This file is indexed.

/usr/share/julia/base/sparse/linalg.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
# This file is a part of Julia. License is MIT: http://julialang.org/license

import Base.LinAlg: chksquare

## Functions to switch to 0-based indexing to call external sparse solvers

# Convert from 1-based to 0-based indices
function decrement!{T<:Integer}(A::AbstractArray{T})
    for i in 1:length(A) A[i] -= one(T) end
    A
end
decrement{T<:Integer}(A::AbstractArray{T}) = decrement!(copy(A))

# Convert from 0-based to 1-based indices
function increment!{T<:Integer}(A::AbstractArray{T})
    for i in 1:length(A) A[i] += one(T) end
    A
end
increment{T<:Integer}(A::AbstractArray{T}) = increment!(copy(A))

## sparse matrix multiplication

function (*){TvA,TiA,TvB,TiB}(A::SparseMatrixCSC{TvA,TiA}, B::SparseMatrixCSC{TvB,TiB})
    Tv = promote_type(TvA, TvB)
    Ti = promote_type(TiA, TiB)
    A  = convert(SparseMatrixCSC{Tv,Ti}, A)
    B  = convert(SparseMatrixCSC{Tv,Ti}, B)
    A * B
end

# In matrix-vector multiplication, the correct orientation of the vector is assumed.

for (f, op, transp) in ((:A_mul_B, :identity, false),
                        (:Ac_mul_B, :ctranspose, true),
                        (:At_mul_B, :transpose, true))
    @eval begin
        function $(symbol(f,:!))(α::Number, A::SparseMatrixCSC, B::StridedVecOrMat, β::Number, C::StridedVecOrMat)
            if $transp
                A.n == size(C, 1) || throw(DimensionMismatch())
                A.m == size(B, 1) || throw(DimensionMismatch())
            else
                A.n == size(B, 1) || throw(DimensionMismatch())
                A.m == size(C, 1) || throw(DimensionMismatch())
            end
            size(B, 2) == size(C, 2) || throw(DimensionMismatch())
            nzv = A.nzval
            rv = A.rowval
            if β != 1
                β != 0 ? scale!(C, β) : fill!(C, zero(eltype(C)))
            end
            for col = 1:A.n
                for k = 1:size(C, 2)
                    if $transp
                        tmp = zero(eltype(C))
                        @inbounds for j = A.colptr[col]:(A.colptr[col + 1] - 1)
                            tmp += $(op)(nzv[j])*B[rv[j],k]
                        end
                        C[col,k] += α*tmp
                    else
                        αxj = α*B[col,k]
                        @inbounds for j = A.colptr[col]:(A.colptr[col + 1] - 1)
                            C[rv[j], k] += nzv[j]*αxj
                        end
                    end
                end
            end
            C
        end

        function $(f){TA,S,Tx}(A::SparseMatrixCSC{TA,S}, x::StridedVector{Tx})
            T = promote_type(TA, Tx)
            $(symbol(f,:!))(one(T), A, x, zero(T), similar(x, T, A.n))
        end
        function $(f){TA,S,Tx}(A::SparseMatrixCSC{TA,S}, B::StridedMatrix{Tx})
            T = promote_type(TA, Tx)
            $(symbol(f,:!))(one(T), A, B, zero(T), similar(B, T, (A.n, size(B, 2))))
        end
    end
end

# For compatibility with dense multiplication API. Should be deleted when dense multiplication
# API is updated to follow BLAS API.
A_mul_B!(C::StridedVecOrMat, A::SparseMatrixCSC, B::StridedVecOrMat) = A_mul_B!(one(eltype(B)), A, B, zero(eltype(C)), C)
Ac_mul_B!(C::StridedVecOrMat, A::SparseMatrixCSC, B::StridedVecOrMat) = Ac_mul_B!(one(eltype(B)), A, B, zero(eltype(C)), C)
At_mul_B!(C::StridedVecOrMat, A::SparseMatrixCSC, B::StridedVecOrMat) = At_mul_B!(one(eltype(B)), A, B, zero(eltype(C)), C)


function (*){TX,TvA,TiA}(X::StridedMatrix{TX}, A::SparseMatrixCSC{TvA,TiA})
    mX, nX = size(X)
    nX == A.m || throw(DimensionMismatch())
    Y = zeros(promote_type(TX,TvA), mX, A.n)
    rowval = A.rowval
    nzval = A.nzval
    @inbounds for multivec_row=1:mX, col = 1:A.n, k=A.colptr[col]:(A.colptr[col+1]-1)
        Y[multivec_row, col] += X[multivec_row, rowval[k]] * nzval[k]
    end
    Y
end

