/usr/share/julia/base/sparse/sparsematrix.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 | # This file is a part of Julia. License is MIT: http://julialang.org/license
# Compressed sparse columns data structure
# Assumes that no zeros are stored in the data structure
# Assumes that row values in rowval for each column are sorted
# issorted(rowval[colptr[i]:(colptr[i+1]-1)]) == true
type SparseMatrixCSC{Tv,Ti<:Integer} <: AbstractSparseMatrix{Tv,Ti}
m::Int # Number of rows
n::Int # Number of columns
colptr::Vector{Ti} # Column i is in colptr[i]:(colptr[i+1]-1)
rowval::Vector{Ti} # Row values of nonzeros
nzval::Vector{Tv} # Nonzero values
function SparseMatrixCSC(m::Integer, n::Integer, colptr::Vector{Ti}, rowval::Vector{Ti}, nzval::Vector{Tv})
m < 0 && throw(ArgumentError("number of rows (m) must be ≥ 0, got $m"))
n < 0 && throw(ArgumentError("number of columns (n) must be ≥ 0, got $n"))
new(Int(m), Int(n), colptr, rowval, nzval)
end
end
function SparseMatrixCSC(m::Integer, n::Integer, colptr::Vector, rowval::Vector, nzval::Vector)
Tv = eltype(nzval)
Ti = promote_type(eltype(colptr), eltype(rowval))
SparseMatrixCSC{Tv,Ti}(m, n, colptr, rowval, nzval)
end
size(S::SparseMatrixCSC) = (S.m, S.n)
"""
nnz(A)
Returns the number of stored (filled) elements in a sparse matrix.
"""
nnz(S::SparseMatrixCSC) = Int(S.colptr[end]-1)
countnz(S::SparseMatrixCSC) = countnz(S.nzval)
"""
nonzeros(A)
Return a vector of the structural nonzero values in sparse matrix `A`. This
includes zeros that are explicitly stored in the sparse matrix. The returned
vector points directly to the internal nonzero storage of `A`, and any
modifications to the returned vector will mutate `A` as well. See `rowvals(A)`
and `nzrange(A, col)`.
"""
nonzeros(S::SparseMatrixCSC) = S.nzval
rowvals(S::SparseMatrixCSC) = S.rowval
"""
nzrange(A, col)
Return the range of indices to the structural nonzero values of a sparse matrix
column. In conjunction with `nonzeros(A)` and `rowvals(A)`, this allows for
convenient iterating over a sparse matrix :
A = sparse(I,J,V)
rows = rowvals(A)
vals = nonzeros(A)
m, n = size(A)
for i = 1:n
for j in nzrange(A, i)
row = rows[j]
val = vals[j]
# perform sparse wizardry...
end
end
"""
nzrange(S::SparseMatrixCSC, col::Integer) = S.colptr[col]:(S.colptr[col+1]-1)
function Base.showarray(io::IO, S::SparseMatrixCSC;
header::Bool=true, limit::Bool=Base._limit_output,
rows = Base.tty_size()[1], repr=false)
# TODO: repr?
if header
print(io, S.m, "x", S.n, " sparse matrix with ", nnz(S), " ", eltype(S), " entries:")
end
if limit
half_screen_rows = div(rows - 8, 2)
else
half_screen_rows = typemax(Int)
end
pad = ndigits(max(S.m,S.n))
k = 0
sep = "\n\t"
for col = 1:S.n, k = S.colptr[col] : (S.colptr[col+1]-1)
if k < half_screen_rows || k > nnz(S)-half_screen_rows
print(io, sep, '[', rpad(S.rowval[k], pad), ", ", lpad(col, pad), "] = ")
if isassigned(S.nzval, k)
showcompact(io, S.nzval[k])
else
print(io, Base.undef_ref_str)
end
elseif k == half_screen_rows
print(io, sep, '\u22ee')
end
k += 1
end
end
## Reinterpret and Reshape
function reinterpret{T,Tv,Ti}(::Type{T}, a::SparseMatrixCSC{Tv,Ti})
if sizeof(T) != sizeof(Tv)
throw(ArgumentError("SparseMatrixCSC reinterpret is only supported for element types of the same size"))
end
mA, nA = size(a)
colptr = copy(a.colptr)
rowval = copy(a.rowval)
nzval = reinterpret(T, a.nzval)
return SparseMatrixCSC(mA, nA, colptr, rowval, nzval)
end
function sparse_compute_reshaped_colptr_and_rowval{Ti}(colptrS::Vector{Ti}, rowvalS::Vector{Ti}, mS::Int, nS::Int, colptrA::Vector{Ti}, rowvalA::Vector{Ti}, mA::Int, nA::Int)
lrowvalA = length(rowvalA)
maxrowvalA = (lrowvalA > 0) ? maximum(rowvalA) : zero(Ti)
((length(colptrA) == (nA+1)) && (maximum(colptrA) <= (lrowvalA+1)) && (maxrowvalA <= mA)) || throw(BoundsError())
colptrS[1] = 1
colA = 1
colS = 1
ptr = 1
@inbounds while colA <= nA
offsetA = (colA - 1) * mA
while ptr <= colptrA[colA+1]-1
rowA = rowvalA[ptr]
i = offsetA + rowA - 1
colSn = div(i, mS) + 1
rowS = mod(i, mS) + 1
while colS < colSn
colptrS[colS+1] = ptr
colS += 1
end
rowvalS[ptr] = rowS
ptr += 1
end
colA += 1
end
@inbounds while colS <= nS
colptrS[colS+1] = ptr
colS += 1
end
end
function reinterpret{T,Tv,Ti,N}(::Type{T}, a::SparseMatrixCSC{Tv,Ti}, dims::NTuple{N,Int})
if sizeof(T) != sizeof(Tv)
throw(ArgumentError("SparseMatrixCSC reinterpret is only supported for element types of the same size"))
end
if prod(dims) != length(a)
throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))"))
end
mS,nS = dims
mA,nA = size(a)
numnz = nnz(a)
colptr = Array(Ti, nS+1)
rowval = similar(a.rowval)
nzval = reinterpret(T, a.nzval)
sparse_compute_reshaped_colptr_and_rowval(colptr, rowval, mS, nS, a.colptr, a.rowval, mA, nA)
return SparseMatrixCSC(mS, nS, colptr, rowval, nzval)
end
function reshape{Tv,Ti}(a::SparseMatrixCSC{Tv,Ti}, dims::NTuple{2,Int})
if prod(dims) != length(a)
throw(DimensionMismatch("new dimensions $(dims) must be consistent with array size $(length(a))"))
end
mS,nS = dims
mA,nA = size(a)
numnz = nnz(a)
colptr = Array(Ti, nS+1)
rowval = similar(a.rowval)
nzval = copy(a.nzval)
sparse_compute_reshaped_colptr_and_rowval(colptr, rowval, mS, nS, a.colptr, a.rowval, mA, nA)
return SparseMatrixCSC(mS, nS, colptr, rowval, nzval)
end
## Constructors
copy(S::SparseMatrixCSC) =
SparseMatrixCSC(S.m, S.n, copy(S.colptr), copy(S.rowval), copy(S.nzval))
similar(S::SparseMatrixCSC, Tv::Type=eltype(S)) = SparseMatrixCSC(S.m, S.n, copy(S.colptr), copy(S.rowval), Array(Tv, length(S.nzval)))
similar{Tv,Ti,TvNew,TiNew}(S::SparseMatrixCSC{Tv,Ti}, ::Type{TvNew}, ::Type{TiNew}) = SparseMatrixCSC(S.m, S.n, convert(Array{TiNew},S.colptr), convert(Array{TiNew}, S.rowval), Array(TvNew, length(S.nzval)))
similar{Tv, N}(S::SparseMatrixCSC, ::Type{Tv}, d::NTuple{N, Integer}) = spzeros(Tv, d...)
function convert{Tv,Ti,TvS,TiS}(::Type{SparseMatrixCSC{Tv,Ti}}, S::SparseMatrixCSC{TvS,TiS})
if Tv == TvS && Ti == TiS
return S
else
return SparseMatrixCSC(S.m, S.n,
convert(Vector{Ti},S.colptr),
convert(Vector{Ti},S.rowval),
convert(Vector{Tv},S.nzval))
end
end
function convert{Tv,TvS,TiS}(::Type{SparseMatrixCSC{Tv}}, S::SparseMatrixCSC{TvS,TiS})
if Tv == TvS
return S
else
return SparseMatrixCSC(S.m, S.n,
S.colptr,
S.rowval,
convert(Vector{Tv},S.nzval))
end
end
function convert{Tv,Ti}(::Type{SparseMatrixCSC{Tv,Ti}}, M::AbstractMatrix)
m, n = size(M)
(I, J, V) = findnz(M)
return sparse_IJ_sorted!(convert(Vector{Ti},I),
convert(Vector{Ti},J),
convert(Vector{Tv},V),
m, n)
end
convert{T}(::Type{AbstractMatrix{T}}, A::SparseMatrixCSC) = convert(SparseMatrixCSC{T}, A)
convert(::Type{Matrix}, S::SparseMatrixCSC) = full(S)
function full{Tv}(S::SparseMatrixCSC{Tv})
# Handle cases where zero(Tv) is not defined but the array is dense.
# (Should we really worry about this?)
A = length(S) == nnz(S) ? Array(Tv, S.m, S.n) : zeros(Tv, S.m, S.n)
for col = 1 : S.n, k = S.colptr[col] : (S.colptr[col+1]-1)
A[S.rowval[k], col] = S.nzval[k]
end
return A
end
float(S::SparseMatrixCSC) = SparseMatrixCSC(S.m, S.n, copy(S.colptr), copy(S.rowval), float(copy(S.nzval)))
complex(S::SparseMatrixCSC) = SparseMatrixCSC(S.m, S.n, copy(S.colptr), copy(S.rowval), complex(copy(S.nzval)))
complex(A::SparseMatrixCSC, B::SparseMatrixCSC) = A + im*B
# Construct a sparse vector
function vec{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti})
colptr = Array(Ti,2)
rowval = similar(S.rowval)
lS = length(S)
sparse_compute_reshaped_colptr_and_rowval(colptr, rowval, lS, 1, S.colptr, S.rowval, S.m, S.n)
SparseMatrixCSC(lS, 1, colptr, rowval, copy(S.nzval))
end
sparsevec(A::AbstractMatrix) = reshape(sparse(A), (length(A),1))
sparsevec(S::SparseMatrixCSC) = vec(S)
"""
sparsevec(D::Dict, [m])
Create a sparse matrix of size `m x 1` where the row values are keys from
the dictionary, and the nonzero values are the values from the dictionary.
"""
sparsevec{K<:Integer,V}(d::Dict{K,V}, len::Int) = sparsevec(collect(keys(d)), collect(values(d)), len)
sparsevec{K<:Integer,V}(d::Dict{K,V}) = sparsevec(collect(keys(d)), collect(values(d)))
sparsevec(I::AbstractVector, V, m::Integer) = sparsevec(I, V, m, AddFun())
sparsevec(I::AbstractVector, V) = sparsevec(I, V, maximum(I), AddFun())
"""
sparsevec(I, V, [m, combine])
Create a sparse matrix `S` of size `m x 1` such that `S[I[k]] = V[k]`.
Duplicates are combined using the `combine` function, which defaults to
`+` if it is not provided. In julia, sparse vectors are really just sparse
matrices with one column. Given Julia's Compressed Sparse Columns (CSC)
storage format, a sparse column matrix with one column is sparse, whereas
a sparse row matrix with one row ends up being dense.
"""
function sparsevec(I::AbstractVector, V, m::Integer, combine::Union{Function,Base.Func})
nI = length(I)
if isa(V, Number)
V = fill(V, nI)
end
if nI != length(V)
throw(ArgumentError("index and value vectors must be the same length"))
end
p = sortperm(I)
@inbounds I = I[p]
if nI > 0
if I[1] <= 0
throw(ArgumentError("I index values must be ≥ 0"))
end
if I[end] > m
throw(ArgumentError("all I index values must be ≤ length(sparsevec)"))
end
end
V = V[p]
sparse_IJ_sorted!(I, ones(eltype(I), nI), V, m, 1, combine)
end
"""
sparsevec(A)
Convert a dense vector `A` into a sparse matrix of size `m x 1`. In julia,
sparse vectors are really just sparse matrices with one column.
"""
function sparsevec(a::Vector)
n = length(a)
I = find(a)
J = ones(Int, n)
V = a[I]
return sparse_IJ_sorted!(I,J,V,n,1,AddFun())
end
sparse(a::Vector) = sparsevec(a)
"""
sparse(A)
Convert an AbstractMatrix `A` into a sparse matrix.
