::UmfpackLU{Complex128,$itype})
            lnz = Array($itype, 1)
            unz = Array($itype, 1)
            n_row = Array($itype, 1)
            n_col = Array($itype, 1)
            nz_diag = Array($itype, 1)
            @isok ccall(($lunz_z,:libumfpack), $itype,
                           (Ptr{$itype},Ptr{$itype},Ptr{$itype},Ptr{$itype},Ptr{$itype},Ptr{Void}),
                           lnz, unz, n_row, n_col, nz_diag, lu.numeric)
            (lnz[1], unz[1], n_row[1], n_col[1], nz_diag[1])
        end
        function umf_extract(lu::UmfpackLU{Float64,$itype})
            umfpack_numeric!(lu)        # ensure the numeric decomposition exists
            (lnz, unz, n_row, n_col, nz_diag) = umf_lunz(lu)
            Lp = Array($itype, n_row + 1)
            Lj = Array($itype, lnz) # L is returned in CSR (compressed sparse row) format
            Lx = Array(Float64, lnz)
            Up = Array($itype, n_col + 1)
            Ui = Array($itype, unz)
            Ux = Array(Float64, unz)
            P  = Array($itype, n_row)
            Q  = Array($itype, n_col)
            Rs = Array(Float64, n_row)
            @isok ccall(($get_num_r,:libumfpack), $itype,
                        (Ptr{$itype},Ptr{$itype},Ptr{Float64},
                         Ptr{$itype},Ptr{$itype},Ptr{Float64},
                         Ptr{$itype},Ptr{$itype},Ptr{Void},
                         Ptr{$itype},Ptr{Float64},Ptr{Void}),
                        Lp,Lj,Lx,
                        Up,Ui,Ux,
                        P, Q, C_NULL,
                        &0, Rs, lu.numeric)
            (transpose(SparseMatrixCSC(min(n_row, n_col), n_row, increment!(Lp), increment!(Lj), Lx)),
             SparseMatrixCSC(min(n_row, n_col), n_col, increment!(Up), increment!(Ui), Ux),
             increment!(P), increment!(Q), Rs)
        end
        function umf_extract(lu::UmfpackLU{Complex128,$itype})
            umfpack_numeric!(lu)        # ensure the numeric decomposition exists
            (lnz, unz, n_row, n_col, nz_diag) = umf_lunz(lu)
            Lp = Array($itype, n_row + 1)
            Lj = Array($itype, lnz) # L is returned in CSR (compressed sparse row) format
            Lx = Array(Float64, lnz)
            Lz = Array(Float64, lnz)
            Up = Array($itype, n_col + 1)
            Ui = Array($itype, unz)
            Ux = Array(Float64, unz)
            Uz = Array(Float64, unz)
            P  = Array($itype, n_row)
            Q  = Array($itype, n_col)
            Rs = Array(Float64, n_row)
            @isok ccall(($get_num_z,:libumfpack), $itype,
                        (Ptr{$itype},Ptr{$itype},Ptr{Float64},Ptr{Float64},
                         Ptr{$itype},Ptr{$itype},Ptr{Float64},Ptr{Float64},
                         Ptr{$itype},Ptr{$itype},Ptr{Void}, Ptr{Void},
                         Ptr{$itype},Ptr{Float64},Ptr{Void}),
                        Lp,Lj,Lx,Lz,
                        Up,Ui,Ux,Uz,
                        P, Q, C_NULL, C_NULL,
                        &0, Rs, lu.numeric)
            (transpose(SparseMatrixCSC(min(n_row, n_col), n_row, increment!(Lp), increment!(Lj), complex(Lx, Lz))),
             SparseMatrixCSC(min(n_row, n_col), n_col, increment!(Up), increment!(Ui), complex(Ux, Uz)),
             increment!(P), increment!(Q), Rs)
        end
    end
end

function nnz(lu::UmfpackLU)
    lnz, unz, = umf_lunz(lu)
    return Int(lnz + unz)
end

### Solve with Factorization
A_ldiv_B!{T<:UMFVTypes}(lu::UmfpackLU{T}, b::Vector{T}) = solve(lu, b, UMFPACK_A)
A_ldiv_B!{T<:UMFVTypes}(lu::UmfpackLU{T}, b::Matrix{T}) = solve(lu, b, UMFPACK_A)
function A_ldiv_B!{Tb<:Complex}(lu::UmfpackLU{Float64}, b::Vector{Tb})
    r = solve(lu, [convert(Tlu,real(be)) for be in b], UMFPACK_A)
    i = solve(lu, [convert(Tlu,imag(be)) for be in b], UMFPACK_A)
    Tb[r[k]+im*i[k] for k = 1:length(r)]
end