# Sparse matrix multiplication as described in [Gustavson, 1978]:
# http://www.cse.iitb.ac.in/graphics/~anand/website/include/papers/matrix/fast_matrix_mul.pdf

(*){Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, B::SparseMatrixCSC{Tv,Ti}) = spmatmul(A,B)

function spmatmul{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, B::SparseMatrixCSC{Tv,Ti};
                         sortindices::Symbol = :sortcols)
    mA, nA = size(A)
    mB, nB = size(B)
    nA==mB || throw(DimensionMismatch())

    colptrA = A.colptr; rowvalA = A.rowval; nzvalA = A.nzval
    colptrB = B.colptr; rowvalB = B.rowval; nzvalB = B.nzval
    # TODO: Need better estimation of result space
    nnzC = min(mA*nB, length(nzvalA) + length(nzvalB))
    colptrC = Array(Ti, nB+1)
    rowvalC = Array(Ti, nnzC)
    nzvalC = Array(Tv, nnzC)

    @inbounds begin
        ip = 1
        xb = zeros(Ti, mA)
        x  = zeros(Tv, mA)
        for i in 1:nB
            if ip + mA - 1 > nnzC
                resize!(rowvalC, nnzC + max(nnzC,mA))
                resize!(nzvalC, nnzC + max(nnzC,mA))
                nnzC = length(nzvalC)
            end
            colptrC[i] = ip
            for jp in colptrB[i]:(colptrB[i+1] - 1)
                nzB = nzvalB[jp]
                j = rowvalB[jp]
                for kp in colptrA[j]:(colptrA[j+1] - 1)
                    nzC = nzvalA[kp] * nzB
                    k = rowvalA[kp]
                    if xb[k] != i
                        rowvalC[ip] = k
                        ip += 1
                        xb[k] = i
                        x[k] = nzC
                    else
                        x[k] += nzC
                    end
                end
            end
            for vp in colptrC[i]:(ip - 1)
                nzvalC[vp] = x[rowvalC[vp]]
            end
        end
        colptrC[nB+1] = ip
    end

    deleteat!(rowvalC, colptrC[end]:length(rowvalC))
    deleteat!(nzvalC, colptrC[end]:length(nzvalC))

    # The Gustavson algorithm does not guarantee the product to have sorted row indices.
    Cunsorted = SparseMatrixCSC(mA, nB, colptrC, rowvalC, nzvalC)
    C = Base.SparseMatrix.sortSparseMatrixCSC!(Cunsorted, sortindices=sortindices)
    return C
end

## solvers
function A_ldiv_B!(A::SparseMatrixCSC, b::AbstractVecOrMat)
    if eltype(b)<:Complex; A = complex(A); end

    if istril(A)
        # TODO: Fix diagonal case. Diagonal(A.nzval) needs to handle
        # the case where there are zeros on the diagonal and error out.
        # It also does not work in the complex case. VBS.
        #if istriu(A); return A_ldiv_B!(Diagonal(A.nzval), b); end
        return fwdTriSolve!(A, b)
    end
    if istriu(A); return bwdTriSolve!(A, b); end
    return A_ldiv_B!(lufact(A),b)
end

function fwdTriSolve!(A::SparseMatrixCSC, B::AbstractVecOrMat)
# forward substitution for CSC matrices
    nrowB, ncolB  = size(B, 1), size(B, 2)
    ncol = LinAlg.chksquare(A)
    if nrowB != ncol
        throw(DimensionMismatch("A is $(ncol) columns and B has $(nrowB) rows"))
    end

    aa = A.nzval
    ja = A.rowval
    ia = A.colptr

    joff = 0
    for k = 1:ncolB
        for j = 1:nrowB
            i1 = ia[j]
            i2 = ia[j + 1] - 1