"""
sparse{Tv}(A::AbstractMatrix{Tv}) = convert(SparseMatrixCSC{Tv,Int}, A)
sparse(S::SparseMatrixCSC) = copy(S)
sparse_IJ_sorted!(I,J,V,m,n) = sparse_IJ_sorted!(I,J,V,m,n,AddFun())
sparse_IJ_sorted!(I,J,V::AbstractVector{Bool},m,n) = sparse_IJ_sorted!(I,J,V,m,n,OrFun())
function sparse_IJ_sorted!{Ti<:Integer}(I::AbstractVector{Ti}, J::AbstractVector{Ti},
V::AbstractVector,
m::Integer, n::Integer, combine::Union{Function,Func})
m = m < 0 ? 0 : m
n = n < 0 ? 0 : n
if length(V) == 0; return spzeros(eltype(V),Ti,m,n); end
cols = zeros(Ti, n+1)
cols[1] = 1 # For cumsum purposes
cols[J[1] + 1] = 1
lastdup = 1
ndups = 0
I_lastdup = I[1]
J_lastdup = J[1]
L = length(I)
@inbounds for k=2:L
if I[k] == I_lastdup && J[k] == J_lastdup
V[lastdup] = combine(V[lastdup], V[k])
ndups += 1
else
cols[J[k] + 1] += 1
lastdup = k-ndups
I_lastdup = I[k]
J_lastdup = J[k]
if ndups != 0
I[lastdup] = I_lastdup
V[lastdup] = V[k]
end
end
end
colptr = cumsum(cols)
# Allow up to 20% slack
if ndups > 0.2*L
numnz = L-ndups
deleteat!(I, (numnz+1):L)
deleteat!(V, (numnz+1):length(V))
end
return SparseMatrixCSC(m, n, colptr, I, V)
end
## sparse() can take its inputs in unsorted order (the parent method is now in csparse.jl)
dimlub(I) = length(I)==0 ? 0 : Int(maximum(I)) #least upper bound on required sparse matrix dimension
sparse(I,J,v::Number) = sparse(I, J, fill(v,length(I)), dimlub(I), dimlub(J), AddFun())
sparse(I,J,V::AbstractVector) = sparse(I, J, V, dimlub(I), dimlub(J), AddFun())
sparse(I,J,v::Number,m,n) = sparse(I, J, fill(v,length(I)), Int(m), Int(n), AddFun())
sparse(I,J,V::AbstractVector,m,n) = sparse(I, J, V, Int(m), Int(n), AddFun())
sparse(I,J,V::AbstractVector{Bool},m,n) = sparse(I, J, V, Int(m), Int(n), OrFun())
sparse(I,J,v::Number,m,n,combine::Union{Function,Func}) = sparse(I, J, fill(v,length(I)), Int(m), Int(n), combine)
function sparse(T::SymTridiagonal)
m = length(T.dv)
return sparse([1:m;2:m;1:m-1],[1:m;1:m-1;2:m],[T.dv;T.ev;T.ev], Int(m), Int(m))
end
function sparse(T::Tridiagonal)
m = length(T.d)
return sparse([1:m;2:m;1:m-1],[1:m;1:m-1;2:m],[T.d;T.dl;T.du], Int(m), Int(m))
end
function sparse(B::Bidiagonal)
m = length(B.dv)
B.isupper || return sparse([1:m;2:m],[1:m;1:m-1],[B.dv;B.ev], Int(m), Int(m)) # lower bidiagonal
return sparse([1:m;1:m-1],[1:m;2:m],[B.dv;B.ev], Int(m), Int(m)) # upper bidiagonal
end
function find(S::SparseMatrixCSC)
sz = size(S)
I, J = findn(S)
return sub2ind(sz, I, J)
end
function findn{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti})
numnz = nnz(S)
I = Array(Ti, numnz)
J = Array(Ti, numnz)
count = 1
@inbounds for col = 1 : S.n, k = S.colptr[col] : (S.colptr[col+1]-1)
if S.nzval[k] != 0
I[count] = S.rowval[k]
J[count] = col
count += 1
end
end
count -= 1
if numnz != count
deleteat!(I, (count+1):numnz)
deleteat!(J, (count+1):numnz)
end
return (I, J)
end
function findnz{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti})
numnz = nnz(S)
I = Array(Ti, numnz)
J = Array(Ti, numnz)
V = Array(Tv, numnz)
count = 1
@inbounds for col = 1 : S.n, k = S.colptr[col] : (S.colptr[col+1]-1)
if S.nzval[k] != 0
I[count] = S.rowval[k]
J[count] = col
V[count] = S.nzval[k]
count += 1
end
end
count -= 1
if numnz != count
deleteat!(I, (count+1):numnz)
deleteat!(J, (count+1):numnz)
deleteat!(V, (count+1):numnz)
end
return (I, J, V)
end
import Base.Random.GLOBAL_RNG
function sprand_IJ(r::AbstractRNG, m::Integer, n::Integer, density::AbstractFloat)
((m < 0) || (n < 0)) && throw(ArgumentError("invalid Array dimensions"))
0 <= density <= 1 || throw(ArgumentError("$density not in [0,1]"))
N = n*m
I, J = Array(Int, 0), Array(Int, 0) # indices of nonzero elements
sizehint!(I, round(Int,N*density))
sizehint!(J, round(Int,N*density))
# density of nonzero columns:
L = log1p(-density)
coldensity = -expm1(m*L) # = 1 - (1-density)^m
colsparsity = exp(m*L) # = 1 - coldensity
iL = 1/L
rows = Array(Int, 0)
for j in randsubseq(r, 1:n, coldensity)
# To get the right statistics, we *must* have a nonempty column j
# even if p*m << 1. To do this, we use an approach similar to
# the one in randsubseq to compute the expected first nonzero row k,
# except given that at least one is nonzero (via Bayes' rule);
# carefully rearranged to avoid excessive roundoff errors.
k = ceil(log(colsparsity + rand(r)*coldensity) * iL)
ik = k < 1 ? 1 : k > m ? m : Int(k) # roundoff-error/underflow paranoia
randsubseq!(r, rows, 1:m-ik, density)
push!(rows, m-ik+1)
append!(I, rows)
nrows = length(rows)
Jlen = length(J)
resize!(J, Jlen+nrows)
@inbounds for i = Jlen+1:length(J)
J[i] = j
end
end
I, J
end
"""
```rst
.. sprand([rng,] m,n,p [,rfn])
Create a random ``m`` by ``n`` sparse matrix, in which the probability of any
element being nonzero is independently given by ``p`` (and hence the mean
density of nonzeros is also exactly ``p``). Nonzero values are sampled from
the distribution specified by ``rfn``. The uniform distribution is used in
case ``rfn`` is not specified. The optional ``rng`` argument specifies a
random number generator, see :ref:`Random Numbers <random-numbers>`.
```
"""
function sprand{T}(r::AbstractRNG, m::Integer, n::Integer, density::AbstractFloat,
rfn::Function, ::Type{T}=eltype(rfn(r,1)))
N = m*n
N == 0 && return spzeros(T,m,n)
N == 1 && return rand(r) <= density ? sparse(rfn(r,1)) : spzeros(T,1,1)
I,J = sprand_IJ(r, m, n, density)
sparse_IJ_sorted!(I, J, rfn(r,length(I)), m, n, AddFun()) # it will never need to combine
end
function sprand{T}(m::Integer, n::Integer, density::AbstractFloat,
rfn::Function, ::Type{T}=eltype(rfn(1)))
N = m*n
N == 0 && return spzeros(T,m,n)
N == 1 && return rand() <= density ? sparse(rfn(1)) : spzeros(T,1,1)
I,J = sprand_IJ(GLOBAL_RNG, m, n, density)
sparse_IJ_sorted!(I, J, rfn(length(I)), m, n, AddFun()) # it will never need to combine
end
sprand(r::AbstractRNG, m::Integer, n::Integer, density::AbstractFloat) = sprand(r,m,n,density,rand,Float64)
sprand(m::Integer, n::Integer, density::AbstractFloat) = sprand(GLOBAL_RNG,m,n,density)
sprandn(r::AbstractRNG, m::Integer, n::Integer, density::AbstractFloat) = sprand(r,m,n,density,randn,Float64)
"""
sprandn(m,n,p)
Create a random `m` by `n` sparse matrix with the specified (independent)
probability `p` of any entry being nonzero, where nonzero values are
sampled from the normal distribution.
"""
sprandn( m::Integer, n::Integer, density::AbstractFloat) = sprandn(GLOBAL_RNG,m,n,density)
truebools(r::AbstractRNG, n::Integer) = ones(Bool, n)
sprandbool(r::AbstractRNG, m::Integer, n::Integer, density::AbstractFloat) = sprand(r,m,n,density,truebools,Bool)
"""
sprandbool(m,n,p)
Create a random `m` by `n` sparse boolean matrix with the specified
(independent) probability `p` of any entry being `true`.
"""
sprandbool(m::Integer, n::Integer, density::AbstractFloat) = sprandbool(GLOBAL_RNG,m,n,density)
"""
spones(S)
Create a sparse matrix with the same structure as that of `S`, but with every nonzero
element having the value `1.0`.
"""
spones{T}(S::SparseMatrixCSC{T}) =
SparseMatrixCSC(S.m, S.n, copy(S.colptr), copy(S.rowval), ones(T, S.colptr[end]-1))
"""
spzeros(m,n)
Create a sparse matrix of size `m x n`. This sparse matrix will not contain any
nonzero values. No storage will be allocated for nonzero values during construction.
"""
spzeros(m::Integer, n::Integer) = spzeros(Float64, m, n)
spzeros(Tv::Type, m::Integer, n::Integer) = spzeros(Tv, Int, m, n)
function spzeros(Tv::Type, Ti::Type, m::Integer, n::Integer)
((m < 0) || (n < 0)) && throw(ArgumentError("invalid Array dimensions"))
SparseMatrixCSC(m, n, ones(Ti, n+1), Array(Ti, 0), Array(Tv, 0))
end
speye(n::Integer) = speye(Float64, n)
speye(T::Type, n::Integer) = speye(T, n, n)
speye(m::Integer, n::Integer) = speye(Float64, m, n)
speye{T}(S::SparseMatrixCSC{T}) = speye(T, size(S, 1), size(S, 2))
eye(S::SparseMatrixCSC) = speye(S)
"""
speye(type,m[,n])
Create a sparse identity matrix of specified type of size `m x m`. In case `n` is supplied,
create a sparse identity matrix of size `m x n`.