Ac_ldiv_B!{T<:UMFVTypes}(lu::UmfpackLU{T}, b::VecOrMat{T}) = solve(lu, b, UMFPACK_At)
function Ac_ldiv_B!{Tb<:Complex}(lu::UmfpackLU{Float64}, b::Vector{Tb})
    r = solve(lu, [convert(Float64,real(be)) for be in b], UMFPACK_At)
    i = solve(lu, [convert(Float64,imag(be)) for be in b], UMFPACK_At)
    Tb[r[k]+im*i[k] for k = 1:length(r)]
end

At_ldiv_B!{T<:UMFVTypes}(lu::UmfpackLU{T}, b::VecOrMat{T}) = solve(lu, b, UMFPACK_Aat)
function At_ldiv_B!{Tb<:Complex}(lu::UmfpackLU{Float64}, b::Vector{Tb})
    r = solve(lu, [convert(Float64,real(be)) for be in b], UMFPACK_Aat)
    i = solve(lu, [convert(Float64,imag(be)) for be in b], UMFPACK_Aat)
    Tb[r[k]+im*i[k] for k = 1:length(r)]
end

function getindex(lu::UmfpackLU, d::Symbol)
    L,U,p,q,Rs = umf_extract(lu)
    d == :L ? L :
    (d == :U ? U :
     (d == :p ? p :
      (d == :q ? q :
       (d == :Rs ? Rs :
        (d == :(:) ? (L,U,p,q,Rs) :
         throw(KeyError(d)))))))
end

for Tv in (:Float64, :Complex128), Ti in UmfpackIndexTypes
    f = symbol(umf_nm("free_symbolic", Tv, Ti))
    @eval begin
        function ($f)(symb::Ptr{Void})
            tmp = [symb]
            ccall(($(string(f)), :libumfpack), Void, (Ptr{Void},), tmp)
        end

        function umfpack_free_symbolic(lu::UmfpackLU{$Tv,$Ti})
            if lu.symbolic == C_NULL return lu end
            umfpack_free_numeric(lu)
            ($f)(lu.symbolic)
            lu.symbolic = C_NULL
            return lu
        end
    end

    f = symbol(umf_nm("free_numeric", Tv, Ti))
    @eval begin
        function ($f)(num::Ptr{Void})
            tmp = [num]
            ccall(($(string(f)), :libumfpack), Void, (Ptr{Void},), tmp)
        end
        function umfpack_free_numeric(lu::UmfpackLU{$Tv,$Ti})
            if lu.numeric == C_NULL return lu end
            ($f)(lu.numeric)
            lu.numeric = C_NULL
            return lu
        end
    end
end
show_umf_info() = show_umf_info(2.)

function umfpack_report_symbolic(symb::Ptr{Void}, level::Real)
    old_prl::Float64 = umf_ctrl[UMFPACK_PRL]
    umf_ctrl[UMFPACK_PRL] = Float64(level)
    @isok ccall((:umfpack_dl_report_symbolic, :libumfpack), Int,
                (Ptr{Void}, Ptr{Float64}), symb, umf_ctrl)
    umf_ctrl[UMFPACK_PRL] = old_prl
end

umfpack_report_symbolic(symb::Ptr{Void}) = umfpack_report_symbolic(symb, 4.)

function umfpack_report_symbolic(lu::UmfpackLU, level::Real)
    umfpack_report_symbolic(umfpack_symbolic!(lu).symbolic, level)
end

umfpack_report_symbolic(lu::UmfpackLU) = umfpack_report_symbolic(lu.symbolic,4.)
function umfpack_report_numeric(num::Ptr{Void}, level::Real)
    old_prl::Float64 = umf_ctrl[UMFPACK_PRL]
    umf_ctrl[UMFPACK_PRL] = Float64(level)
    @isok ccall((:umfpack_dl_report_numeric, :libumfpack), Int,
                (Ptr{Void}, Ptr{Float64}), num, umf_ctrl)
    umf_ctrl[UMFPACK_PRL] = old_prl
end

umfpack_report_numeric(num::Ptr{Void}) = umfpack_report_numeric(num, 4.)
function umfpack_report_numeric(lu::UmfpackLU, level::Real)
    umfpack_report_numeric(umfpack_numeric!(lu).numeric, level)
end

umfpack_report_numeric(lu::UmfpackLU) = umfpack_report_numeric(lu,4.)

end # UMFPACK module