            # loop through the structural zeros
            ii = i1
            jai = ja[ii]
            while ii <= i2 && jai < j
                ii += 1
                jai = ja[ii]
            end

            # check for zero pivot and divide with pivot
            if jai == j
                bj = B[joff + jai]/aa[ii]
                B[joff + jai] = bj
                ii += 1
            else
                throw(LinAlg.SingularException(j))
            end

            # update remaining part
            for i = ii:i2
                B[joff + ja[i]] -= bj*aa[i]
            end
        end
        joff += nrowB
    end
    B
end

function bwdTriSolve!(A::SparseMatrixCSC, B::AbstractVecOrMat)
# backward substitution for CSC matrices
    nrowB, ncolB = size(B, 1), size(B, 2)
    ncol = LinAlg.chksquare(A)
    if nrowB != ncol
        throw(DimensionMismatch("A is $(ncol) columns and B has $(nrowB) rows"))
    end

    aa = A.nzval
    ja = A.rowval
    ia = A.colptr

    joff = 0
    for k = 1:ncolB
        for j = nrowB:-1:1
            i1 = ia[j]
            i2 = ia[j + 1] - 1

            # loop through the structural zeros
            ii = i2
            jai = ja[ii]
            while ii >= i1 && jai > j
                ii -= 1
                jai = ja[ii]
            end

            # check for zero pivot and divide with pivot
            if jai == j
                bj = B[joff + jai]/aa[ii]
                B[joff + jai] = bj
                ii -= 1
            else
                throw(LinAlg.SingularException(j))
            end

            # update remaining part
            for i = ii:-1:i1
                B[joff + ja[i]] -= bj*aa[i]
            end
        end
        joff += nrowB
    end
    B
end

A_ldiv_B!{T,Ti}(L::LowerTriangular{T,SparseMatrixCSC{T,Ti}}, B::StridedVecOrMat) = fwdTriSolve!(L.data, B)
A_ldiv_B!{T,Ti}(U::UpperTriangular{T,SparseMatrixCSC{T,Ti}}, B::StridedVecOrMat) = bwdTriSolve!(U.data, B)

(\){T,Ti}(L::LowerTriangular{T,SparseMatrixCSC{T,Ti}}, B::SparseMatrixCSC) = A_ldiv_B!(L, full(B))
(\){T,Ti}(U::UpperTriangular{T,SparseMatrixCSC{T,Ti}}, B::SparseMatrixCSC) = A_ldiv_B!(U, full(B))

## triu, tril

function triu{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0)
    m,n = size(S)
    if (k > 0 && k > n) || (k < 0 && -k > m)
        throw(BoundsError())
    end
    colptr = Array(Ti, n+1)
    nnz = 0
    for col = 1 : min(max(k+1,1), n+1)
        colptr[col] = 1
    end
    for col = max(k+1,1) : n
        for c1 = S.colptr[col] : S.colptr[col+1]-1
            S.rowval[c1] > col - k && break
            nnz += 1
        end
        colptr[col+1] = nnz+1
    end
    rowval = Array(Ti, nnz)
    nzval = Array(Tv, nnz)
    A = SparseMatrixCSC(m, n, colptr, rowval, nzval)
    for col = max(k+1,1) : n
        c1 = S.colptr[col]
        for c2 = A.colptr[col] : A.colptr[col+1]-1
            A.rowval[c2] = S.rowval[c1]
            A.nzval[c2] = S.nzval[c1]
            c1 += 1
        end
    end
    A
end

function tril{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti}, k::Integer=0)
    m,n = size(S)
    if (k > 0 && k > n) || (k < 0 && -k > m)
        throw(BoundsError())
    end
    colptr = Array(Ti, n+1)
    nnz = 0
    colptr[1] = 1
    for col = 1 : min(n, m+k)
        l1 = S.colptr[col+1]-1
        for c1 = 0 : (l1 - S.colptr[col])
            S.rowval[l1 - c1] < col - k && break
            nnz += 1
        end
        colptr[col+1] = nnz+1
    end
    for col = max(min(n, m+k)+2,1) : n+1
        colptr[col] = nnz+1
    end
    rowval = Array(Ti, nnz)
    nzval = Array(Tv, nnz)
    A = SparseMatrixCSC(m, n, colptr, rowval, nzval)
    for col = 1 : min(n, m+k)
        c1 = S.colptr[col+1]-1
        l2 = A.colptr[col+1]-1
        for c2 = 0 : l2 - A.colptr[col]
            A.rowval[l2 - c2] = S.rowval[c1]
            A.nzval[l2 - c2] = S.nzval[c1]
            c1 -= 1
        end
    end
    A
end