"""
function speye(T::Type, m::Integer, n::Integer)
((m < 0) || (n < 0)) && throw(ArgumentError("invalid Array dimensions"))
x = min(m,n)
rowval = [1:x;]
colptr = [rowval; fill(Int(x+1), n+1-x)]
nzval = ones(T, x)
return SparseMatrixCSC(m, n, colptr, rowval, nzval)
end
function one{T}(S::SparseMatrixCSC{T})
m,n = size(S)
if m != n; throw(DimensionMismatch("multiplicative identity only defined for square matrices")); end
speye(T, m)
end
## Unary arithmetic and boolean operators
macro _unary_op_nz2z_z2z(op,A,Tv,Ti)
esc(quote
nfilledA = nnz($A)
colptrB = Array($Ti, $A.n+1)
rowvalB = Array($Ti, nfilledA)
nzvalB = Array($Tv, nfilledA)
nzvalA = $A.nzval
colptrA = $A.colptr
rowvalA = $A.rowval
k = 0 # number of additional zeros introduced by op(A)
@inbounds for i = 1 : $A.n
colptrB[i] = colptrA[i] - k
for j = colptrA[i] : colptrA[i+1]-1
opAj = $(op)(nzvalA[j])
if opAj == 0
k += 1
else
rowvalB[j - k] = rowvalA[j]
nzvalB[j - k] = opAj
end
end
end
colptrB[end] = $A.colptr[end] - k
deleteat!(rowvalB, colptrB[end]:nfilledA)
deleteat!(nzvalB, colptrB[end]:nfilledA)
return SparseMatrixCSC($A.m, $A.n, colptrB, rowvalB, nzvalB)
end) # quote
end
# Operations that may map nonzeros to zero, and zero to zero
# Result is sparse
for op in (:ceil, :floor, :trunc, :round,
:sin, :tan, :asin, :atan,
:sinh, :tanh, :asinh, :atanh,
:sinpi, :cosc,
:sind, :tand, :asind, :atand)
@eval begin
$(op){Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}) = @_unary_op_nz2z_z2z($op,A,Tv,Ti)
end # quote
end # macro
for op in (:real, :imag)
@eval begin
($op){Tv<:Complex,Ti}(A::SparseMatrixCSC{Tv,Ti}) = @_unary_op_nz2z_z2z($op,A,Tv.parameters[1],Ti)
end # quote
end # macro
real{Tv<:Number,Ti}(A::SparseMatrixCSC{Tv,Ti}) = copy(A)
imag{Tv<:Number,Ti}(A::SparseMatrixCSC{Tv,Ti}) = spzeros(Tv, Ti, A.m, A.n)
for op in (:ceil, :floor, :trunc, :round)
@eval begin
($op){T,Tv,Ti}(::Type{T},A::SparseMatrixCSC{Tv,Ti}) = @_unary_op_nz2z_z2z($op,A,T,Ti)
end # quote
end # macro
# Operations that map nonzeros to nonzeros, and zeros to zeros
# Result is sparse
for op in (:-, :log1p, :expm1)
@eval begin
function ($op)(A::SparseMatrixCSC)
B = similar(A)
nzvalB = B.nzval
nzvalA = A.nzval
@simd for i=1:length(nzvalB)
@inbounds nzvalB[i] = ($op)(nzvalA[i])
end
return B
end
end
end
function abs{Tv<:Complex,Ti}(A::SparseMatrixCSC{Tv,Ti})
T = Tv.parameters[1]
(T <: Integer) && (T = (T <: BigInt) ? BigFloat : Float64)
@_unary_op_nz2z_z2z(abs,A,T,Ti)
end
abs2{Tv<:Complex,Ti}(A::SparseMatrixCSC{Tv,Ti}) = @_unary_op_nz2z_z2z(abs2,A,Tv.parameters[1],Ti)
for op in (:abs, :abs2)
@eval begin
function ($op){Tv<:Number,Ti}(A::SparseMatrixCSC{Tv,Ti})
B = similar(A)
nzvalB = B.nzval
nzvalA = A.nzval
@simd for i=1:length(nzvalB)
@inbounds nzvalB[i] = ($op)(nzvalA[i])
end
return B
end
end
end
function conj!(A::SparseMatrixCSC)
nzvalA = A.nzval
@simd for i=1:length(nzvalA)
@inbounds nzvalA[i] = conj(nzvalA[i])
end
return A
end
conj(A::SparseMatrixCSC) = conj!(copy(A))
# Operations that map nonzeros to nonzeros, and zeros to nonzeros
# Result is dense
for op in (:cos, :cosh, :acos, :sec, :csc, :cot, :acot, :sech,
:csch, :coth, :asech, :acsch, :cospi, :sinc, :cosd,
:cotd, :cscd, :secd, :acosd, :acotd, :log, :log2, :log10,
:exp, :exp2, :exp10)
@eval begin
function ($op){Tv}(A::SparseMatrixCSC{Tv})
B = fill($(op)(zero(Tv)), size(A))
@inbounds for col = 1 : A.n
for j = A.colptr[col] : A.colptr[col+1]-1
row = A.rowval[j]
nz = A.nzval[j]
B[row,col] = $(op)(nz)
end
end
return B
end
end
end
## Broadcasting kernels specialized for returning a SparseMatrixCSC
# Operations with zero result if both operands are zero
function gen_broadcast_body_sparse(f::Function, is_first_sparse::Bool)
F = Expr(:quote, f)
quote
Base.Broadcast.check_broadcast_shape(size(B), A_1)
Base.Broadcast.check_broadcast_shape(size(B), A_2)
colptrB = B.colptr; rowvalB = B.rowval; nzvalB = B.nzval
colptr1 = A_1.colptr; rowval1 = A_1.rowval; nzval1 = A_1.nzval
colptr2 = A_2.colptr; rowval2 = A_2.rowval; nzval2 = A_2.nzval
nnzB = isempty(B) ? 0 : (nnz(A_1) * div(B.n, A_1.n) * div(B.m, A_1.m) +
nnz(A_2) * div(B.n, A_2.n) * div(B.m, A_2.m))
if length(rowvalB) < nnzB
resize!(rowvalB, nnzB)
end
if length(nzvalB) < nnzB
resize!(nzvalB, nnzB)
end
z = zero(Tv)
ptrB = 1
colptrB[1] = 1
Tr1 = eltype(rowval1)
Tr2 = eltype(rowval2)
@inbounds for col = 1:B.n
ptr1::Int = A_1.n == 1 ? colptr1[1] : colptr1[col]
stop1::Int = A_1.n == 1 ? colptr1[2] : colptr1[col+1]
ptr2::Int = A_2.n == 1 ? colptr2[1] : colptr2[col]
stop2::Int = A_2.n == 1 ? colptr2[2] : colptr2[col+1]
if A_1.m == A_2.m || (A_1.m == 1 && ptr1 == stop1) || (A_2.m == 1 && ptr2 == stop2)
while ptr1 < stop1 && ptr2 < stop2
row1 = rowval1[ptr1]
row2 = rowval2[ptr2]
if row1 < row2
res = ($F)(nzval1[ptr1], z)
if res != z
rowvalB[ptrB] = row1
nzvalB[ptrB] = res
ptrB += 1
end
ptr1 += 1
elseif row2 < row1
res = ($F)(z, nzval2[ptr2])
if res != z
rowvalB[ptrB] = row2
nzvalB[ptrB] = res
ptrB += 1
end
ptr2 += 1
else
res = ($F)(nzval1[ptr1], nzval2[ptr2])
if res != z
rowvalB[ptrB] = row1
nzvalB[ptrB] = res
ptrB += 1
end
ptr1 += 1
ptr2 += 1
end
end
while ptr1 < stop1
res = ($F)(nzval1[ptr1], z)
if res != z
row1 = rowval1[ptr1]
rowvalB[ptrB] = row1
nzvalB[ptrB] = res
ptrB += 1
end
ptr1 += 1
end
while ptr2 < stop2
res = ($F)(z, nzval2[ptr2])
if res != z
row2 = rowval2[ptr2]
rowvalB[ptrB] = row2
nzvalB[ptrB] = res
ptrB += 1
end
ptr2 += 1
end
elseif A_1.m != 1 # A_1.m != 1 && A_2.m == 1
scalar2 = A_2.nzval[ptr2]
row1 = ptr1 < stop1 ? rowval1[ptr1] : -one(Tr1)
for row2 = one(Tr2):Tr2(B.m)
if ptr1 >= stop1 || row1 != row2
res = ($F)(z, scalar2)
if res != z
rowvalB[ptrB] = row2
nzvalB[ptrB] = res
ptrB += 1
end
else
res = ($F)(nzval1[ptr1], scalar2)
if res != z
rowvalB[ptrB] = row1
nzvalB[ptrB] = res
ptrB += 1
end
ptr1 += 1
row1 = ptr1 < stop1 ? rowval1[ptr1] : -one(Tr1)
end
end
else # A_1.m == 1 && A_2.m != 1
scalar1 = nzval1[ptr1]
row2 = ptr2 < stop2 ? rowval2[ptr2] : -one(Tr2)
for row1 = one(Tr1):Tr1(B.m)
if ptr2 >= stop2 || row1 != row2
res = ($F)(scalar1, z)
if res != z
rowvalB[ptrB] = row1
nzvalB[ptrB] = res
ptrB += 1
end
else
res = ($F)(scalar1, nzval2[ptr2])
if res != z
rowvalB[ptrB] = row2
nzvalB[ptrB] = res
ptrB += 1
end
ptr2 += 1
row2 = ptr2 < stop2 ? rowval2[ptr2] : -one(Tr2)
end
end
end
colptrB[col+1] = ptrB
end
deleteat!(rowvalB, colptrB[end]:length(rowvalB))
deleteat!(nzvalB, colptrB[end]:length(nzvalB))
nothing
end
end
function gen_broadcast_function_sparse(genbody::Function, f::Function, is_first_sparse::Bool)
body = genbody(f, is_first_sparse)
@eval let
local _F_
function _F_{Tv,Ti}(B::SparseMatrixCSC{Tv,Ti}, A_1, A_2)
$body
end
_F_
end
end
# Operations with zero result if any operand is zero
# A_1 or A_2 (or both) are sparse.
# is_first_sparse == true => A_1 is sparse
# is_first_sparse == false => A_2 is sparse
function gen_broadcast_body_zpreserving(f::Function, is_first_sparse::Bool)
F = Expr(:quote, f)
if is_first_sparse
A1 = :(A_1)
A2 = :(A_2)
op1 = :(val1)
op2 = :(val2)
else
A1 = :(A_2)
A2 = :(A_1)
op1 = :(val2)
op2 = :(val1)
end
quote
Base.Broadcast.check_broadcast_shape(size(B), $A1)
Base.Broadcast.check_broadcast_shape(size(B), $A2)
nnzB = isempty(B) ? 0 :
nnz($A1) * div(B.n, ($A1).n) * div(B.m, ($A1).m)
if length(B.rowval) < nnzB
resize!(B.rowval, nnzB)
end
if length(B.nzval) < nnzB
resize!(B.nzval, nnzB)
end
z = zero(Tv)
ptrB = 1
B.colptr[1] = 1
@inbounds for col = 1:B.n
ptr1::Int = ($A1).n == 1 ? ($A1).colptr[1] : ($A1).colptr[col]
stop1::Int = ($A1).n == 1 ? ($A1).colptr[2] : ($A1).colptr[col+1]
col2 = size($A2, 2) == 1 ? 1 : col
row = 1
while ptr1 < stop1 && row <= B.m
if ($A1).m != 1
row = ($A1).rowval[ptr1]
end
row2 = size($A2, 1) == 1 ? 1 : row
val1 = ($A1).nzval[ptr1]
val2 = ($A2)[row2,col2]
res = ($F)($op1, $op2)
if res != z
B.rowval[ptrB] = row
B.nzval[ptrB] = res
ptrB += 1
end
if ($A1).m != 1
ptr1 += 1
else
row += 1
end
end
B.colptr[col+1] = ptrB
end
deleteat!(B.rowval, B.colptr[end]:length(B.rowval))
deleteat!(B.nzval, B.colptr[end]:length(B.nzval))
nothing
end
end
for (Bsig, A1sig, A2sig, gbb, funcname) in
(
(SparseMatrixCSC , SparseMatrixCSC , SparseMatrixCSC, :gen_broadcast_body_sparse, :broadcast!),
(SparseMatrixCSC , SparseMatrixCSC , Array, :gen_broadcast_body_zpreserving, :broadcast_zpreserving!),
(SparseMatrixCSC , Array , SparseMatrixCSC, :gen_broadcast_body_zpreserving, :broadcast_zpreserving!),
(SparseMatrixCSC , Number , SparseMatrixCSC, :gen_broadcast_body_zpreserving, :broadcast_zpreserving!),
(SparseMatrixCSC , SparseMatrixCSC , Number, :gen_broadcast_body_zpreserving, :broadcast_zpreserving!),
(SparseMatrixCSC , BitArray , SparseMatrixCSC, :gen_broadcast_body_zpreserving, :broadcast_zpreserving!),
(SparseMatrixCSC , SparseMatrixCSC , BitArray, :gen_broadcast_body_zpreserving, :broadcast_zpreserving!),
)
@eval let cache = Dict{Function,Function}()
global $funcname
function $funcname(f::Function, B::$Bsig, A1::$A1sig, A2::$A2sig)
func = @get! cache f gen_broadcast_function_sparse($gbb, f, ($A1sig) <: SparseMatrixCSC)
func(B, A1, A2)
B
end
end # let broadcast_cache
end
broadcast{Tv1,Ti1,Tv2,Ti2}(f::Function, A_1::SparseMatrixCSC{Tv1,Ti1}, A_2::SparseMatrixCSC{Tv2,Ti2}) =
broadcast!(f, spzeros(promote_type(Tv1, Tv2), promote_type(Ti1, Ti2), broadcast_shape(A_1, A_2)...), A_1, A_2)
broadcast_zpreserving!(args...) = broadcast!(args...)
broadcast_zpreserving(args...) = broadcast(args...)
broadcast_zpreserving{Tv1,Ti1,Tv2,Ti2}(f::Function, A_1::SparseMatrixCSC{Tv1,Ti1}, A_2::SparseMatrixCSC{Tv2,Ti2}) =
broadcast_zpreserving!(f, spzeros(promote_type(Tv1, Tv2), promote_type(Ti1, Ti2), broadcast_shape(A_1, A_2)...), A_1, A_2)
broadcast_zpreserving{Tv,Ti}(f::Function, A_1::SparseMatrixCSC{Tv,Ti}, A_2::Union{Array,BitArray,Number}) =
broadcast_zpreserving!(f, spzeros(promote_eltype(A_1, A_2), Ti, broadcast_shape(A_1, A_2)...), A_1, A_2)
broadcast_zpreserving{Tv,Ti}(f::Function, A_1::Union{Array,BitArray,Number}, A_2::SparseMatrixCSC{Tv,Ti}) =
broadcast_zpreserving!(f, spzeros(promote_eltype(A_1, A_2), Ti, broadcast_shape(A_1, A_2)...), A_1, A_2)
## Binary arithmetic and boolean operators
for (op, pro) in ((+, :eltype_plus),
(-, :eltype_plus),
(min, :promote_eltype),
(max, :promote_eltype),
(&, :promote_eltype),
(|, :promote_eltype),
($, :promote_eltype))
body = gen_broadcast_body_sparse(op, true)
OP = Symbol(string(op))
@eval begin
function ($OP){Tv1,Ti1,Tv2,Ti2}(A_1::SparseMatrixCSC{Tv1,Ti1}, A_2::SparseMatrixCSC{Tv2,Ti2})
if size(A_1,1) != size(A_2,1) || size(A_1,2) != size(A_2,2)
throw(DimensionMismatch(""))
end
Tv = ($pro)(A_1, A_2)
B = spzeros(Tv, promote_type(Ti1, Ti2), broadcast_shape(A_1, A_2)...)
