/usr/share/julia/base/sparse/csparse.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 | # These functions are based on C functions in the CSparse library by Tim Davis.
# These are pure Julia implementations, and do not link to the CSparse library.
# CSparse can be downloaded from http://www.cise.ufl.edu/research/sparse/CSparse/CSparse.tar.gz
# CSparse is Copyright (c) 2006-2007, Timothy A. Davis and released under
# Lesser GNU Public License, version 2.1 or later. A copy of the license can be
# downloaded from http://www.gnu.org/licenses/lgpl-2.1.html
# Because these functions are based on code covered by LGPL-2.1+ the same license
# must apply to the code in this file which is
# Copyright (c) 2013-2014 Viral Shah, Douglas Bates and other contributors
# Based on Direct Methods for Sparse Linear Systems, T. A. Davis, SIAM, Philadelphia, Sept. 2006.
# Section 2.4: Triplet form
# http://www.cise.ufl.edu/research/sparse/CSparse/
"""
sparse(I,J,V,[m,n,combine])
Create a sparse matrix `S` of dimensions `m x n` such that `S[I[k], J[k]] = V[k]`.
The `combine` function is used to combine duplicates. If `m` and `n` are not
specified, they are set to `maximum(I)` and `maximum(J)` respectively. If the
`combine` function is not supplied, duplicates are added by default. All elements
of `I` must satisfy `1 <= I[k] <= m`, and all elements of `J` must satisfy `1 <= J[k] <= n`.
"""
function sparse{Tv,Ti<:Integer}(I::AbstractVector{Ti},
J::AbstractVector{Ti},
V::AbstractVector{Tv},
nrow::Integer, ncol::Integer,
combine::Union{Function,Base.Func})
N = length(I)
if N != length(J) || N != length(V)
throw(ArgumentError("triplet I,J,V vectors must be the same length"))
end
if N == 0
return spzeros(eltype(V), Ti, nrow, ncol)
end
# Work array
Wj = Array(Ti, max(nrow,ncol)+1)
# Allocate sparse matrix data structure
# Count entries in each row
Rnz = zeros(Ti, nrow+1)
Rnz[1] = 1
nz = 0
for k=1:N
iind = I[k]
iind > 0 || throw(ArgumentError("all I index values must be > 0"))
iind <= nrow || throw(ArgumentError("all I index values must be ≤ the number of rows"))
if V[k] != 0
Rnz[iind+1] += 1
nz += 1
end
end
Rp = cumsum(Rnz)
Ri = Array(Ti, nz)
Rx = Array(Tv, nz)
# Construct row form
# place triplet (i,j,x) in column i of R
# Use work array for temporary row pointers
@simd for i=1:nrow; @inbounds Wj[i] = Rp[i]; end
@inbounds for k=1:N
iind = I[k]
jind = J[k]
jind > 0 || throw(ArgumentError("all J index values must be > 0"))
jind <= ncol || throw(ArgumentError("all J index values must be ≤ the number of columns"))
p = Wj[iind]
Vk = V[k]
if Vk != 0
Wj[iind] += 1
Rx[p] = Vk
Ri[p] = jind
end
end
# Reset work array for use in counting duplicates
@simd for j=1:ncol; @inbounds Wj[j] = 0; end
# Sum up duplicates and squeeze
anz = 0
@inbounds for i=1:nrow
p1 = Rp[i]
p2 = Rp[i+1] - 1
pdest = p1
for p = p1:p2
j = Ri[p]
pj = Wj[j]
if pj >= p1
Rx[pj] = combine(Rx[pj], Rx[p])
else
Wj[j] = pdest
if pdest != p
Ri[pdest] = j
Rx[pdest] = Rx[p]
end
pdest += one(Ti)
end
end
Rnz[i] = pdest - p1
anz += (pdest - p1)
end
# Transpose from row format to get the CSC format
RiT = Array(Ti, anz)
RxT = Array(Tv, anz)
# Reset work array to build the final colptr
Wj[1] = 1
@simd for i=2:(ncol+1); @inbounds Wj[i] = 0; end
@inbounds for j = 1:nrow
p1 = Rp[j]
p2 = p1 + Rnz[j] - 1
for p = p1:p2
Wj[Ri[p]+1] += 1
end
end
RpT = cumsum(Wj[1:(ncol+1)])
# Transpose
@simd for i=1:length(RpT); @inbounds Wj[i] = RpT[i]; end
@inbounds for j = 1:nrow
p1 = Rp[j]
p2 = p1 + Rnz[j] - 1
for p = p1:p2
ind = Ri[p]
q = Wj[ind]
Wj[ind] += 1
RiT[q] = j
RxT[q] = Rx[p]
end
end
return SparseMatrixCSC(nrow, ncol, RpT, RiT, RxT)