## diff

function sparse_diff1{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti})
    m,n = size(S)
    m > 1 || return SparseMatrixCSC(0, n, ones(Ti,n+1), Ti[], Tv[])
    colptr = Array(Ti, n+1)
    numnz = 2 * nnz(S) # upper bound; will shrink later
    rowval = Array(Ti, numnz)
    nzval = Array(Tv, numnz)
    numnz = 0
    colptr[1] = 1
    for col = 1 : n
        last_row = 0
        last_val = 0
        for k = S.colptr[col] : S.colptr[col+1]-1
            row = S.rowval[k]
            val = S.nzval[k]
            if row > 1
                if row == last_row + 1
                    nzval[numnz] += val
                    nzval[numnz]==zero(Tv) && (numnz -= 1)
                else
                    numnz += 1
                    rowval[numnz] = row - 1
                    nzval[numnz] = val
                end
            end
            if row < m
                numnz += 1
                rowval[numnz] = row
                nzval[numnz] = -val
            end
            last_row = row
            last_val = val
        end
        colptr[col+1] = numnz+1
    end
    deleteat!(rowval, numnz+1:length(rowval))
    deleteat!(nzval, numnz+1:length(nzval))
    return SparseMatrixCSC(m-1, n, colptr, rowval, nzval)
end

function sparse_diff2{Tv,Ti}(a::SparseMatrixCSC{Tv,Ti})

    m,n = size(a)
    colptr = Array(Ti, max(n,1))
    numnz = 2 * nnz(a) # upper bound; will shrink later
    rowval = Array(Ti, numnz)
    nzval = Array(Tv, numnz)

    z = zero(Tv)

    colptr_a = a.colptr
    rowval_a = a.rowval
    nzval_a = a.nzval

    ptrS = 1
    colptr[1] = 1

    n == 0 && return SparseMatrixCSC(m, n, colptr, rowval, nzval)

    startA = colptr_a[1]
    stopA = colptr_a[2]

    rA = startA : stopA - 1
    rowvalA = rowval_a[rA]
    nzvalA = nzval_a[rA]
    lA = stopA - startA

    for col = 1:n-1
        startB, stopB = startA, stopA
        startA = colptr_a[col+1]
        stopA = colptr_a[col+2]

        rowvalB = rowvalA
        nzvalB = nzvalA
        lB = lA

        rA = startA : stopA - 1
        rowvalA = rowval_a[rA]
        nzvalA = nzval_a[rA]
        lA = stopA - startA

        ptrB = 1
        ptrA = 1

        while ptrA <= lA && ptrB <= lB
            rowA = rowvalA[ptrA]
            rowB = rowvalB[ptrB]
            if rowA < rowB
                rowval[ptrS] = rowA
                nzval[ptrS] = nzvalA[ptrA]
                ptrS += 1
                ptrA += 1
            elseif rowB < rowA
                rowval[ptrS] = rowB
                nzval[ptrS] = -nzvalB[ptrB]
                ptrS += 1
                ptrB += 1
            else
                res = nzvalA[ptrA] - nzvalB[ptrB]
                if res != z
                    rowval[ptrS] = rowA
                    nzval[ptrS] = res
                    ptrS += 1
                end
                ptrA += 1
                ptrB += 1
            end
        end

        while ptrA <= lA
            rowval[ptrS] = rowvalA[ptrA]
            nzval[ptrS] = nzvalA[ptrA]
            ptrS += 1
            ptrA += 1
        end

        while ptrB <= lB
            rowval[ptrS] = rowvalB[ptrB]
            nzval[ptrS] = -nzvalB[ptrB]
            ptrS += 1
            ptrB += 1
        end

        colptr[col+1] = ptrS
    end
    deleteat!(rowval, ptrS:length(rowval))
    deleteat!(nzval, ptrS:length(nzval))
    return SparseMatrixCSC(m, n-1, colptr, rowval, nzval)
end

diff(a::SparseMatrixCSC, dim::Integer)= dim==1 ? sparse_diff1(a) : sparse_diff2(a)