$body
B
end
end
end # macro
(.+)(A::SparseMatrixCSC, B::Number) = full(A) .+ B
( +)(A::SparseMatrixCSC, B::Array ) = full(A) + B
(.+)(A::Number, B::SparseMatrixCSC) = A .+ full(B)
( +)(A::Array , B::SparseMatrixCSC) = A + full(B)
(.-)(A::SparseMatrixCSC, B::Number) = full(A) .- B
( -)(A::SparseMatrixCSC, B::Array ) = full(A) - B
(.-)(A::Number, B::SparseMatrixCSC) = A .- full(B)
( -)(A::Array , B::SparseMatrixCSC) = A - full(B)
(.*)(A::AbstractArray, B::AbstractArray) = broadcast_zpreserving(*, A, B)
(.*)(A::SparseMatrixCSC, B::Number) = SparseMatrixCSC(A.m, A.n, copy(A.colptr), copy(A.rowval), A.nzval .* B)
(.*)(A::Number, B::SparseMatrixCSC) = SparseMatrixCSC(B.m, B.n, copy(B.colptr), copy(B.rowval), A .* B.nzval)
(./)(A::SparseMatrixCSC, B::Number) = SparseMatrixCSC(A.m, A.n, copy(A.colptr), copy(A.rowval), A.nzval ./ B)
(./)(A::Number, B::SparseMatrixCSC) = (./)(A, full(B))
(./)(A::SparseMatrixCSC, B::Array) = (./)(full(A), B)
(./)(A::Array, B::SparseMatrixCSC) = (./)(A, full(B))
(./)(A::SparseMatrixCSC, B::SparseMatrixCSC) = (./)(full(A), full(B))
(.\)(A::SparseMatrixCSC, B::Number) = (.\)(full(A), B)
(.\)(A::Number, B::SparseMatrixCSC) = SparseMatrixCSC(B.m, B.n, copy(B.colptr), copy(B.rowval), A .\ B.nzval )
(.\)(A::SparseMatrixCSC, B::Array) = (.\)(full(A), B)
(.\)(A::Array, B::SparseMatrixCSC) = (.\)(A, full(B))
(.\)(A::SparseMatrixCSC, B::SparseMatrixCSC) = (.\)(full(A), full(B))
(.^)(A::SparseMatrixCSC, B::Number) =
B==0 ? sparse(ones(typeof(one(eltype(A)).^B), A.m, A.n)) :
SparseMatrixCSC(A.m, A.n, copy(A.colptr), copy(A.rowval), A.nzval .^ B)
(.^)(A::Number, B::SparseMatrixCSC) = (.^)(A, full(B))
(.^)(A::SparseMatrixCSC, B::Array) = (.^)(full(A), B)
(.^)(A::Array, B::SparseMatrixCSC) = (.^)(A, full(B))
.+{Tv1,Ti1,Tv2,Ti2}(A_1::SparseMatrixCSC{Tv1,Ti1}, A_2::SparseMatrixCSC{Tv2,Ti2}) =
broadcast!(+, spzeros(eltype_plus(A_1, A_2), promote_type(Ti1, Ti2), broadcast_shape(A_1, A_2)...), A_1, A_2)
function .-{Tva,Tia,Tvb,Tib}(A::SparseMatrixCSC{Tva,Tia}, B::SparseMatrixCSC{Tvb,Tib})
broadcast!(-, spzeros(eltype_plus(A, B), promote_type(Tia, Tib), broadcast_shape(A, B)...), A, B)
end
## element-wise comparison operators returning SparseMatrixCSC ##
.<{Tv1,Ti1,Tv2,Ti2}(A_1::SparseMatrixCSC{Tv1,Ti1}, A_2::SparseMatrixCSC{Tv2,Ti2}) = broadcast!(<, spzeros( Bool, promote_type(Ti1, Ti2), broadcast_shape(A_1, A_2)...), A_1, A_2)
.!={Tv1,Ti1,Tv2,Ti2}(A_1::SparseMatrixCSC{Tv1,Ti1}, A_2::SparseMatrixCSC{Tv2,Ti2}) = broadcast!(!=, spzeros( Bool, promote_type(Ti1, Ti2), broadcast_shape(A_1, A_2)...), A_1, A_2)
## full equality
function ==(A1::SparseMatrixCSC, A2::SparseMatrixCSC)
size(A1)!=size(A2) && return false
vals1, vals2 = nonzeros(A1), nonzeros(A2)
rows1, rows2 = rowvals(A1), rowvals(A2)
m, n = size(A1)
@inbounds for i = 1:n
nz1,nz2 = nzrange(A1,i), nzrange(A2,i)
j1,j2 = first(nz1), first(nz2)
# step through the rows of both matrices at once:
while j1<=last(nz1) && j2<=last(nz2)
r1,r2 = rows1[j1], rows2[j2]
if r1==r2
vals1[j1]!=vals2[j2] && return false
j1+=1
j2+=1
else
if r1<r2
vals1[j1]!=0 && return false
j1+=1
else
vals2[j2]!=0 && return false
j2+=1
end
end
end
# finish off any left-overs:
for j = j1:last(nz1)
vals1[j]!=0 && return false
end
for j = j2:last(nz2)
vals2[j]!=0 && return false
end
end
return true
end
## Reductions
# In general, output of sparse matrix reductions will not be sparse,
# and computing reductions along columns into SparseMatrixCSC is
# non-trivial, so use Arrays for output
Base.reducedim_initarray{R}(A::SparseMatrixCSC, region, v0, ::Type{R}) =
fill!(Array(R,Base.reduced_dims(A,region)), v0)
Base.reducedim_initarray0{R}(A::SparseMatrixCSC, region, v0, ::Type{R}) =
fill!(Array(R,Base.reduced_dims0(A,region)), v0)
# General mapreduce
function _mapreducezeros(f, op, T::Type, nzeros::Int, v0)
nzeros == 0 && return v0
# Reduce over first zero
zeroval = f(zero(T))
v = op(v0, zeroval)
isequal(v, v0) && return v
# Reduce over remaining zeros
for i = 2:nzeros
lastv = v
v = op(v, zeroval)
# Bail out early if we reach a fixed point
isequal(v, lastv) && break
end
v
end
function Base._mapreduce{T}(f, op, ::Base.LinearSlow, A::SparseMatrixCSC{T})
z = nnz(A)
n = length(A)
if z == 0
if n == 0
Base.mr_empty(f, op, T)
else
_mapreducezeros(f, op, T, n-z-1, f(zero(T)))
end
else
_mapreducezeros(f, op, T, n-z, Base._mapreduce(f, op, A.nzval))
end
end
# Specialized mapreduce for AddFun/MulFun
_mapreducezeros(f, ::Base.AddFun, T::Type, nzeros::Int, v0) =
nzeros == 0 ? v0 : f(zero(T))*nzeros + v0
_mapreducezeros(f, ::Base.MulFun, T::Type, nzeros::Int, v0) =
nzeros == 0 ? v0 : f(zero(T))^nzeros * v0
function Base._mapreduce{T}(f, op::Base.MulFun, A::SparseMatrixCSC{T})
nzeros = length(A)-nnz(A)
if nzeros == 0
# No zeros, so don't compute f(0) since it might throw
Base._mapreduce(f, op, A.nzval)
else
v = f(zero(T))^(nzeros)
# Bail out early if initial reduction value is zero
v == zero(T) ? v : v*Base._mapreduce(f, op, A.nzval)
end
end
# General mapreducedim
function _mapreducerows!{T}(f, op, R::AbstractArray, A::SparseMatrixCSC{T})
colptr = A.colptr
rowval = A.rowval
nzval = A.nzval
m, n = size(A)
@inbounds for col = 1:n
r = R[1, col]
@simd for j = colptr[col]:colptr[col+1]-1
r = op(r, f(nzval[j]))
end
R[1, col] = _mapreducezeros(f, op, T, m-(colptr[col+1]-colptr[col]), r)
end
R
end
function _mapreducecols!{Tv,Ti}(f, op, R::AbstractArray, A::SparseMatrixCSC{Tv,Ti})
colptr = A.colptr
rowval = A.rowval
nzval = A.nzval
m, n = size(A)
rownz = fill(convert(Ti, n), m)
@inbounds for col = 1:n
@simd for j = colptr[col]:colptr[col+1]-1
row = rowval[j]
R[row, 1] = op(R[row, 1], f(nzval[j]))
rownz[row] -= 1
end
end
@inbounds for i = 1:m
R[i, 1] = _mapreducezeros(f, op, Tv, rownz[i], R[i, 1])
end
R
end
function Base._mapreducedim!{T}(f, op, R::AbstractArray, A::SparseMatrixCSC{T})
lsiz = Base.check_reducedims(R,A)
isempty(A) && return R
if size(R, 1) == size(R, 2) == 1
# Reduction along both columns and rows
R[1, 1] = mapreduce(f, op, A)
elseif size(R, 1) == 1
# Reduction along rows
_mapreducerows!(f, op, R, A)
elseif size(R, 2) == 1
# Reduction along columns
_mapreducecols!(f, op, R, A)
else
# Reduction along a dimension > 2
# Compute op(R, f(A))
m, n = size(A)
nzval = A.nzval
if length(nzval) == m*n
# No zeros, so don't compute f(0) since it might throw
for col = 1:n
@simd for row = 1:size(A, 1)
@inbounds R[row, col] = op(R[row, col], f(nzval[(col-1)*m+row]))
end
end
else
colptr = A.colptr
rowval = A.rowval
zeroval = f(zero(T))
@inbounds for col = 1:n
lastrow = 0
for j = colptr[col]:colptr[col+1]-1
row = rowval[j]
@simd for i = lastrow+1:row-1 # Zeros before this nonzero
R[i, col] = op(R[i, col], zeroval)
end
R[row, col] = op(R[row, col], f(nzval[j]))
lastrow = row
end
@simd for i = lastrow+1:m # Zeros at end
R[i, col] = op(R[i, col], zeroval)
end
end
end
end
R
end
# Specialized mapreducedim for AddFun cols to avoid allocating a
# temporary array when f(0) == 0
function _mapreducecols!{Tv,Ti}(f, op::Base.AddFun, R::AbstractArray, A::SparseMatrixCSC{Tv,Ti})
nzval = A.nzval
m, n = size(A)
if length(nzval) == m*n
# No zeros, so don't compute f(0) since it might throw
for col = 1:n
@simd for row = 1:size(A, 1)
@inbounds R[row, 1] = op(R[row, 1], f(nzval[(col-1)*m+row]))
end
end
else
colptr = A.colptr
rowval = A.rowval
zeroval = f(zero(Tv))
if isequal(zeroval, zero(Tv))
# Case where f(0) == 0
@inbounds for col = 1:size(A, 2)
@simd for j = colptr[col]:colptr[col+1]-1
R[rowval[j], 1] += f(nzval[j])
end
end
else
# Case where f(0) != 0
rownz = fill(convert(Ti, n), m)
@inbounds for col = 1:size(A, 2)
@simd for j = colptr[col]:colptr[col+1]-1
row = rowval[j]
R[row, 1] += f(nzval[j])
rownz[row] -= 1
end
end
for i = 1:m
R[i, 1] += rownz[i]*zeroval
end
end
end
R
end
# findmax/min and indmax/min methods
function _findz{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, rows=1:A.m, cols=1:A.n)
colptr = A.colptr; rowval = A.rowval; nzval = A.nzval
zval = zero(Tv)
col = cols[1]; row = 0
rowmin = rows[1]; rowmax = rows[end]
allrows = (rows == 1:A.m)
@inbounds while col <= cols[end]
r1::Int = colptr[col]
r2::Int = colptr[col+1] - 1
if !allrows && (r1 <= r2)
r1 = searchsortedfirst(rowval, rowmin, r1, r2, Forward)
(r1 <= r2 ) && (r2 = searchsortedlast(rowval, rowmax, r1, r2, Forward) + 1)
end
row = rowmin
(r1 > r2) && (return sub2ind(size(A),row,col))
while (r1 <= r2) && (row == rowval[r1]) && (nzval[r1] != zval)
r1 += 1
row += 1
end
(row <= rowmax) && (return sub2ind(size(A),row,col))
col += 1
end
return 0
end
macro _findr(op, A, region, Tv, Ti)
esc(quote
N = nnz($A)
L = length($A)
(L == 0) && error("array must be non-empty")
colptr = $A.colptr; rowval = $A.rowval; nzval = $A.nzval; m = $A.m; n = $A.n
zval = zero($Tv)
szA = size($A)
if $region == 1 || $region == (1,)
(N == 0) && (return (fill(zval,1,n), fill(convert($Ti,1),1,n)))
S = Array($Tv, n); I = Array($Ti, n)
@inbounds for i = 1 : n
Sc = zval; Ic = _findz($A, 1:m, i:i)
if Ic == 0
j = colptr[i]
Ic = sub2ind(szA, rowval[j], i)
Sc = nzval[j]
end
for j = colptr[i] : colptr[i+1]-1
if ($op)(nzval[j], Sc)
Sc = nzval[j]
Ic = sub2ind(szA, rowval[j], i)
end
end
S[i] = Sc; I[i] = Ic
end
return(reshape(S,1,n), reshape(I,1,n))
elseif $region == 2 || $region == (2,)
(N == 0) && (return (fill(zval,m,1), fill(convert($Ti,1),m,1)))
S = Array($Tv, m); I = Array($Ti, m)
@inbounds for row in 1:m
S[row] = zval; I[row] = _findz($A, row:row, 1:n)
if I[row] == 0
I[row] = sub2ind(szA, row, 1)
S[row] = A[row,1]
end
end
@inbounds for i = 1 : n, j = colptr[i] : colptr[i+1]-1
row = rowval[j]
if ($op)(nzval[j], S[row])
S[row] = nzval[j]
I[row] = sub2ind(szA, row, i)
end
end
return (reshape(S,m,1), reshape(I,m,1))
elseif $region == (1,2)
(N == 0) && (return (fill(zval,1,1), fill(convert($Ti,1),1,1)))
hasz = nnz($A) != length($A)
Sv = hasz ? zval : nzval[1]
Iv::($Ti) = hasz ? _findz($A) : 1
@inbounds for i = 1 : $A.n, j = colptr[i] : (colptr[i+1]-1)
if ($op)(nzval[j], Sv)
Sv = nzval[j]
Iv = sub2ind(szA, rowval[j], i)
end
end
return (fill(Sv,1,1), fill(Iv,1,1))
else
throw(ArgumentError("invalid value for region; must be 1, 2, or (1,2)"))
end
end) #quote
end
findmin{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, region) = @_findr(<, A, region, Tv, Ti)
findmax{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, region) = @_findr(>, A, region, Tv, Ti)
findmin{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}) = (r=findmin(A,(1,2)); (r[1][1], r[2][1]))
findmax{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}) = (r=findmax(A,(1,2)); (r[1][1], r[2][1]))
indmin(A::SparseMatrixCSC) = findmin(A)[2]
indmax(A::SparseMatrixCSC) = findmax(A)[2]
#all(A::SparseMatrixCSC{Bool}, region) = reducedim(all,A,region,true)
#any(A::SparseMatrixCSC{Bool}, region) = reducedim(any,A,region,false)
#sum(A::SparseMatrixCSC{Bool}, region) = reducedim(+,A,region,0,Int)
#sum(A::SparseMatrixCSC{Bool}) = countnz(A)