end
## Transpose and apply f
# Based on Direct Methods for Sparse Linear Systems, T. A. Davis, SIAM, Philadelphia, Sept. 2006.
# Section 2.5: Transpose
# http://www.cise.ufl.edu/research/sparse/CSparse/
function ftranspose!{Tv,Ti}(T::SparseMatrixCSC{Tv,Ti}, S::SparseMatrixCSC{Tv,Ti}, f)
(mS, nS) = size(S)
nnzS = nnz(S)
colptr_S = S.colptr
rowval_S = S.rowval
nzval_S = S.nzval
(mT, nT) = size(T)
colptr_T = T.colptr
rowval_T = T.rowval
nzval_T = T.nzval
fill!(colptr_T, 0)
colptr_T[1] = 1
for i=1:nnzS
@inbounds colptr_T[rowval_S[i]+1] += 1
end
cumsum!(colptr_T, colptr_T)
w = copy(colptr_T)
@inbounds for j = 1:nS, p = colptr_S[j]:(colptr_S[j+1]-1)
ind = rowval_S[p]
q = w[ind]
w[ind] += 1
rowval_T[q] = j
nzval_T[q] = f(nzval_S[p])
end
return T
end
function ftranspose{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti}, f)
(nT, mT) = size(S)
nnzS = nnz(S)
colptr_T = Array(Ti, nT+1)
rowval_T = Array(Ti, nnzS)
nzval_T = Array(Tv, nnzS)
T = SparseMatrixCSC(mT, nT, colptr_T, rowval_T, nzval_T)
return ftranspose!(T, S, f)
end
function transpose!{Tv,Ti}(T::SparseMatrixCSC{Tv,Ti}, S::SparseMatrixCSC{Tv,Ti})
ftranspose!(T, S, IdFun())
end
function transpose{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti})
ftranspose(S, IdFun())
end
function ctranspose!{Tv,Ti}(T::SparseMatrixCSC{Tv,Ti}, S::SparseMatrixCSC{Tv,Ti})
ftranspose!(T, S, ConjFun())
end
function ctranspose{Tv,Ti}(S::SparseMatrixCSC{Tv,Ti})
ftranspose(S, ConjFun())
end
# Compute the elimination tree of A using triu(A) returning the parent vector.
# A root node is indicated by 0. This tree may actually be a forest in that
# there may be more than one root, indicating complete separability.
# A trivial example is speye(n, n) in which every node is a root.
"""
etree(A[, post])
Compute the elimination tree of a symmetric sparse matrix `A` from `triu(A)`
and, optionally, its post-ordering permutation.
"""
function etree{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, postorder::Bool)
m,n = size(A)
Ap = A.colptr
Ai = A.rowval
parent = zeros(Ti, n)
ancestor = zeros(Ti, n)
for k in 1:n, p in Ap[k]:(Ap[k+1] - 1)
i = Ai[p]
while i != 0 && i < k
inext = ancestor[i] # inext = ancestor of i
ancestor[i] = k # path compression
if (inext == 0) parent[i] = k end # no anc., parent is k
i = inext
end
end
if !postorder return parent end
head = zeros(Ti,n) # empty linked lists
next = zeros(Ti,n)
for j in n:-1:1 # traverse in reverse order
if (parent[j] == 0); continue; end # j is a root
next[j] = head[parent[j]] # add j to list of its parent
head[parent[j]] = j
end
stack = Ti[]
sizehint!(stack, n)
post = zeros(Ti,n)
k = 1
for j in 1:n
if (parent[j] != 0) continue end # skip j if it is not a root
push!(stack, j) # place j on the stack
while (length(stack) > 0) # while (stack is not empty)
p = stack[end] # p = top of stack
i = head[p] # i = youngest child of p
if (i == 0)
pop!(stack)
post[k] = p # node p is the kth postordered node
k += 1
else
head[p] = next[i] # remove i from children of p
push!(stack, i)
end
end
end
parent, post
end
etree(A::SparseMatrixCSC) = etree(A, false)
# find nonzero pattern of Cholesky L[k,1:k-1] using etree and triu(A[:,k])
# based on cs_ereach p. 43, "Direct Methods for Sparse Linear Systems"
function ereach{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, k::Integer, parent::Vector{Ti})
m,n = size(A); Ap = A.colptr; Ai = A.rowval
s = Ti[]; sizehint!(s, n) # to be used as a stack
visited = falses(n)
visited[k] = true
for p in Ap[k]:(Ap[k+1] - 1)
i = Ai[p] # A[i,k] is nonzero
if i > k continue end # only use upper triangular part of A