## norm and rank
vecnorm(A::SparseMatrixCSC, p::Real=2) = vecnorm(A.nzval, p)

function norm(A::SparseMatrixCSC,p::Real=2)
    m, n = size(A)
    if m == 0 || n == 0 || isempty(A)
        return float(real(zero(eltype(A))))
    elseif m == 1 || n == 1
        # TODO: compute more efficiently using A.nzval directly
        return norm(full(A), p)
    else
        Tnorm = typeof(float(real(zero(eltype(A)))))
        Tsum = promote_type(Float64,Tnorm)
        if p==1
            nA::Tsum = 0
            for j=1:n
                colSum::Tsum = 0
                for i = A.colptr[j]:A.colptr[j+1]-1
                    colSum += abs(A.nzval[i])
                end
                nA = max(nA, colSum)
            end
            return convert(Tnorm, nA)
        elseif p==2
            throw(ArgumentError("2-norm not yet implemented for sparse matrices. Try norm(full(A)) or norm(A, p) where p=1 or Inf."))
        elseif p==Inf
            rowSum = zeros(Tsum,m)
            for i=1:length(A.nzval)
                rowSum[A.rowval[i]] += abs(A.nzval[i])
            end
            return convert(Tnorm, maximum(rowSum))
        end
    end
    throw(ArgumentError("invalid p-norm p=$p. Valid: 1, Inf"))
end

# TODO rank

# cond
function cond(A::SparseMatrixCSC, p::Real=2)
    if p == 1
        normAinv = normestinv(A)
        normA = norm(A, 1)
        return normA * normAinv
    elseif p == Inf
        normAinv = normestinv(A')
        normA = norm(A, Inf)
        return normA * normAinv
    elseif p == 2
        throw(ArgumentError("2-norm condition number is not implemented for sparse matrices, try cond(full(A), 2) instead"))
    else
        throw(ArgumentError("second argment must be either 1 or Inf, got $p"))
    end
end

function normestinv{T}(A::SparseMatrixCSC{T}, t::Integer = min(2,maximum(size(A))))
    maxiter = 5
    # Check the input
    n = chksquare(A)
    F = factorize(A)
    if t <= 0
        throw(ArgumentError("number of blocks must be a positive integer"))
    end
    if t > n
        throw(ArgumentError("number of blocks must not be greater than $n"))
    end
    ind = Array(Int64, n)
    ind_hist = Array(Int64, maxiter * t)

    Ti = typeof(float(zero(T)))

    S = zeros(T <: Real ? Int : Ti, n, t)

    function _rand_pm1!(v)
        for i in eachindex(v)
            v[i] = rand()<0.5?1:-1
        end
    end

    function _any_abs_eq(v,n::Int)
        for i in eachindex(v)
            if abs(v[i])==n
                return true
            end
        end
        return false
    end

    # Generate the block matrix
    X = Array(Ti, n, t)
    X[1:n,1] = 1
    for j = 2:t
        while true
            _rand_pm1!(slice(X,1:n,j))
            yaux = X[1:n,j]' * X[1:n,1:j-1]
            if !_any_abs_eq(yaux,n)
                break
            end
        end
    end
    scale!(X, 1./n)

    iter = 0
    local est
    local est_old
    est_ind = 0
    while iter < maxiter
        iter += 1
        Y = F \ X
        est = zero(real(eltype(Y)))
        est_ind = 0
        for i = 1:t
            y = norm(Y[1:n,i], 1)
            if y > est
                est = y
                est_ind = i
            end
        end
        if iter == 1
            est_old = est
        end
        if est > est_old || iter == 2
            ind_best = est_ind
        end
        if iter >= 2 && est <= est_old
            est = est_old
            break
        end
        est_old = est
        S_old = copy(S)
        for j = 1:t
            for i = 1:n
                S[i,j] = Y[i,j]==0?one(Y[i,j]):sign(Y[i,j])
            end
        end

        if T <: Real
            # Check wether cols of S are parallel to cols of S or S_old
            for j = 1:t
                while true
                    repeated = false
                    if j > 1
                        saux = S[1:n,j]' * S[1:n,1:j-1]
                        if _any_abs_eq(saux,n)
                            repeated = true
                        end
                    end
                    if !repeated
                        saux2 = S[1:n,j]' * S_old[1:n,1:t]
                        if _any_abs_eq(saux2,n)
                            repeated = true
                        end
                    end
                    if repeated
                        _rand_pm1!(slice(S,1:n,j))
                    else
                        break
                    end
                end
            end
        end