## getindex
function rangesearch(haystack::Range, needle)
(i,rem) = divrem(needle - first(haystack), step(haystack))
(rem==0 && 1<=i+1<=length(haystack)) ? i+1 : 0
end
getindex(A::SparseMatrixCSC, I::Tuple{Integer,Integer}) = getindex(A, I[1], I[2])
function getindex{T}(A::SparseMatrixCSC{T}, i0::Integer, i1::Integer)
if !(1 <= i0 <= A.m && 1 <= i1 <= A.n); throw(BoundsError()); end
r1 = Int(A.colptr[i1])
r2 = Int(A.colptr[i1+1]-1)
(r1 > r2) && return zero(T)
r1 = searchsortedfirst(A.rowval, i0, r1, r2, Forward)
((r1 > r2) || (A.rowval[r1] != i0)) ? zero(T) : A.nzval[r1]
end
getindex{T<:Integer}(A::SparseMatrixCSC, I::AbstractVector{T}, j::Integer) = getindex(A,I,[j])
getindex{T<:Integer}(A::SparseMatrixCSC, i::Integer, J::AbstractVector{T}) = getindex(A,[i],J)
# Colon translation (this could be done more efficiently)
getindex(A::SparseMatrixCSC, ::Colon) = getindex(A, 1:length(A))
getindex(A::SparseMatrixCSC, ::Colon, ::Colon) = getindex(A, 1:size(A, 1), 1:size(A, 2))
getindex(A::SparseMatrixCSC, ::Colon, j) = getindex(A, 1:size(A, 1), j)
getindex(A::SparseMatrixCSC, i, ::Colon) = getindex(A, i, 1:size(A, 2))
function getindex_cols{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, J::AbstractVector)
# for indexing whole columns
(m, n) = size(A)
nJ = length(J)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrS = Array(Ti, nJ+1)
colptrS[1] = 1
nnzS = 0
@inbounds for j = 1:nJ
col = J[j]
1 <= col <= n || throw(BoundsError())
nnzS += colptrA[col+1] - colptrA[col]
colptrS[j+1] = nnzS + 1
end
rowvalS = Array(Ti, nnzS)
nzvalS = Array(Tv, nnzS)
ptrS = 0
@inbounds for j = 1:nJ
col = J[j]
for k = colptrA[col]:colptrA[col+1]-1
ptrS += 1
rowvalS[ptrS] = rowvalA[k]
nzvalS[ptrS] = nzvalA[k]
end
end
return SparseMatrixCSC(m, nJ, colptrS, rowvalS, nzvalS)
end
function getindex{Tv,Ti<:Integer}(A::SparseMatrixCSC{Tv,Ti}, I::Range, J::AbstractVector)
# Ranges for indexing rows
(m, n) = size(A)
# whole columns:
if I == 1:m
return getindex_cols(A, J)
end
nI = length(I)
nI == 0 || (minimum(I) >= 1 && maximum(I) <= m) || throw(BoundsError())
nJ = length(J)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrS = Array(Ti, nJ+1)
colptrS[1] = 1
nnzS = 0
# Form the structure of the result and compute space
@inbounds for j = 1:nJ
col = J[j]
1 <= col <= n || throw(BoundsError())
@simd for k in colptrA[col]:colptrA[col+1]-1
nnzS += rowvalA[k] in I # `in` is fast for ranges
end
colptrS[j+1] = nnzS+1
end
# Populate the values in the result
rowvalS = Array(Ti, nnzS)
nzvalS = Array(Tv, nnzS)
ptrS = 1
@inbounds for j = 1:nJ
col = J[j]
for k = colptrA[col]:colptrA[col+1]-1
rowA = rowvalA[k]
i = rangesearch(I, rowA)
if i > 0
rowvalS[ptrS] = i
nzvalS[ptrS] = nzvalA[k]
ptrS += 1
end
end
end
return SparseMatrixCSC(nI, nJ, colptrS, rowvalS, nzvalS)
end
function getindex_I_sorted{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, I::AbstractVector, J::AbstractVector)
# Sorted vectors for indexing rows.
# Similar to getindex_general but without the transpose trick.
(m, n) = size(A)
nI = length(I)
nzA = nnz(A)
avgM = div(nzA,n)
# heuristics based on experiments
alg = ((m > nzA) && (m > nI)) ? 0 :
((nI - avgM) > 2^8) ? 1 :
((avgM - nI) > 2^10) ? 0 : 2
(alg == 0) ? getindex_I_sorted_bsearch_A(A, I, J) :
(alg == 1) ? getindex_I_sorted_bsearch_I(A, I, J) :
getindex_I_sorted_linear(A, I, J)
end
function getindex_I_sorted_bsearch_A{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, I::AbstractVector, J::AbstractVector)
const nI = length(I)
const nJ = length(J)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrS = Array(Ti, nJ+1)
colptrS[1] = 1
ptrS = 1
# determine result size
@inbounds for j = 1:nJ
col = J[j]
ptrI::Int = 1 # runs through I
ptrA::Int = colptrA[col]
stopA::Int = colptrA[col+1]-1
if ptrA <= stopA
while ptrI <= nI
rowI = I[ptrI]
ptrI += 1
(rowvalA[ptrA] > rowI) && continue
ptrA = searchsortedfirst(rowvalA, rowI, ptrA, stopA, Base.Order.Forward)
(ptrA <= stopA) || break
if rowvalA[ptrA] == rowI
ptrS += 1
end
end
end
colptrS[j+1] = ptrS
end
rowvalS = Array(Ti, ptrS-1)
nzvalS = Array(Tv, ptrS-1)
# fill the values
ptrS = 1
@inbounds for j = 1:nJ
col = J[j]
ptrI::Int = 1 # runs through I
ptrA::Int = colptrA[col]
stopA::Int = colptrA[col+1]-1
if ptrA <= stopA
while ptrI <= nI
rowI = I[ptrI]
if rowvalA[ptrA] <= rowI
ptrA = searchsortedfirst(rowvalA, rowI, ptrA, stopA, Base.Order.Forward)
(ptrA <= stopA) || break
if rowvalA[ptrA] == rowI
rowvalS[ptrS] = ptrI
nzvalS[ptrS] = nzvalA[ptrA]
ptrS += 1
end
end
ptrI += 1
end
end
end
return SparseMatrixCSC(nI, nJ, colptrS, rowvalS, nzvalS)
end
function getindex_I_sorted_linear{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, I::AbstractVector, J::AbstractVector)
const nI = length(I)
const nJ = length(J)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrS = Array(Ti, nJ+1)
colptrS[1] = 1
cacheI = zeros(Int, A.m)
ptrS = 1
# build the cache and determine result size
@inbounds for j = 1:nJ
col = J[j]
ptrI::Int = 1 # runs through I
ptrA::Int = colptrA[col]
stopA::Int = colptrA[col+1]
while ptrI <= nI && ptrA < stopA
rowA = rowvalA[ptrA]
rowI = I[ptrI]
if rowI > rowA
ptrA += 1
elseif rowI < rowA
ptrI += 1
else
(cacheI[rowA] == 0) && (cacheI[rowA] = ptrI)
ptrS += 1
ptrI += 1
end
end
colptrS[j+1] = ptrS
end
rowvalS = Array(Ti, ptrS-1)
nzvalS = Array(Tv, ptrS-1)
# fill the values
ptrS = 1
@inbounds for j = 1:nJ
col = J[j]
ptrA::Int = colptrA[col]
stopA::Int = colptrA[col+1]
while ptrA < stopA
rowA = rowvalA[ptrA]
ptrI = cacheI[rowA]
if ptrI > 0
while ptrI <= nI && I[ptrI] == rowA
rowvalS[ptrS] = ptrI
nzvalS[ptrS] = nzvalA[ptrA]
ptrS += 1
ptrI += 1
end
end
ptrA += 1
end
end
return SparseMatrixCSC(nI, nJ, colptrS, rowvalS, nzvalS)
end
function getindex_I_sorted_bsearch_I{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, I::AbstractVector, J::AbstractVector)
const nI = length(I)
const nJ = length(J)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrS = Array(Ti, nJ+1)
colptrS[1] = 1
m = A.m
# cacheI is used first to store num occurrences of each row in columns of interest
# and later to store position of first occurrence of each row in I
cacheI = zeros(Int, m)
# count rows
@inbounds for j = 1:nJ
col = J[j]
for ptrA in colptrA[col]:(colptrA[col+1]-1)
cacheI[rowvalA[ptrA]] += 1
end
end
# fill cache and count nnz
ptrS::Int = 0
ptrI::Int = 1
@inbounds for j = 1:m
cval = cacheI[j]
(cval == 0) && continue
ptrI = searchsortedfirst(I, j, ptrI, nI, Base.Order.Forward)
cacheI[j] = ptrI
while ptrI <= nI && I[ptrI] == j
ptrS += cval
ptrI += 1
end
if ptrI > nI
@simd for i=(j+1):m; @inbounds cacheI[i]=ptrI; end
break
end
end
rowvalS = Array(Ti, ptrS)
nzvalS = Array(Tv, ptrS)
colptrS[nJ+1] = ptrS+1
# fill the values
ptrS = 1
@inbounds for j = 1:nJ
col = J[j]
ptrA::Int = colptrA[col]
stopA::Int = colptrA[col+1]
while ptrA < stopA
rowA = rowvalA[ptrA]
ptrI = cacheI[rowA]
(ptrI > nI) && break
if ptrI > 0
while I[ptrI] == rowA
rowvalS[ptrS] = ptrI
nzvalS[ptrS] = nzvalA[ptrA]
ptrS += 1
ptrI += 1
(ptrI > nI) && break
end
end
ptrA += 1
end
colptrS[j+1] = ptrS
end
return SparseMatrixCSC(nI, nJ, colptrS, rowvalS, nzvalS)
end
function permute_rows!{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti}, pI::Vector{Int})
(m, n) = size(S)
colptrS = S.colptr; rowvalS = S.rowval; nzvalS = S.nzval
# preallocate temporary sort space
nr = min(nnz(S), m)
rowperm = Array(Int, nr)
rowvalTemp = Array(Ti, nr)
nzvalTemp = Array(Tv, nr)
@inbounds for j in 1:n
rowrange = colptrS[j]:(colptrS[j+1]-1)
nr = length(rowrange)
(nr > 0) || continue
k = 1
for i in rowrange
rowA = rowvalS[i]
rowvalTemp[k] = pI[rowA]
nzvalTemp[k] = nzvalS[i]
k += 1
end
sortperm!(pointer_to_array(pointer(rowperm), nr), pointer_to_array(pointer(rowvalTemp), nr))
k = 1
for i in rowrange
kperm = rowperm[k]
rowvalS[i] = rowvalTemp[kperm]
nzvalS[i] = nzvalTemp[kperm]
k += 1
end
end
S
end
function getindex_general{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, I::AbstractVector, J::AbstractVector)
pI = sortperm(I)
@inbounds I = I[pI]
permute_rows!(getindex_I_sorted(A, I, J), pI)
end
# the general case:
function getindex{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, I::AbstractVector, J::AbstractVector)
(m, n) = size(A)
if !isempty(J)
minj, maxj = extrema(J)
((minj < 1) || (maxj > n)) && throw(BoundsError())
end
if !isempty(I)
mini, maxi = extrema(I)
((mini < 1) || (maxi > m)) && throw(BoundsError())
end
if isempty(I) || isempty(J) || (0 == nnz(A))
return spzeros(Tv, Ti, length(I), length(J))
end
if issorted(I)
return getindex_I_sorted(A, I, J)
else
return getindex_general(A, I, J)
end
end
# logical getindex
getindex{Tv,Ti<:Integer}(A::SparseMatrixCSC{Tv,Ti}, I::Range{Bool}, J::AbstractVector{Bool}) = error("Cannot index with Range{Bool}")
getindex{Tv,Ti<:Integer,T<:Integer}(A::SparseMatrixCSC{Tv,Ti}, I::Range{Bool}, J::AbstractVector{T}) = error("Cannot index with Range{Bool}")
getindex{T<:Integer}(A::SparseMatrixCSC, I::Range{T}, J::AbstractVector{Bool}) = A[I,find(J)]
getindex(A::SparseMatrixCSC, I::Integer, J::AbstractVector{Bool}) = A[I,find(J)]
getindex(A::SparseMatrixCSC, I::AbstractVector{Bool}, J::Integer) = A[find(I),J]
getindex(A::SparseMatrixCSC, I::AbstractVector{Bool}, J::AbstractVector{Bool}) = A[find(I),find(J)]
getindex{T<:Integer}(A::SparseMatrixCSC, I::AbstractVector{T}, J::AbstractVector{Bool}) = A[I,find(J)]
getindex{T<:Integer}(A::SparseMatrixCSC, I::AbstractVector{Bool}, J::AbstractVector{T}) = A[find(I),J]
function getindex{Tv}(A::SparseMatrixCSC{Tv}, I::AbstractArray{Bool})
checkbounds(A, I)
n = sum(I)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrB = Int[1,n+1]
rowvalB = Array(Int, n)
nzvalB = Array(Tv, n)
c = 1
rowB = 1
@inbounds for col in 1:A.n
r1 = colptrA[col]
r2 = colptrA[col+1]-1
for row in 1:A.m
if I[row, col]
while (r1 <= r2) && (rowvalA[r1] < row)
r1 += 1
end
if (r1 <= r2) && (rowvalA[r1] == row)
nzvalB[c] = nzvalA[r1]
rowvalB[c] = rowB
c += 1
end
rowB += 1
(rowB > n) && break
end
end
(rowB > n) && break
end
colptrB[end] = c
n = length(nzvalB)
if n > (c-1)
deleteat!(nzvalB, c:n)
deleteat!(rowvalB, c:n)
end
SparseMatrixCSC(n, 1, colptrB, rowvalB, nzvalB)
end
function getindex{Tv}(A::SparseMatrixCSC{Tv}, I::AbstractArray)
szA = size(A)
nA = szA[1]*szA[2]
colptrA = A.colptr
rowvalA = A.rowval
nzvalA = A.nzval
n = length(I)
outm = size(I,1)
outn = size(I,2)
szB = (outm, outn)
colptrB = zeros(Int, outn+1)
rowvalB = Array(Int, n)
nzvalB = Array(Tv, n)
colB = 1
rowB = 1
colptrB[colB] = 1
idxB = 1
for i in 1:n
((I[i] < 1) | (I[i] > nA)) && throw(BoundsError())
row,col = ind2sub(szA, I[i])
for r in colptrA[col]:(colptrA[col+1]-1)
@inbounds if rowvalA[r] == row
rowB,colB = ind2sub(szB, i)
colptrB[colB+1] += 1
rowvalB[idxB] = rowB
nzvalB[idxB] = nzvalA[r]
idxB += 1
break
end
end
end
colptrB = cumsum(colptrB)
if n > (idxB-1)
deleteat!(nzvalB, idxB:n)
deleteat!(rowvalB, idxB:n)
end
SparseMatrixCSC(outm, outn, colptrB, rowvalB, nzvalB)
