/usr/share/julia/base/sparse/cholmod.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 | # This file is a part of Julia. License is MIT: http://julialang.org/license
module CHOLMOD
import Base: (*), convert, copy, eltype, get, getindex, show, showarray, size,
linearindexing, LinearFast, LinearSlow, ctranspose
import Base.LinAlg: (\), A_mul_Bc, A_mul_Bt, Ac_ldiv_B, Ac_mul_B, At_ldiv_B, At_mul_B,
cholfact, det, diag, ishermitian, isposdef,
issym, ldltfact, logdet
import Base.SparseMatrix: sparse, nnz
export
Dense,
Factor,
Sparse
using Base.SparseMatrix: AbstractSparseMatrix, SparseMatrixCSC, increment, indtype
#########
# Setup #
#########
include("cholmod_h.jl")
const CHOLMOD_MIN_VERSION = v"2.1.1"
### These offsets are defined in SuiteSparse_wrapper.c
const common_size = ccall((:jl_cholmod_common_size,:libsuitesparse_wrapper),Int,())
const cholmod_com_offsets = Array(Csize_t, 19)
ccall((:jl_cholmod_common_offsets, :libsuitesparse_wrapper),
Void, (Ptr{Csize_t},), cholmod_com_offsets)
## macro to generate the name of the C function according to the integer type
macro cholmod_name(nm,typ) string("cholmod_", eval(typ) == SuiteSparse_long ? "l_" : "", nm) end
function start(a::Vector{UInt8})
@isok ccall((@cholmod_name("start", SuiteSparse_long), :libcholmod),
Cint, (Ptr{UInt8},), a)
return a
end
function finish(a::Vector{UInt8})
@isok ccall((@cholmod_name("finish", SuiteSparse_long), :libcholmod),
Cint, (Ptr{UInt8},), a)
return a
end
function defaults(a::Vector{UInt8})
@isok ccall((@cholmod_name("defaults", SuiteSparse_long), :libcholmod),
Cint, (Ptr{UInt8},), a)
return a
end
common() = commonStruct
const build_version_array = Array(Cint, 3)
ccall((:jl_cholmod_version, :libsuitesparse_wrapper), Cint, (Ptr{Cint},), build_version_array)
const build_version = VersionNumber(build_version_array...)
function __init__()
try
### Check if the linked library is compatible with the Julia code
if Libdl.dlsym_e(Libdl.dlopen("libcholmod"), :cholmod_version) != C_NULL
current_version_array = Array(Cint, 3)
ccall((:cholmod_version, :libcholmod), Cint, (Ptr{Cint},), current_version_array)
current_version = VersionNumber(current_version_array...)
else # CHOLMOD < 2.1.1 does not include cholmod_version()
current_version = v"0.0.0"
end
if current_version < CHOLMOD_MIN_VERSION
warn("""
CHOLMOD version incompatibility
Julia was compiled with CHOLMOD version $build_version. It is
currently linked with a version older than
$(CHOLMOD_MIN_VERSION). This might cause Julia to
terminate when working with sparse matrix factorizations,
e.g. solving systems of equations with \\.
It is recommended that you use Julia with a recent version
of CHOLMOD, or download the generic binaries
from www.julialang.org, which ship with the correct
versions of all dependencies.
""")
elseif build_version_array[1] != current_version_array[1]
warn("""
CHOLMOD version incompatibility
Julia was compiled with CHOLMOD version $build_version. It is
currently linked with version $current_version.
This might cause Julia to terminate when working with
sparse matrix factorizations, e.g. solving systems of
equations with \\.
It is recommended that you use Julia with the same major
version of CHOLMOD as the one used during the build, or
download the generic binaries from www.julialang.org,
which ship with the correct versions of all dependencies.
""")
end
intsize = Int(ccall((:jl_cholmod_sizeof_long,:libsuitesparse_wrapper),Csize_t,()))
if intsize != 4length(IndexTypes)
warn("""
CHOLMOD integer size incompatibility
Julia was compiled with a version of CHOLMOD that
supported $(32length(IndexTypes)) bit integers. It is
currently linked with version that supports $(8intsize)
integers. This might cause Julia to terminate when
working with sparse matrix factorizations, e.g. solving
systems of equations with \\.