        # Use the conjugate transpose
        Z = F' \ S
        h_max = zero(real(eltype(Z)))
        h = zeros(real(eltype(Z)), n)
        h_ind = 0
        for i = 1:n
            h[i] = norm(Z[i,1:t], Inf)
            if h[i] > h_max
                h_max = h[i]
                h_ind = i
            end
            ind[i] = i
        end
        if iter >=2 && ind_best == h_ind
            break
        end
        p = sortperm(h, rev=true)
        h = h[p]
        permute!(ind, p)
        if t > 1
            addcounter = t
            elemcounter = 0
            while addcounter > 0 && elemcounter < n
                elemcounter = elemcounter + 1
                current_element = ind[elemcounter]
                found = false
                for i = 1:t * (iter - 1)
                    if current_element == ind_hist[i]
                        found = true
                        break
                    end
                end
                if !found
                    addcounter = addcounter - 1
                    for i = 1:current_element - 1
                        X[i,t-addcounter] = 0
                    end
                    X[current_element,t-addcounter] = 1
                    for i = current_element + 1:n
                        X[i,t-addcounter] = 0
                    end
                    ind_hist[iter * t - addcounter] = current_element
                else
                    if elemcounter == t && addcounter == t
                        break
                    end
                end
            end
        else
            ind_hist[1:t] = ind[1:t]
            for j = 1:t
                for i = 1:ind[j] - 1
                    X[i,j] = 0
                end
                X[ind[j],j] = 1
                for i = ind[j] + 1:n
                    X[i,j] = 0
                end
            end
        end
    end
    return est
end

# kron

function kron{Tv,Ti}(a::SparseMatrixCSC{Tv,Ti}, b::SparseMatrixCSC{Tv,Ti})
    numnzA = nnz(a)
    numnzB = nnz(b)

    numnz = numnzA * numnzB

    mA,nA = size(a)
    mB,nB = size(b)

    m,n = mA*mB, nA*nB

    colptr = Array(Ti, n+1)
    rowval = Array(Ti, numnz)
    nzval = Array(Tv, numnz)

    colptr[1] = 1

    colptrA = a.colptr
    colptrB = b.colptr
    rowvalA = a.rowval
    rowvalB = b.rowval
    nzvalA = a.nzval
    nzvalB = b.nzval

    col = 1

    @inbounds for j = 1:nA
        startA = colptrA[j]
        stopA = colptrA[j+1]-1
        lA = stopA - startA + 1

        for i = 1:nB
            startB = colptrB[i]
            stopB = colptrB[i+1]-1
            lB = stopB - startB + 1

            ptr_range = (1:lB) + (colptr[col]-1)

            colptr[col+1] = colptr[col] + lA * lB
            col += 1

            for ptrA = startA : stopA
                ptrB = startB
                for ptr = ptr_range
                    rowval[ptr] = (rowvalA[ptrA]-1)*mB + rowvalB[ptrB]
                    nzval[ptr] = nzvalA[ptrA] * nzvalB[ptrB]
                    ptrB += 1
                end
                ptr_range += lB
            end
        end
    end
    SparseMatrixCSC(m, n, colptr, rowval, nzval)
end

function kron{Tv1,Ti1,Tv2,Ti2}(A::SparseMatrixCSC{Tv1,Ti1}, B::SparseMatrixCSC{Tv2,Ti2})
    Tv_res = promote_type(Tv1, Tv2)
    Ti_res = promote_type(Ti1, Ti2)
    A = convert(SparseMatrixCSC{Tv_res,Ti_res}, A)
    B = convert(SparseMatrixCSC{Tv_res,Ti_res}, B)
    return kron(A,B)
end

kron(A::SparseMatrixCSC, B::VecOrMat) = kron(A, sparse(B))
kron(A::VecOrMat, B::SparseMatrixCSC) = kron(sparse(A), B)

## det, inv, cond

inv(A::SparseMatrixCSC) = error("The inverse of a sparse matrix can often be dense and can cause the computer to run out of memory. If you are sure you have enough memory, please convert your matrix to a dense matrix.")