end
## setindex!
function setindex!{T,Ti}(A::SparseMatrixCSC{T,Ti}, v, i0::Integer, i1::Integer)
i0 = convert(Ti, i0)
i1 = convert(Ti, i1)
if !(1 <= i0 <= A.m && 1 <= i1 <= A.n); throw(BoundsError()); end
v = convert(T, v)
r1 = Int(A.colptr[i1])
r2 = Int(A.colptr[i1+1]-1)
if v == 0 #either do nothing or delete entry if it exists
if r1 <= r2
r1 = searchsortedfirst(A.rowval, i0, r1, r2, Forward)
if (r1 <= r2) && (A.rowval[r1] == i0)
deleteat!(A.rowval, r1)
deleteat!(A.nzval, r1)
@simd for j = (i1+1):(A.n+1)
@inbounds A.colptr[j] -= 1
end
end
end
return A
end
i = (r1 > r2) ? r1 : searchsortedfirst(A.rowval, i0, r1, r2, Forward)
if (i <= r2) && (A.rowval[i] == i0)
A.nzval[i] = v
else
insert!(A.rowval, i, i0)
insert!(A.nzval, i, v)
@simd for j = (i1+1):(A.n+1)
@inbounds A.colptr[j] += 1
end
end
return A
end
setindex!{T<:Integer}(A::SparseMatrixCSC, v::AbstractMatrix, i::Integer, J::AbstractVector{T}) = setindex!(A, v, [i], J)
setindex!{T<:Integer}(A::SparseMatrixCSC, v::AbstractMatrix, I::AbstractVector{T}, j::Integer) = setindex!(A, v, I, [j])
setindex!{T<:Integer}(A::SparseMatrixCSC, x::Number, i::Integer, J::AbstractVector{T}) = setindex!(A, x, [i], J)
setindex!{T<:Integer}(A::SparseMatrixCSC, x::Number, I::AbstractVector{T}, j::Integer) = setindex!(A, x, I, [j])
# Colon translation
setindex!(A::SparseMatrixCSC, x, ::Colon) = setindex!(A, x, 1:length(A))
setindex!(A::SparseMatrixCSC, x, ::Colon, ::Colon) = setindex!(A, x, 1:size(A, 1), 1:size(A,2))
setindex!(A::SparseMatrixCSC, x, ::Colon, j::Union{Integer, AbstractVector}) = setindex!(A, x, 1:size(A, 1), j)
setindex!(A::SparseMatrixCSC, x, i::Union{Integer, AbstractVector}, ::Colon) = setindex!(A, x, i, 1:size(A, 2))
setindex!{Tv,T<:Integer}(A::SparseMatrixCSC{Tv}, x::Number, I::AbstractVector{T}, J::AbstractVector{T}) =
(0 == x) ? spdelete!(A, I, J) : spset!(A, convert(Tv,x), I, J)
function spset!{Tv,Ti<:Integer}(A::SparseMatrixCSC{Tv}, x::Tv, I::AbstractVector{Ti}, J::AbstractVector{Ti})
!issorted(I) && (@inbounds I = I[sortperm(I)])
!issorted(J) && (@inbounds J = J[sortperm(J)])
m, n = size(A)
lenI = length(I)
((I[end] > m) || (J[end] > n)) && throw(DimensionMismatch(""))
nnzA = nnz(A) + lenI * length(J)
colptrA = colptr = A.colptr
rowvalA = rowval = A.rowval
nzvalA = nzval = A.nzval
rowidx = 1
nadd = 0
@inbounds for col in 1:n
rrange = colptr[col]:(colptr[col+1]-1)
(nadd > 0) && (colptrA[col] = colptr[col] + nadd)
if col in J
if isempty(rrange) # set new vals only
nincl = lenI
if nadd == 0
colptrA = copy(colptr)
rowvalA = Array(Ti, nnzA); copy!(rowvalA, 1, rowval, 1, length(rowval))
nzvalA = Array(Tv, nnzA); copy!(nzvalA, 1, nzval, 1, length(nzval))
end
r = rowidx:(rowidx+nincl-1)
rowvalA[r] = I
nzvalA[r] = x
rowidx += nincl
nadd += nincl
else # set old + new vals
old_ptr = rrange[1]
old_stop = rrange[end]
new_ptr = 1
new_stop = lenI
while true
old_row = rowval[old_ptr]
new_row = I[new_ptr]
if old_row < new_row
rowvalA[rowidx] = old_row
nzvalA[rowidx] = nzval[old_ptr]
rowidx += 1
old_ptr += 1
else
if old_row == new_row
old_ptr += 1
else
if nadd == 0
colptrA = copy(colptr)
rowvalA = Array(Ti, nnzA); copy!(rowvalA, 1, rowval, 1, length(rowval))
nzvalA = Array(Tv, nnzA); copy!(nzvalA, 1, nzval, 1, length(nzval))
end
nadd += 1
end
rowvalA[rowidx] = new_row
nzvalA[rowidx] = x
rowidx += 1
new_ptr += 1
end
if old_ptr > old_stop
if new_ptr <= new_stop
if nadd == 0
colptrA = copy(colptr)
rowvalA = Array(Ti, nnzA); copy!(rowvalA, 1, rowval, 1, length(rowval))
nzvalA = Array(Tv, nnzA); copy!(nzvalA, 1, nzval, 1, length(nzval))
end
r = rowidx:(rowidx+(new_stop-new_ptr))
rowvalA[r] = I[new_ptr:new_stop]
nzvalA[r] = x
rowidx += length(r)
nadd += length(r)
end
break
end
if new_ptr > new_stop
nincl = old_stop-old_ptr+1
copy!(rowvalA, rowidx, rowval, old_ptr, nincl)
copy!(nzvalA, rowidx, nzval, old_ptr, nincl)
rowidx += nincl
break
end
end
end
elseif !isempty(rrange) # set old vals only
nincl = length(rrange)
copy!(rowvalA, rowidx, rowval, rrange[1], nincl)
copy!(nzvalA, rowidx, nzval, rrange[1], nincl)
rowidx += nincl
end
end
if nadd > 0
colptrA[n+1] = rowidx
deleteat!(rowvalA, rowidx:nnzA)
deleteat!(nzvalA, rowidx:nnzA)
A.colptr = colptrA
A.rowval = rowvalA
A.nzval = nzvalA
end
return A
end
function spdelete!{Tv,Ti<:Integer}(A::SparseMatrixCSC{Tv}, I::AbstractVector{Ti}, J::AbstractVector{Ti})
m, n = size(A)
nnzA = nnz(A)
(nnzA == 0) && (return A)
!issorted(I) && (@inbounds I = I[sortperm(I)])
!issorted(J) && (@inbounds J = J[sortperm(J)])
((I[end] > m) || (J[end] > n)) && throw(DimensionMismatch(""))
colptr = colptrA = A.colptr
rowval = rowvalA = A.rowval
nzval = nzvalA = A.nzval
rowidx = 1
ndel = 0
@inbounds for col in 1:n
rrange = colptr[col]:(colptr[col+1]-1)
(ndel > 0) && (colptrA[col] = colptr[col] - ndel)
if isempty(rrange) || !(col in J)
nincl = length(rrange)
if(ndel > 0) && !isempty(rrange)
copy!(rowvalA, rowidx, rowval, rrange[1], nincl)
copy!(nzvalA, rowidx, nzval, rrange[1], nincl)
end
rowidx += nincl
else
for ridx in rrange
if rowval[ridx] in I
if ndel == 0
colptrA = copy(colptr)
rowvalA = copy(rowval)
nzvalA = copy(nzval)
end
ndel += 1
else
if ndel > 0
rowvalA[rowidx] = rowval[ridx]
nzvalA[rowidx] = nzval[ridx]
end
rowidx += 1
end
end
end
end
if ndel > 0
colptrA[n+1] = rowidx
deleteat!(rowvalA, rowidx:nnzA)
deleteat!(nzvalA, rowidx:nnzA)
A.colptr = colptrA
A.rowval = rowvalA
A.nzval = nzvalA
end
return A
end
setindex!{Tv,Ti,T<:Integer}(A::SparseMatrixCSC{Tv,Ti}, S::Matrix, I::AbstractVector{T}, J::AbstractVector{T}) =
setindex!(A, convert(SparseMatrixCSC{Tv,Ti}, S), I, J)
setindex!{Tv,Ti,T<:Integer}(A::SparseMatrixCSC{Tv,Ti}, v::AbstractVector, I::AbstractVector{T}, j::Integer) = setindex!(A, v, I, [j])
setindex!{Tv,Ti,T<:Integer}(A::SparseMatrixCSC{Tv,Ti}, v::AbstractVector, i::Integer, J::AbstractVector{T}) = setindex!(A, v, [i], J)
setindex!{Tv,Ti,T<:Integer}(A::SparseMatrixCSC{Tv,Ti}, v::AbstractVector, I::AbstractVector{T}, J::AbstractVector{T}) =
setindex!(A, reshape(v, length(I), length(J)), I, J)
# A[I,J] = B
function setindex!{Tv,Ti,T<:Integer}(A::SparseMatrixCSC{Tv,Ti}, B::SparseMatrixCSC{Tv,Ti}, I::AbstractVector{T}, J::AbstractVector{T})
if size(B,1) != length(I) || size(B,2) != length(J)
throw(DimensionMismatch(""))
end
issortedI = issorted(I)
issortedJ = issorted(J)
if !issortedI && !issortedJ
pI = sortperm(I); @inbounds I = I[pI]
pJ = sortperm(J); @inbounds J = J[pJ]
B = B[pI, pJ]
elseif !issortedI
pI = sortperm(I); @inbounds I = I[pI]
B = B[pI,:]
else !issortedJ
pJ = sortperm(J); @inbounds J = J[pJ]
B = B[:, pJ]
end
m, n = size(A)
mB, nB = size(B)
nI = length(I)
nJ = length(J)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrB = B.colptr; rowvalB = B.rowval; nzvalB = B.nzval
nnzS = nnz(A) + nnz(B)
colptrS = Array(Ti, n+1)
rowvalS = Array(Ti, nnzS)
nzvalS = Array(Tv, nnzS)
colptrS[1] = 1
colB = 1
asgn_col = J[colB]
I_asgn = falses(m)
I_asgn[I] = true
ptrS = 1
@inbounds for col = 1:n
# Copy column of A if it is not being assigned into
if colB > nJ || col != J[colB]
colptrS[col+1] = colptrS[col] + (colptrA[col+1]-colptrA[col])
for k = colptrA[col]:colptrA[col+1]-1
rowvalS[ptrS] = rowvalA[k]
nzvalS[ptrS] = nzvalA[k]
ptrS += 1
end
continue
end
ptrA::Int = colptrA[col]
stopA::Int = colptrA[col+1]
ptrB::Int = colptrB[colB]
stopB::Int = colptrB[colB+1]
while ptrA < stopA && ptrB < stopB
rowA = rowvalA[ptrA]
rowB = I[rowvalB[ptrB]]
if rowA < rowB
if ~I_asgn[rowA]
rowvalS[ptrS] = rowA
nzvalS[ptrS] = nzvalA[ptrA]
ptrS += 1
end
ptrA += 1
elseif rowB < rowA
rowvalS[ptrS] = rowB
nzvalS[ptrS] = nzvalB[ptrB]
ptrS += 1
ptrB += 1
else
rowvalS[ptrS] = rowB
nzvalS[ptrS] = nzvalB[ptrB]
ptrS += 1
ptrB += 1
ptrA += 1
end
end
while ptrA < stopA
rowA = rowvalA[ptrA]
if ~I_asgn[rowA]
rowvalS[ptrS] = rowA
nzvalS[ptrS] = nzvalA[ptrA]
ptrS += 1
end
ptrA += 1
end
while ptrB < stopB
rowB = I[rowvalB[ptrB]]
rowvalS[ptrS] = rowB
nzvalS[ptrS] = nzvalB[ptrB]
ptrS += 1
ptrB += 1
end
colptrS[col+1] = ptrS
colB += 1
end
deleteat!(rowvalS, colptrS[end]:length(rowvalS))
deleteat!(nzvalS, colptrS[end]:length(nzvalS))