This problem can be fixed by modifying the Julia build
configuration or by downloading the OS X or generic
Linux binary from www.julialang.org, which include
the correct versions of all dependencies.
""")
end
### Initiate CHOLMOD
### The common struct. Controls the type of factorization and keeps pointers
### to temporary memory.
global const commonStruct = fill(0xff, common_size)
global const common_supernodal =
convert(Ptr{Cint}, pointer(commonStruct, cholmod_com_offsets[4] + 1))
global const common_final_ll =
convert(Ptr{Cint}, pointer(commonStruct, cholmod_com_offsets[7] + 1))
global const common_print =
convert(Ptr{Cint}, pointer(commonStruct, cholmod_com_offsets[13] + 1))
global const common_itype =
convert(Ptr{Cint}, pointer(commonStruct, cholmod_com_offsets[18] + 1))
global const common_dtype =
convert(Ptr{Cint}, pointer(commonStruct, cholmod_com_offsets[19] + 1))
global const common_nmethods =
convert(Ptr{Cint}, pointer(commonStruct, cholmod_com_offsets[15] + 1))
global const common_postorder =
convert(Ptr{Cint}, pointer(commonStruct, cholmod_com_offsets[17] + 1))
start(commonStruct) # initializes CHOLMOD
set_print_level(commonStruct, 0) # no printing from CHOLMOD by default
# Register gc tracked allocator if CHOLMOD is new enough
if current_version >= v"3.0.0"
cnfg = cglobal((:SuiteSparse_config, :libsuitesparseconfig), Ptr{Void})
unsafe_store!(cnfg, cglobal(:jl_malloc, Ptr{Void}), 1)
unsafe_store!(cnfg, cglobal(:jl_calloc, Ptr{Void}), 2)
unsafe_store!(cnfg, cglobal(:jl_realloc, Ptr{Void}), 3)
unsafe_store!(cnfg, cglobal(:jl_free, Ptr{Void}), 4)
end
catch ex
Base.showerror_nostdio(ex,
"WARNING: Error during initialization of module CHOLMOD")
end
end
function set_print_level(cm::Array{UInt8}, lev::Integer)
global common_print
unsafe_store!(common_print, lev)
end
####################
# Type definitions #
####################
abstract SuiteSparseStruct
# The three core data types for CHOLMOD: Dense, Sparse and Factor.
# CHOLMOD manages the memory, so the Julia versions only wrap a
# pointer to a struct. Therefore finalizers should be registered each
# time a pointer is returned from CHOLMOD.
# Dense
immutable C_Dense{T<:VTypes} <: SuiteSparseStruct
nrow::Csize_t
ncol::Csize_t
nzmax::Csize_t
d::Csize_t
x::Ptr{T}
z::Ptr{Void}
xtype::Cint
dtype::Cint
end
type Dense{T<:VTypes} <: DenseMatrix{T}
p::Ptr{C_Dense{T}}
end
# Sparse
immutable C_Sparse{Tv<:VTypes} <: SuiteSparseStruct
nrow::Csize_t
ncol::Csize_t
nzmax::Csize_t
p::Ptr{SuiteSparse_long}
i::Ptr{SuiteSparse_long}
nz::Ptr{SuiteSparse_long}
x::Ptr{Tv}
z::Ptr{Void}
stype::Cint
itype::Cint
xtype::Cint
dtype::Cint
sorted::Cint
packed::Cint
end
# Corresponds to the exact definition of cholmod_sparse_struct in the library.
# Useful when reading matrices of unknown type from files as in
# cholmod_read_sparse
immutable C_SparseVoid <: SuiteSparseStruct
nrow::Csize_t
ncol::Csize_t
nzmax::Csize_t
p::Ptr{Void}
i::Ptr{Void}
nz::Ptr{Void}
x::Ptr{Void}
z::Ptr{Void}
stype::Cint
itype::Cint
xtype::Cint
dtype::Cint
sorted::Cint
packed::Cint
end
type Sparse{Tv<:VTypes} <: AbstractSparseMatrix{Tv,SuiteSparse_long}
p::Ptr{C_Sparse{Tv}}
function Sparse(p::Ptr{C_Sparse{Tv}})
if p == C_NULL
throw(ArgumentError("sparse matrix construction failed for unknown reasons. Please submit a bug report."))