# TODO

## scale methods

# Copy colptr and rowval from one SparseMatrix to another
function copyinds!(C::SparseMatrixCSC, A::SparseMatrixCSC)
    if C.colptr !== A.colptr
        resize!(C.colptr, length(A.colptr))
        copy!(C.colptr, A.colptr)
    end
    if C.rowval !== A.rowval
        resize!(C.rowval, length(A.rowval))
        copy!(C.rowval, A.rowval)
    end
end

# multiply by diagonal matrix as vector
function scale!(C::SparseMatrixCSC, A::SparseMatrixCSC, b::Vector)
    m, n = size(A)
    (n==length(b) && size(A)==size(C)) || throw(DimensionMismatch())
    copyinds!(C, A)
    Cnzval = C.nzval
    Anzval = A.nzval
    resize!(Cnzval, length(Anzval))
    for col = 1:n, p = A.colptr[col]:(A.colptr[col+1]-1)
        @inbounds Cnzval[p] = Anzval[p] * b[col]
    end
    C
end

function scale!(C::SparseMatrixCSC, b::Vector, A::SparseMatrixCSC)
    m, n = size(A)
    (m==length(b) && size(A)==size(C)) || throw(DimensionMismatch())
    copyinds!(C, A)
    Cnzval = C.nzval
    Anzval = A.nzval
    Arowval = A.rowval
    resize!(Cnzval, length(Anzval))
    for col = 1:n, p = A.colptr[col]:(A.colptr[col+1]-1)
        @inbounds Cnzval[p] = Anzval[p] * b[Arowval[p]]
    end
    C
end

function scale!(C::SparseMatrixCSC, A::SparseMatrixCSC, b::Number)
    size(A)==size(C) || throw(DimensionMismatch())
    copyinds!(C, A)
    resize!(C.nzval, length(A.nzval))
    scale!(C.nzval, A.nzval, b)
    C
end

scale!(C::SparseMatrixCSC, b::Number, A::SparseMatrixCSC) = scale!(C, A, b)

scale!(A::SparseMatrixCSC, b::Number) = (scale!(A.nzval, b); A)
scale!(b::Number, A::SparseMatrixCSC) = (scale!(b, A.nzval); A)

scale{Tv,Ti,T}(A::SparseMatrixCSC{Tv,Ti}, b::Vector{T}) =
    scale!(similar(A, promote_type(Tv,T)), A, b)

scale{T,Tv,Ti}(b::Vector{T}, A::SparseMatrixCSC{Tv,Ti}) =
    scale!(similar(A, promote_type(Tv,T)), b, A)

function factorize(A::SparseMatrixCSC)
    m, n = size(A)
    if m == n
        AC = CHOLMOD.Sparse(A)
        if ishermitian(AC)
            try
                return cholfact(A)
            catch e
                isa(e, PosDefException) || rethrow(e)
                return ldltfact(A)
            end
        end
        return lufact(A)
    else
        return qrfact(A)
    end
end

function factorize{Ti}(A::Symmetric{Float64,SparseMatrixCSC{Float64,Ti}})
    try
        return cholfact(A)
    catch e
        isa(e, PosDefException) || rethrow(e)
        return ldltfact(A)
    end
end
function factorize{Ti}(A::Hermitian{Complex{Float64}, SparseMatrixCSC{Complex{Float64},Ti}})
    try
        return cholfact(A)
    catch e
        isa(e, PosDefException) || rethrow(e)
        return ldltfact(A)
    end
end

chol(A::SparseMatrixCSC) = error("Use cholfact() instead of chol() for sparse matrices.")
lu(A::SparseMatrixCSC) = error("Use lufact() instead of lu() for sparse matrices.")
eig(A::SparseMatrixCSC) = error("Use eigs() instead of eig() for sparse matrices.")