A.colptr = colptrS
A.rowval = rowvalS
A.nzval = nzvalS
return A
end
# Logical setindex!
setindex!(A::SparseMatrixCSC, x::Matrix, I::Integer, J::AbstractVector{Bool}) = setindex!(A, sparse(x), I, find(J))
setindex!(A::SparseMatrixCSC, x::Matrix, I::AbstractVector{Bool}, J::Integer) = setindex!(A, sparse(x), find(I), J)
setindex!(A::SparseMatrixCSC, x::Matrix, I::AbstractVector{Bool}, J::AbstractVector{Bool}) = setindex!(A, sparse(x), find(I), find(J))
setindex!{T<:Integer}(A::SparseMatrixCSC, x::Matrix, I::AbstractVector{T}, J::AbstractVector{Bool}) = setindex!(A, sparse(x), I, find(J))
setindex!{T<:Integer}(A::SparseMatrixCSC, x::Matrix, I::AbstractVector{Bool}, J::AbstractVector{T}) = setindex!(A, sparse(x), find(I),J)
setindex!(A::Matrix, x::SparseMatrixCSC, I::Integer, J::AbstractVector{Bool}) = setindex!(A, full(x), I, find(J))
setindex!(A::Matrix, x::SparseMatrixCSC, I::AbstractVector{Bool}, J::Integer) = setindex!(A, full(x), find(I), J)
setindex!(A::Matrix, x::SparseMatrixCSC, I::AbstractVector{Bool}, J::AbstractVector{Bool}) = setindex!(A, full(x), find(I), find(J))
setindex!{T<:Integer}(A::Matrix, x::SparseMatrixCSC, I::AbstractVector{T}, J::AbstractVector{Bool}) = setindex!(A, full(x), I, find(J))
setindex!{T<:Integer}(A::Matrix, x::SparseMatrixCSC, I::AbstractVector{Bool}, J::AbstractVector{T}) = setindex!(A, full(x), find(I), J)
setindex!{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, x, I::AbstractVector{Bool}) = throw(BoundsError())
function setindex!{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, x, I::AbstractMatrix{Bool})
checkbounds(A, I)
n = sum(I)
(n == 0) && (return A)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
colptrB = colptrA; rowvalB = rowvalA; nzvalB = nzvalA
nadd = ndel = 0
bidx = xidx = 1
r1 = r2 = 0
@inbounds for col in 1:A.n
r1 = Int(colptrA[col])
r2 = Int(colptrA[col+1]-1)
for row in 1:A.m
if I[row, col]
v = isa(x, AbstractArray) ? x[xidx] : x
xidx += 1
if r1 <= r2
copylen = searchsortedfirst(rowvalA, row, r1, r2, Forward) - r1
if (copylen > 0)
if (nadd > 0) || (ndel > 0)
copy!(rowvalB, bidx, rowvalA, r1, copylen)
copy!(nzvalB, bidx, nzvalA, r1, copylen)
end
bidx += copylen
r1 += copylen
end
end
# 0: no change, 1: update, 2: delete, 3: add new
mode = ((r1 <= r2) && (rowvalA[r1] == row)) ? ((v == 0) ? 2 : 1) : ((v == 0) ? 0 : 3)
if (mode > 1) && (nadd == 0) && (ndel == 0)
# copy storage to take changes
colptrB = copy(colptrA)
memreq = (x == 0) ? 0 : n
rowvalB = Array(Ti, length(rowvalA)+memreq); copy!(rowvalB, 1, rowvalA, 1, r1-1)
nzvalB = Array(Tv, length(nzvalA)+memreq); copy!(nzvalB, 1, nzvalA, 1, r1-1)
end
if mode == 1
rowvalB[bidx] = row
nzvalB[bidx] = v
bidx += 1
r1 += 1
elseif mode == 2
r1 += 1
ndel += 1
elseif mode == 3
rowvalB[bidx] = row
nzvalB[bidx] = v
bidx += 1
nadd += 1
end
(xidx > n) && break
end # if I[row, col]
end # for row in 1:A.m
if ((nadd != 0) || (ndel != 0))
l = r2-r1+1
if l > 0
copy!(rowvalB, bidx, rowvalA, r1, l)
copy!(nzvalB, bidx, nzvalA, r1, l)
bidx += l
end
colptrB[col+1] = bidx
if (xidx > n) && (length(colptrB) > (col+1))
diff = nadd - ndel
colptrB[(col+2):end] = colptrA[(col+2):end] .+ diff
r1 = colptrA[col+1]
r2 = colptrA[end]-1
l = r2-r1+1
if l > 0
copy!(rowvalB, bidx, rowvalA, r1, l)
copy!(nzvalB, bidx, nzvalA, r1, l)
bidx += l
end
end
else
bidx = colptrA[col+1]
end
(xidx > n) && break
end # for col in 1:A.n
if (nadd != 0) || (ndel != 0)
n = length(nzvalB)
if n > (bidx-1)
deleteat!(nzvalB, bidx:n)
deleteat!(rowvalB, bidx:n)
end
A.nzval = nzvalB; A.rowval = rowvalB; A.colptr = colptrB
end
A
end
function setindex!{Tv,Ti,T<:Real}(A::SparseMatrixCSC{Tv,Ti}, x, I::AbstractVector{T})
n = length(I)
(n == 0) && (return A)
colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval; szA = size(A)
colptrB = colptrA; rowvalB = rowvalA; nzvalB = nzvalA
nadd = ndel = 0
bidx = aidx = 1
S = issorted(I) ? (1:n) : sortperm(I)
sxidx = r1 = r2 = 0
lastcol = 0
(nrowA, ncolA) = szA
@inbounds for xidx in 1:n
sxidx = S[xidx]
(sxidx < n) && (I[sxidx] == I[sxidx+1]) && continue
row,col = ind2sub(szA, I[sxidx])
((row > nrowA) || (col > ncolA)) && throw(BoundsError())
v = isa(x, AbstractArray) ? x[sxidx] : x
if col > lastcol
r1 = Int(colptrA[col])
r2 = Int(colptrA[col+1] - 1)
# copy from last position till current column
if (nadd > 0) || (ndel > 0)
colptrB[(lastcol+1):col] = colptrA[(lastcol+1):col] .+ (nadd - ndel)
copylen = r1 - aidx
if copylen > 0
copy!(rowvalB, bidx, rowvalA, aidx, copylen)
copy!(nzvalB, bidx, nzvalA, aidx, copylen)
aidx += copylen
bidx += copylen
end
else
aidx = bidx = r1
end
lastcol = col
end
if r1 <= r2
copylen = searchsortedfirst(rowvalA, row, r1, r2, Forward) - r1
if (copylen > 0)
if (nadd > 0) || (ndel > 0)
copy!(rowvalB, bidx, rowvalA, r1, copylen)
copy!(nzvalB, bidx, nzvalA, r1, copylen)
end
bidx += copylen
r1 += copylen
aidx += copylen
end
end
# 0: no change, 1: update, 2: delete, 3: add new
mode = ((r1 <= r2) && (rowvalA[r1] == row)) ? ((v == 0) ? 2 : 1) : ((v == 0) ? 0 : 3)
if (mode > 1) && (nadd == 0) && (ndel == 0)
# copy storage to take changes
colptrB = copy(colptrA)
memreq = (x == 0) ? 0 : n
rowvalB = Array(Ti, length(rowvalA)+memreq); copy!(rowvalB, 1, rowvalA, 1, r1-1)
nzvalB = Array(Tv, length(nzvalA)+memreq); copy!(nzvalB, 1, nzvalA, 1, r1-1)
end
if mode == 1
rowvalB[bidx] = row
nzvalB[bidx] = v
bidx += 1
aidx += 1
r1 += 1
elseif mode == 2
r1 += 1
aidx += 1
ndel += 1
elseif mode == 3
rowvalB[bidx] = row
nzvalB[bidx] = v
bidx += 1
nadd += 1
end
end
# copy the rest
@inbounds if (nadd > 0) || (ndel > 0)
colptrB[(lastcol+1):end] = colptrA[(lastcol+1):end] .+ (nadd - ndel)
r1 = colptrA[end]-1
copylen = r1 - aidx + 1
if copylen > 0
copy!(rowvalB, bidx, rowvalA, aidx, copylen)
copy!(nzvalB, bidx, nzvalA, aidx, copylen)
aidx += copylen
bidx += copylen
end
n = length(nzvalB)
if n > (bidx-1)
deleteat!(nzvalB, bidx:n)
deleteat!(rowvalB, bidx:n)
end
A.nzval = nzvalB; A.rowval = rowvalB; A.colptr = colptrB
end
A
end
# Sparse concatenation
function vcat(X::SparseMatrixCSC...)
num = length(X)
mX = [ size(x, 1) for x in X ]
nX = [ size(x, 2) for x in X ]
m = sum(mX)
n = nX[1]
for i = 2 : num
if nX[i] != n
throw(DimensionMismatch("All inputs to vcat should have the same number of columns"))
end
end
Tv = eltype(X[1].nzval)
Ti = eltype(X[1].rowval)
for i = 2:length(X)
Tv = promote_type(Tv, eltype(X[i].nzval))
Ti = promote_type(Ti, eltype(X[i].rowval))
end
nnzX = [ nnz(x) for x in X ]
nnz_res = sum(nnzX)
colptr = Array(Ti, n + 1)
rowval = Array(Ti, nnz_res)
nzval = Array(Tv, nnz_res)
colptr[1] = 1
for c = 1:n
mX_sofar = 0
ptr_res = colptr[c]
for i = 1 : num
colptrXi = X[i].colptr
col_length = (colptrXi[c + 1] - 1) - colptrXi[c]
ptr_Xi = colptrXi[c]
stuffcol!(X[i], colptr, rowval, nzval,
ptr_res, ptr_Xi, col_length, mX_sofar)
ptr_res += col_length + 1
mX_sofar += mX[i]
end
colptr[c + 1] = ptr_res
end
SparseMatrixCSC(m, n, colptr, rowval, nzval)
end
@inline function stuffcol!(Xi::SparseMatrixCSC, colptr, rowval, nzval,
ptr_res, ptr_Xi, col_length, mX_sofar)
colptrXi = Xi.colptr
rowvalXi = Xi.rowval
nzvalXi = Xi.nzval
for k=ptr_res:(ptr_res + col_length)
@inbounds rowval[k] = rowvalXi[ptr_Xi] + mX_sofar
@inbounds nzval[k] = nzvalXi[ptr_Xi]
ptr_Xi += 1
end
end
function hcat(X::SparseMatrixCSC...)
num = length(X)
mX = [ size(x, 1) for x in X ]
nX = [ size(x, 2) for x in X ]
m = mX[1]
for i = 2 : num
if mX[i] != m; throw(DimensionMismatch("")); end
end
n = sum(nX)
Tv = promote_type(map(x->eltype(x.nzval), X)...)
Ti = promote_type(map(x->eltype(x.rowval), X)...)
colptr = Array(Ti, n + 1)
nnzX = [ nnz(x) for x in X ]
nnz_res = sum(nnzX)
rowval = Array(Ti, nnz_res)
nzval = Array(Tv, nnz_res)
nnz_sofar = 0
nX_sofar = 0
@inbounds for i = 1 : num
XI = X[i]
colptr[(1 : nX[i] + 1) + nX_sofar] = XI.colptr .+ nnz_sofar
if nnzX[i] == length(XI.rowval)
rowval[(1 : nnzX[i]) + nnz_sofar] = XI.rowval
nzval[(1 : nnzX[i]) + nnz_sofar] = XI.nzval
else
rowval[(1 : nnzX[i]) + nnz_sofar] = XI.rowval[1:nnzX[i]]
nzval[(1 : nnzX[i]) + nnz_sofar] = XI.nzval[1:nnzX[i]]
end
nnz_sofar += nnzX[i]
nX_sofar += nX[i]
end
SparseMatrixCSC(m, n, colptr, rowval, nzval)
end
function hvcat(rows::Tuple{Vararg{Int}}, X::SparseMatrixCSC...)
nbr = length(rows) # number of block rows
tmp_rows = Array(SparseMatrixCSC, nbr)
k = 0
@inbounds for i = 1 : nbr
tmp_rows[i] = hcat(X[(1 : rows[i]) + k]...)
k += rows[i]
end
vcat(tmp_rows...)
end
"""
blkdiag(A...)
Concatenate matrices block-diagonally. Currently only implemented for sparse matrices.
"""
function blkdiag(X::SparseMatrixCSC...)
num = length(X)
mX = [ size(x, 1) for x in X ]
nX = [ size(x, 2) for x in X ]
m = sum(mX)
n = sum(nX)
Tv = promote_type(map(x->eltype(x.nzval), X)...)