end
new(p)
end
end
Sparse{Tv<:VTypes}(p::Ptr{C_Sparse{Tv}}) = Sparse{Tv}(p)
# Factor
if build_version >= v"2.1.0" # CHOLMOD version 2.1.0 or later
immutable C_Factor{Tv<:VTypes} <: SuiteSparseStruct
n::Csize_t
minor::Csize_t
Perm::Ptr{SuiteSparse_long}
ColCount::Ptr{SuiteSparse_long}
IPerm::Ptr{SuiteSparse_long} # this pointer was added in verison 2.1.0
nzmax::Csize_t
p::Ptr{SuiteSparse_long}
i::Ptr{SuiteSparse_long}
x::Ptr{Tv}
z::Ptr{Void}
nz::Ptr{SuiteSparse_long}
next::Ptr{SuiteSparse_long}
prev::Ptr{SuiteSparse_long}
nsuper::Csize_t
ssize::Csize_t
xsize::Csize_t
maxcsize::Csize_t
maxesize::Csize_t
super::Ptr{SuiteSparse_long}
pi::Ptr{SuiteSparse_long}
px::Ptr{SuiteSparse_long}
s::Ptr{SuiteSparse_long}
ordering::Cint
is_ll::Cint
is_super::Cint
is_monotonic::Cint
itype::Cint
xtype::Cint
dtype::Cint
end
else
immutable C_Factor{Tv<:VTypes} <: SuiteSparseStruct
n::Csize_t
minor::Csize_t
Perm::Ptr{SuiteSparse_long}
ColCount::Ptr{SuiteSparse_long}
nzmax::Csize_t
p::Ptr{SuiteSparse_long}
i::Ptr{SuiteSparse_long}
x::Ptr{Tv}
z::Ptr{Void}
nz::Ptr{SuiteSparse_long}
next::Ptr{SuiteSparse_long}
prev::Ptr{SuiteSparse_long}
nsuper::Csize_t
ssize::Csize_t
xsize::Csize_t
maxcsize::Csize_t
maxesize::Csize_t
super::Ptr{SuiteSparse_long}
pi::Ptr{SuiteSparse_long}
px::Ptr{SuiteSparse_long}
s::Ptr{SuiteSparse_long}
ordering::Cint
is_ll::Cint
is_super::Cint
is_monotonic::Cint
itype::Cint
xtype::Cint
dtype::Cint
end
end
type Factor{Tv} <: Factorization{Tv}
p::Ptr{C_Factor{Tv}}
function Factor(p::Ptr{C_Factor{Tv}})
if p == C_NULL
throw(ArgumentError("factorization construction failed for unknown reasons. Please submit a bug report."))
end
new(p)
end
end
Factor{Tv<:VTypes}(p::Ptr{C_Factor{Tv}}) = Factor{Tv}(p)
# Define get similar to get(Nullable) to check pointers. All pointer loads should be wrapped in get to make sure
# that SuiteSparse is not called with a C_NULL pointer which could cause a segfault. Pointers are set to null
# when serialized so this can happen when mutiple processes are in use.
function get{T<:SuiteSparseStruct}(p::Ptr{T})
if p == C_NULL
throw(ArgumentError("pointer to the $T object is null. This can happen if the object has been serialized."))