while !visited[i] # traverse up etree
push!(s,i) # L[k,i] is nonzero
visited[i] = true
i = parent[i]
end
end
s
end
# based on cs_permute p. 21, "Direct Methods for Sparse Linear Systems"
function csc_permute{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, pinv::Vector{Ti}, q::Vector{Ti})
m, n = size(A)
Ap = A.colptr
Ai = A.rowval
Ax = A.nzval
lpinv = length(pinv)
if m != lpinv
throw(DimensionMismatch(
"the number of rows of sparse matrix A must equal the length of pinv, $m != $lpinv"))
end
lq = length(q)
if n != lq
throw(DimensionMismatch(
"the number of columns of sparse matrix A must equal the length of q, $n != $lq"))
end
if !isperm(pinv) || !isperm(q)
throw(ArgumentError("both pinv and q must be permutations"))
end
C = copy(A); Cp = C.colptr; Ci = C.rowval; Cx = C.nzval
nz = one(Ti)
for k in 1:n
Cp[k] = nz
j = q[k]
for t = Ap[j]:(Ap[j+1]-1)
Cx[nz] = Ax[t]
Ci[nz] = pinv[Ai[t]]
nz += one(Ti)
end
end
Cp[n + 1] = nz
(C.').' # double transpose to order the columns
end
# based on cs_symperm p. 21, "Direct Methods for Sparse Linear Systems"
# form A[p,p] for a symmetric A stored in the upper triangle
function symperm{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, pinv::Vector{Ti})
m, n = size(A)
if m != n
throw(DimensionMismatch("sparse matrix A must be square"))
end
Ap = A.colptr
Ai = A.rowval
Ax = A.nzval
if !isperm(pinv)
throw(ArgumentError("pinv must be a permutation"))
end
lpinv = length(pinv)
if n != lpinv
throw(DimensionMismatch(
"dimensions of sparse matrix A must equal the length of pinv, $((m,n)) != $lpinv"))
end
C = copy(A); Cp = C.colptr; Ci = C.rowval; Cx = C.nzval
w = zeros(Ti,n)
for j in 1:n # count entries in each column of C
j2 = pinv[j]
for p in Ap[j]:(Ap[j+1]-1)
(i = Ai[p]) > j || (w[max(pinv[i],j2)] += one(Ti))
end
end
Cp[:] = cumsum(vcat(one(Ti),w))
copy!(w,Cp[1:n]) # needed to be consistent with cs_cumsum
for j in 1:n
j2 = pinv[j]
for p = Ap[j]:(Ap[j+1]-1)
(i = Ai[p]) > j && continue
i2 = pinv[i]
ind = max(i2,j2)
Ci[q = w[ind]] = min(i2,j2)
w[ind] += 1
Cx[q] = Ax[p]
end
end
(C.').' # double transpose to order the columns
end
# Based on Direct Methods for Sparse Linear Systems, T. A. Davis, SIAM, Philadelphia, Sept. 2006.
# Section 2.7: Removing entries from a matrix
# http://www.cise.ufl.edu/research/sparse/CSparse/
function fkeep!{Tv,Ti}(A::SparseMatrixCSC{Tv,Ti}, f, other)
nzorig = nnz(A)
nz = 1
colptr = A.colptr
rowval = A.rowval
nzval = A.nzval
@inbounds for j = 1:A.n
p = colptr[j] # record current position
colptr[j] = nz # set new position
while p < colptr[j+1]
if f(rowval[p], j, nzval[p], other)
nzval[nz] = nzval[p]
rowval[nz] = rowval[p]
nz += 1
end
p += 1
end
end
colptr[A.n + 1] = nz
nz -= 1
if nz < nzorig
resize!(nzval, nz)
resize!(rowval, nz)
end
A
end
immutable DropTolFun <: Func{4} end
call(::DropTolFun, i,j,x,other) = abs(x)>other
immutable DropZerosFun <: Func{4} end
call(::DropZerosFun, i,j,x,other) = x!=0
immutable TriuFun <: Func{4} end
call(::TriuFun, i,j,x,other) = j>=i + other
immutable TrilFun <: Func{4} end
call(::TrilFun, i,j,x,other) = i>=j - other
droptol!(A::SparseMatrixCSC, tol) = fkeep!(A, DropTolFun(), tol)
dropzeros!(A::SparseMatrixCSC) = fkeep!(A, DropZerosFun(), nothing)
dropzeros(A::SparseMatrixCSC) = dropzeros!(copy(A))
function triu!(A::SparseMatrixCSC, k::Integer=0)
m,n = size(A)
if (k > 0 && k > n) || (k < 0 && -k > m)
throw(BoundsError())
end
fkeep!(A, TriuFun(), k)
end
function tril!(A::SparseMatrixCSC, k::Integer=0)
m,n = size(A)
if (k > 0 && k > n) || (k < 0 && -k > m)
throw(BoundsError())
end
fkeep!(A, TrilFun(), k)
end
|