Ti = promote_type(map(x->eltype(x.rowval), X)...)
colptr = Array(Ti, n + 1)
nnzX = [ nnz(x) for x in X ]
nnz_res = sum(nnzX)
rowval = Array(Ti, nnz_res)
nzval = Array(Tv, nnz_res)
nnz_sofar = 0
nX_sofar = 0
mX_sofar = 0
for i = 1 : num
colptr[(1 : nX[i] + 1) + nX_sofar] = X[i].colptr .+ nnz_sofar
rowval[(1 : nnzX[i]) + nnz_sofar] = X[i].rowval .+ mX_sofar
nzval[(1 : nnzX[i]) + nnz_sofar] = X[i].nzval
nnz_sofar += nnzX[i]
nX_sofar += nX[i]
mX_sofar += mX[i]
end
SparseMatrixCSC(m, n, colptr, rowval, nzval)
end
squeeze(S::SparseMatrixCSC, dims::Dims) = throw(ArgumentError("squeeze is not available for sparse matrices"))
## Structure query functions
issym(A::SparseMatrixCSC) = is_hermsym(A, IdFun())
ishermitian(A::SparseMatrixCSC) = is_hermsym(A, ConjFun())
function is_hermsym(A::SparseMatrixCSC, check::Func)
m, n = size(A)
if m != n; return false; end
colptr = A.colptr
rowval = A.rowval
nzval = A.nzval
tracker = copy(A.colptr)
for col = 1:A.n
# `tracker` is updated such that, for symmetric matrices,
# the loop below starts from an element at or below the
# diagonal element of column `col`"
for p = tracker[col]:colptr[col+1]-1
val = nzval[p]
row = rowval[p]
# Ignore stored zeros
if val == 0;
continue
end
# If the matrix was symmetric we should have updated
# the tracker to start at the diagonal or below. Here
# we are above the diagonal so the matrix can't be symmetric.
if row < col
return false
end
# Diagonal element
if row == col
if val != check(val)
return false
end
else
offset = tracker[row]
# If the matrix is unsymmetric, there might not exist
# a rowval[offset]
if offset > length(rowval)
return false
end
row2 = rowval[offset]
# row2 can be less than col if the tracker didn't
# get updated due to stored zeros in previous elements.
# We therefore "catch up" here while making sure that
# the elements are actually zero.
while row2 < col
if nzval[offset] != 0
return false
end
offset += 1
row2 = rowval[offset]
tracker[row] += 1
end
# Non zero A[i,j] exists but A[j,i] does not exist
if row2 > col
return false
end
# A[i,j] and A[j,i] exists
if row2 == col
if val != check(nzval[offset])
return false
end
tracker[row] += 1
end
end
end
end
return true
end
function istriu{Tv}(A::SparseMatrixCSC{Tv})
m, n = size(A)
colptr = A.colptr
rowval = A.rowval
nzval = A.nzval
for col = 1:min(n, m-1)
l1 = colptr[col+1]-1
for i = 0 : (l1 - colptr[col])
if rowval[l1-i] <= col
break
end
if nzval[l1-i] != 0
return false
end
end
end
return true
end
function istril{Tv}(A::SparseMatrixCSC{Tv})
m, n = size(A)
colptr = A.colptr
rowval = A.rowval
nzval = A.nzval
for col = 2:n
for i = colptr[col] : (colptr[col+1]-1)
if rowval[i] >= col
break
end
if nzval[i] != 0
return false
end
end
end
return true
end
# Create a sparse diagonal matrix by specifying multiple diagonals
# packed into a tuple, alongside their diagonal offsets and matrix shape
function spdiagm_internal(B, d)
ndiags = length(d)
if length(B) != ndiags; throw(ArgumentError("first argument should be a tuple of length(d)=$ndiags arrays of diagonals")); end
ncoeffs = 0
for vec in B
ncoeffs += length(vec)
end
I = Array(Int, ncoeffs)
J = Array(Int, ncoeffs)
V = Array(promote_type(map(eltype, B)...), ncoeffs)
id = 0
i = 0
for vec in B
id += 1
diag = d[id]
numel = length(vec)
if diag < 0
row = -diag
col = 0
elseif diag > 0
row = 0
col = diag
else
row = 0
col = 0
end
range = 1+i:numel+i
I[range] = row+1:row+numel
J[range] = col+1:col+numel
copy!(sub(V, range), vec)
i += numel
end
return (I,J,V)
end
"""
spdiagm(B, d[, m, n])
Construct a sparse diagonal matrix. `B` is a tuple of vectors containing the diagonals and
`d` is a tuple containing the positions of the diagonals. In the case the input contains only
one diagonal, `B` can be a vector (instead of a tuple) and `d` can be the diagonal position
(instead of a tuple), defaulting to 0 (diagonal). Optionally, `m` and `n` specify the size
of the resulting sparse matrix.
"""
function spdiagm(B, d, m::Integer, n::Integer)
(I,J,V) = spdiagm_internal(B, d)
return sparse(I,J,V,m,n)
end
function spdiagm(B, d)
(I,J,V) = spdiagm_internal(B, d)
return sparse(I,J,V)
end
spdiagm(B::AbstractVector, d::Number, m::Integer, n::Integer) = spdiagm((B,), (d,), m, n)
spdiagm(B::AbstractVector, d::Number=0) = spdiagm((B,), (d,))
## expand a colptr or rowptr into a dense index vector
function expandptr{T<:Integer}(V::Vector{T})
if V[1] != 1 throw(ArgumentError("first index must be one")) end
res = similar(V, (Int64(V[end]-1),))
for i in 1:(length(V)-1), j in V[i]:(V[i+1] - 1) res[j] = i end
res
end
## diag and related using an iterator
type SpDiagIterator{Tv,Ti}
A::SparseMatrixCSC{Tv,Ti}
n::Int
end
SpDiagIterator(A::SparseMatrixCSC) = SpDiagIterator(A,minimum(size(A)))
length(d::SpDiagIterator) = d.n
start(d::SpDiagIterator) = 1
done(d::SpDiagIterator, j) = j > d.n
function next{Tv}(d::SpDiagIterator{Tv}, j)
A = d.A
r1 = Int(A.colptr[j])
r2 = Int(A.colptr[j+1]-1)
(r1 > r2) && (return (zero(Tv), j+1))
r1 = searchsortedfirst(A.rowval, j, r1, r2, Forward)
(((r1 > r2) || (A.rowval[r1] != j)) ? zero(Tv) : A.nzval[r1], j+1)
end
function trace{Tv}(A::SparseMatrixCSC{Tv})
if size(A,1) != size(A,2)
throw(DimensionMismatch("expected square matrix"))
end
s = zero(Tv)
for d in SpDiagIterator(A)
s += d
end
s
end
diag(A::SparseMatrixCSC) = [d for d in SpDiagIterator(A)]
function diagm{Tv,Ti}(v::SparseMatrixCSC{Tv,Ti})
if (size(v,1) != 1 && size(v,2) != 1)
throw(DimensionMismatch("input should be nx1 or 1xn"))
end
n = length(v)
numnz = nnz(v)
colptr = Array(Ti, n+1)
rowval = Array(Ti, numnz)
nzval = Array(Tv, numnz)
if size(v,1) == 1
copy!(colptr, 1, v.colptr, 1, n+1)
ptr = 1
for col = 1:n
if colptr[col] != colptr[col+1]
rowval[ptr] = col
nzval[ptr] = v.nzval[ptr]
ptr += 1
end
end
else
copy!(rowval, 1, v.rowval, 1, numnz)
copy!(nzval, 1, v.nzval, 1, numnz)
colptr[1] = 1
ptr = 1
col = 1
while col <= n && ptr <= numnz
while rowval[ptr] > col
colptr[col+1] = colptr[col]
col += 1
end
colptr[col+1] = colptr[col] + 1
ptr += 1
col += 1
end
if col <= n
colptr[(col+1):(n+1)] = colptr[col]
end
end
return SparseMatrixCSC(n, n, colptr, rowval, nzval)
end
# Sort all the indices in each column of a CSC sparse matrix
# sortSparseMatrixCSC!(A, sortindices = :sortcols) # Sort each column with sort()
# sortSparseMatrixCSC!(A, sortindices = :doubletranspose) # Sort with a double transpose
function sortSparseMatrixCSC!{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}; sortindices::Symbol = :sortcols)
if sortindices == :doubletranspose
nB, mB = size(A)
B = SparseMatrixCSC(mB, nB, Array(Ti, nB+1), similar(A.rowval), similar(A.nzval))
transpose!(B, A)
transpose!(A, B)
return A
end
m, n = size(A)
colptr = A.colptr; rowval = A.rowval; nzval = A.nzval
index = zeros(Ti, m)
row = zeros(Ti, m)
val = zeros(Tv, m)
for i = 1:n
@inbounds col_start = colptr[i]
@inbounds col_end = (colptr[i+1] - 1)
numrows = col_end - col_start + 1
if numrows <= 1
continue
elseif numrows == 2
f = col_start
s = f+1
if rowval[f] > rowval[s]
@inbounds rowval[f], rowval[s] = rowval[s], rowval[f]
@inbounds nzval[f], nzval[s] = nzval[s], nzval[f]
end
continue
end
jj = 1
@simd for j = col_start:col_end
@inbounds row[jj] = rowval[j]
@inbounds val[jj] = nzval[j]
jj += 1
end
sortperm!(pointer_to_array(pointer(index), numrows),
pointer_to_array(pointer(row), numrows))
jj = 1;
@simd for j = col_start:col_end
@inbounds rowval[j] = row[index[jj]]
@inbounds nzval[j] = val[index[jj]]
jj += 1
end
end
return A
end
## rotations
function rot180(A::SparseMatrixCSC)
I,J,V = findnz(A)
m,n = size(A)
for i=1:length(I)
I[i] = m - I[i] + 1
J[i] = n - J[i] + 1
end
return sparse(I,J,V,m,n)
end
function rotr90(A::SparseMatrixCSC)
I,J,V = findnz(A)
m,n = size(A)
#old col inds are new row inds
for i=1:length(I)
I[i] = m - I[i] + 1
end
return sparse(J, I, V, n, m)
end
function rotl90(A::SparseMatrixCSC)
I,J,V = findnz(A)
m,n = size(A)
#old row inds are new col inds
for i=1:length(J)
J[i] = n - J[i] + 1
end
return sparse(J, I, V, n, m)
end
## hashing
# End the run and return the current hash
@inline function hashrun(val, runlength::Int, h::UInt)
if runlength == 0
return h
elseif runlength > 1
h += Base.hashrle_seed
h = hash(runlength, h)
end
hash(val, h)
end
function hash{T}(A::SparseMatrixCSC{T}, h::UInt)
h += Base.hashaa_seed
sz = size(A)
h += hash(sz)
colptr = A.colptr
rowval = A.rowval
nzval = A.nzval
lastidx = 0
runlength = 0
lastnz = zero(T)
@inbounds for col = 1:size(A, 2)
for j = colptr[col]:colptr[col+1]-1
nz = nzval[j]
isequal(nz, zero(T)) && continue
idx = sub2ind(sz, rowval[j], col)
if idx != lastidx+1 || !isequal(nz, lastnz) # Run is over
h = hashrun(lastnz, runlength, h) # Hash previous run
h = hashrun(0, idx-lastidx-1, h) # Hash intervening zeros
runlength = 1
lastnz = nz
else
runlength += 1
end
lastidx = idx
end
end
h = hashrun(lastnz, runlength, h) # Hash previous run
hashrun(0, length(A)-lastidx, h) # Hash zeros at end
end
## Statistics
# This is the function that does the reduction underlying var/std
function Base.centralize_sumabs2!{S,Tv,Ti}(R::AbstractArray{S}, A::SparseMatrixCSC{Tv,Ti}, means::AbstractArray)
lsiz = Base.check_reducedims(R,A)
size(means) == size(R) || error("size of means must match size of R")
isempty(R) || fill!(R, zero(S))
isempty(A) && return R
colptr = A.colptr
rowval = A.rowval
nzval = A.nzval
m = size(A, 1)
n = size(A, 2)
if size(R, 1) == size(R, 2) == 1
# Reduction along both columns and rows
R[1, 1] = Base.centralize_sumabs2(A, means[1])
elseif size(R, 1) == 1
# Reduction along rows
@inbounds for col = 1:n
mu = means[col]
r = convert(S, (m-colptr[col+1]+colptr[col])*abs2(mu))
@simd for j = colptr[col]:colptr[col+1]-1
r += abs2(nzval[j] - mu)
end
R[1, col] = r
end
elseif size(R, 2) == 1
# Reduction along columns
rownz = fill(convert(Ti, n), m)
@inbounds for col = 1:n
@simd for j = colptr[col]:colptr[col+1]-1
row = rowval[j]
R[row, 1] += abs2(nzval[j] - means[row])
rownz[row] -= 1
end
end
for i = 1:m
R[i, 1] += rownz[i]*abs2(means[i])
end
else
# Reduction along a dimension > 2
@inbounds for col = 1:n
lastrow = 0
@simd for j = colptr[col]:colptr[col+1]-1
row = rowval[j]
for i = lastrow+1:row-1
R[i, col] = abs2(means[i, col])
end
R[row, col] = abs2(nzval[j] - means[row, col])
lastrow = row
end
for i = lastrow+1:m
R[i, col] = abs2(means[i, col])
end
end
end
return R
end
## Uniform matrix arithmetic
(+)(A::SparseMatrixCSC, J::UniformScaling) = A + J.λ * speye(A)
(-)(A::SparseMatrixCSC, J::UniformScaling) = A - J.λ * speye(A)
(-)(J::UniformScaling, A::SparseMatrixCSC) = J.λ * speye(A) - A
|