else
return p
end
end
# FactorComponent, for encoding particular factors from a factorization
type FactorComponent{Tv,S} <: AbstractMatrix{Tv}
F::Factor{Tv}
function FactorComponent(F::Factor{Tv})
s = unsafe_load(get(F.p))
if s.is_ll != 0
S == :L || S == :U || S == :PtL || S == :UP || throw(CHOLMODException(string(S, " not supported for sparse LLt matrices; try :L, :U, :PtL, or :UP")))
else
S == :L || S == :U || S == :PtL || S == :UP ||
S == :D || S == :LD || S == :DU || S == :PtLD || S == :DUP ||
throw(CHOLMODException(string(S, " not supported for sparse LDLt matrices; try :L, :U, :PtL, :UP, :D, :LD, :DU, :PtLD, or :DUP")))
end
new(F)
end
end
function FactorComponent{Tv}(F::Factor{Tv}, sym::Symbol)
FactorComponent{Tv,sym}(F)
end
Factor(FC::FactorComponent) = Factor(FC.F)
#################
# Thin wrappers #
#################
# Dense wrappers
## Note! Integer type defaults to Cint, but this is actually not necessary, but
## making this a choice would require another type parameter in the Dense type
### cholmod_core_h ###
function allocate_dense(nrow::Integer, ncol::Integer, d::Integer, ::Type{Float64})
d = Dense(ccall((:cholmod_l_allocate_dense, :libcholmod), Ptr{C_Dense{Float64}},
(Csize_t, Csize_t, Csize_t, Cint, Ptr{Void}),
nrow, ncol, d, REAL, common()))
finalizer(d, free!)
d
end
function allocate_dense(nrow::Integer, ncol::Integer, d::Integer, ::Type{Complex{Float64}})
d = Dense(ccall((:cholmod_l_allocate_dense, :libcholmod), Ptr{C_Dense{Complex{Float64}}},
(Csize_t, Csize_t, Csize_t, Cint, Ptr{Void}),
nrow, ncol, d, COMPLEX, common()))
finalizer(d, free!)
d
end
free_dense!{T}(p::Ptr{C_Dense{T}}) = ccall((:cholmod_l_free_dense, :libcholmod), Cint, (Ref{Ptr{C_Dense{T}}}, Ptr{Void}), p, common())
function zeros{T<:VTypes}(m::Integer, n::Integer, ::Type{T})
d = Dense(ccall((:cholmod_l_zeros, :libcholmod), Ptr{C_Dense{T}},
(Csize_t, Csize_t, Cint, Ptr{UInt8}),
m, n, xtyp(T), common()))
finalizer(d, free!)
d
end
zeros(m::Integer, n::Integer) = zeros(m, n, Float64)
function ones{T<:VTypes}(m::Integer, n::Integer, ::Type{T})
d = Dense(ccall((:cholmod_l_ones, :libcholmod), Ptr{C_Dense{T}},
(Csize_t, Csize_t, Cint, Ptr{UInt8}),
m, n, xtyp(T), common()))
finalizer(d, free!)
d
end
ones(m::Integer, n::Integer) = ones(m, n, Float64)
function eye{T<:VTypes}(m::Integer, n::Integer, ::Type{T})
d = Dense(ccall((:cholmod_l_eye, :libcholmod), Ptr{C_Dense{T}},
(Csize_t, Csize_t, Cint, Ptr{UInt8}),
m, n, xtyp(T), common()))
finalizer(d, free!)
d
end
eye(m::Integer, n::Integer) = eye(m, n, Float64)
eye(n::Integer) = eye(n, n, Float64)
function copy_dense{Tv<:VTypes}(A::Dense{Tv})
d = Dense(ccall((:cholmod_l_copy_dense, :libcholmod), Ptr{C_Dense{Tv}},
(Ptr{C_Dense{Tv}}, Ptr{UInt8}),
get(A.p), common()))
finalizer(d, free!)
d
end
### cholmod_matrixops.h ###
function norm_dense{Tv<:VTypes}(D::Dense{Tv}, p::Integer)
s = unsafe_load(get(D.p))
if p == 2
if s.ncol > 1
throw(ArgumentError("2 norm only supported when matrix has one column"))
end
elseif p != 0 && p != 1
throw(ArgumentError("second argument must be either 0 (Inf norm), 1, or 2"))
end
ccall((:cholmod_l_norm_dense, :libcholmod), Cdouble,
(Ptr{C_Dense{Tv}}, Cint, Ptr{UInt8}),
get(D.p), p, common())
end
### cholmod_check.h ###
function check_dense{T<:VTypes}(A::Dense{T})
ccall((:cholmod_l_check_dense, :libcholmod), Cint,
(Ptr{C_Dense{T}}, Ptr{UInt8}),
A.p, common())!=0
end
# Non-Dense wrappers
### cholmod_core.h ###
function allocate_sparse(nrow::Integer, ncol::Integer, nzmax::Integer, sorted::Bool, packed::Bool, stype::Integer, ::Type{Float64})
s = Sparse(ccall((@cholmod_name("allocate_sparse", SuiteSparse_long), :libcholmod), Ptr{C_Sparse{Float64}},
(Csize_t, Csize_t, Csize_t, Cint,
Cint, Cint, Cint, Ptr{Void}),
nrow, ncol, nzmax, sorted,
packed, stype, REAL, common()))
finalizer(s, free!)
s
end
function allocate_sparse(nrow::Integer, ncol::Integer, nzmax::Integer, sorted::Bool, packed::Bool, stype::Integer, ::Type{Complex{Float64}})
s = Sparse(ccall((@cholmod_name("allocate_sparse", SuiteSparse_long), :libcholmod),
Ptr{C_Sparse{Complex{Float64}}},
(Csize_t, Csize_t, Csize_t, Cint,
Cint, Cint, Cint, Ptr{Void}),
nrow, ncol, nzmax, sorted,
packed, stype, COMPLEX, common()))
finalizer(s, free!)
s
end
function free_sparse!{Tv<:VTypes}(ptr::Ptr{C_Sparse{Tv}})
@isok ccall((@cholmod_name("free_sparse", SuiteSparse_long), :libcholmod), Cint,
(Ptr{Ptr{C_Sparse{Tv}}}, Ptr{UInt8}),
&ptr, common())
end
function free_sparse!(ptr::Ptr{C_SparseVoid})
@isok ccall((@cholmod_name("free_sparse", SuiteSparse_long), :libcholmod), Cint,
(Ptr{Ptr{C_SparseVoid}}, Ptr{UInt8}),
&ptr, common())
end
function free_factor!{Tv<:VTypes}(ptr::Ptr{C_Factor{Tv}})
# Warning! Important that finalizer doesn't modify the global Common struct.
@isok ccall((@cholmod_name("free_factor", SuiteSparse_long), :libcholmod), Cint,
(Ptr{Ptr{C_Factor{Tv}}}, Ptr{Void}),
&ptr, common())
end
function aat{Tv<:VRealTypes}(A::Sparse{Tv}, fset::Vector{SuiteSparse_long}, mode::Integer)
s = Sparse(ccall((@cholmod_name("aat", SuiteSparse_long), :libcholmod),
Ptr{C_Sparse{Tv}},
(Ptr{C_Sparse{Tv}}, Ptr{SuiteSparse_long}, Csize_t, Cint, Ptr{UInt8}),
get(A.p), fset, length(fset), mode, common()))
finalizer(s, free!)
s
end
function sparse_to_dense{Tv<:VTypes}(A::Sparse{Tv})
d = Dense(ccall((@cholmod_name("sparse_to_dense", SuiteSparse_long),:libcholmod),
Ptr{C_Dense{Tv}},
(Ptr{C_Sparse{Tv}}, Ptr{UInt8}),
get(A.p), common()))
finalizer(d, free!)
d
end
function dense_to_sparse{Tv<:VTypes}(D::Dense{Tv}, ::Type{SuiteSparse_long})
s = Sparse(ccall((@cholmod_name("dense_to_sparse", SuiteSparse_long),:libcholmod),
Ptr{C_Sparse{Tv}},
(Ptr{C_Dense{Tv}}, Cint, Ptr{UInt8}),
get(D.p), true, common()))
finalizer(s, free!)
s
end
function factor_to_sparse!{Tv<:VTypes}(F::Factor{Tv})
ss = unsafe_load(F.p)
ss.xtype > PATTERN || throw(CHOLMODException("only numeric factors are supported"))
s = Sparse(ccall((@cholmod_name("factor_to_sparse", SuiteSparse_long),:libcholmod),
Ptr{C_Sparse{Tv}},
(Ptr{C_Factor{Tv}}, Ptr{UInt8}),
get(F.p), common()))
finalizer(s, free!)
s
end
function change_factor!{Tv<:VTypes}(::Type{Float64}, to_ll::Bool, to_super::Bool, to_packed::Bool, to_monotonic::Bool, F::Factor{Tv})
@isok ccall((@cholmod_name("change_factor", SuiteSparse_long),:libcholmod), Cint,
(Cint, Cint, Cint, Cint, Cint, Ptr{C_Factor{Tv}}, Ptr{UInt8}),
REAL, to_ll, to_super, to_packed, to_monotonic, get(F.p), common())
Factor{Float64}(F.p)
end
function change_factor!{Tv<:VTypes}(::Type{Complex{Float64}}, to_ll::Bool, to_super::Bool, to_packed::Bool, to_monotonic::Bool, F::Factor{Tv})
@isok ccall((@cholmod_name("change_factor", SuiteSparse_long),:libcholmod), Cint,
(Cint, Cint, Cint, Cint, Cint, Ptr{C_Factor{Tv}}, Ptr{UInt8}),
COMPLEX, to_ll, to_super, to_packed, to_monotonic, get(F.p), common())
Factor{Complex{Float64}}(F.p)
end
function check_sparse{Tv<:VTypes}(A::Sparse{Tv})
ccall((@cholmod_name("check_sparse", SuiteSparse_long),:libcholmod), Cint,
(Ptr{C_Sparse{Tv}}, Ptr{UInt8}),
get(A.p), common())!=0
end
function check_factor{Tv<:VTypes}(F::Factor{Tv})
ccall((@cholmod_name("check_factor", SuiteSparse_long),:libcholmod), Cint,
(Ptr{C_Factor{Tv}}, Ptr{UInt8}),
get(F.p), common())!=0
end
function nnz{Tv<:VTypes}(A::Sparse{Tv})
ccall((@cholmod_name("nnz", SuiteSparse_long),:libcholmod), Int,
(Ptr{C_Sparse{Tv}}, Ptr{UInt8}),
get(A.p), common())
end
function speye{Tv<:VTypes}(m::Integer, n::Integer, ::Type{Tv})
s = Sparse(ccall((@cholmod_name("speye", SuiteSparse_long), :libcholmod),
Ptr{C_Sparse{Tv}},
(Csize_t, Csize_t, Cint, Ptr{UInt8}),
m, n, xtyp(Tv), common()))
finalizer(s, free!)
s
end
function spzeros{Tv<:VTypes}(m::Integer, n::Integer, nzmax::Integer, ::Type{Tv})
s = Sparse(ccall((@cholmod_name("spzeros", SuiteSparse_long), :libcholmod),
Ptr{C_Sparse{Tv}},
(Csize_t, Csize_t, Csize_t, Cint, Ptr{UInt8}),
m, n, nzmax, xtyp(Tv), common()))
finalizer(s, free!)
s
end
function transpose_{Tv<:VTypes}(A::Sparse{Tv}, values::Integer)
s = Sparse(ccall((@cholmod_name("transpose", SuiteSparse_long),:libcholmod),
Ptr{C_Sparse{Tv}},
(Ptr{C_Sparse{Tv}}, Cint, Ptr{UInt8}),
get(A.p), values, common()))
finalizer(s, free!)
s
end
function copy_factor{Tv<:VTypes}(F::Factor{Tv})
f = Factor(ccall((@cholmod_name("copy_factor", SuiteSparse_long),:libcholmod),
Ptr{C_Factor{Tv}},
(Ptr{C_Factor{Tv}}, Ptr{UInt8}),
get(F.p), common()))
finalizer(f, free!)
f
end
function copy_sparse{Tv<:VTypes}(A::Sparse{Tv})
s = Sparse(ccall((@cholmod_name("copy_sparse", SuiteSparse_long),:libcholmod),
Ptr{C_Sparse{Tv}},
(Ptr{C_Sparse{Tv}}, Ptr{UInt8}),
get(A.p), common()))
finalizer(s, free!)
s
end
function copy{Tv<:VRealTypes}(A::Sparse{Tv}, stype::Integer, mode::Integer)
s = Sparse(ccall((@cholmod_name("copy", SuiteSparse_long),:libcholmod),
Ptr{C_Sparse{Tv}},
(Ptr{C_Sparse{Tv}}, Cint, Cint, Ptr{UInt8}),
get(A.p), stype, mode, common()))
finalizer(s, free!)
s
end
### cholmod_check.h ###
function print_sparse{Tv<:VTypes}(A::Sparse{Tv}, name::ASCIIString)
cm = common()
set_print_level(cm, 3)
@isok ccall((@cholmod_name("print_sparse", SuiteSparse_long),:libcholmod), Cint,
(Ptr{C_Sparse{Tv}}, Ptr{UInt8}, Ptr{UInt8}),
get(A.p), name, cm)
nothing
end
function print_factor{Tv<:VTypes}(F::Factor{Tv}, name::ASCIIString)
cm = common()
set_print_level(cm, 3)
@isok ccall((@cholmod_name("print_factor", SuiteSparse_long),:libcholmod), Cint,
(Ptr{C_Factor{Tv}}, Ptr{UInt8}, Ptr{UInt8}),
get(F.p), name, cm)
nothing
end
### cholmod_matrixops.h ###
function ssmult{Tv<:VRealTypes}(A::Sparse{Tv}, B::Sparse{Tv}, stype::Integer, values::Bool, sorted::Bool)
lA = unsafe_load(get(A.p))
lB = unsafe_load(get(B.p))
if lA.ncol != lB.nrow
throw(DimensionMismatch("inner matrix dimensions do not fit"))
end
s = Sparse(ccall((@cholmod_name("ssmult", SuiteSparse_long),:libcholmod),
Ptr{C_Sparse{Tv}},
(Ptr{C_Sparse{Tv}}, Ptr{C_Sparse{Tv}}, Cint, Cint,
Cint, Ptr{UInt8}),
get(A.p), get(B.p), stype, values,
sorted, common()))
finalizer(s, free!)
s
end
function norm_sparse{Tv<:VTypes}(A::Sparse{Tv}, norm::Integer)
if norm != 0 && norm != 1
throw(ArgumentError("norm argument must be either 0 or 1"))
end
ccall((@cholmod_name("norm_sparse", SuiteSparse_long), :libcholmod), Cdouble,
(Ptr{C_Sparse{Tv}}, Cint, Ptr{UInt8}),
get(A.p), norm, common())
end
function horzcat{Tv<:VRealTypes}(A::Sparse{Tv}, B::Sparse{Tv}, values::Bool)
s = Sparse(ccall((@cholmod_name("horzcat", SuiteSparse_long), :libcholmod),
Ptr{C_Sparse{Tv}},
(Ptr{C_Sparse{Tv}}, Ptr{C_Sparse{Tv}}, Cint, Ptr{UInt8}),
get(A.p), get(B.p), values, common()))
finalizer(s, free!)
s
end
function scale!{Tv<:VRealTypes}(S::Dense{Tv}, scale::Integer, A::Sparse{Tv})
sS = unsafe_load(get(S.p))
sA = unsafe_load(get(A.p))
sS.ncol == 1 || sS.nrow == 1 || throw(DimensionMismatch("first argument must be a vector"))
if scale == SCALAR && sS.nrow != 1
throw(DimensionMismatch("scaling argument must have length one"))
elseif scale == ROW && sS.nrow*sS.ncol != sA.nrow
throw(DimensionMismatch("scaling vector has length $(sS.nrow*sS.ncol), but matrix has $(sA.nrow) rows."))
elseif scale == COL && sS.nrow*sS.ncol != sA.ncol
throw(DimensionMismatch("scaling vector has length $(sS.nrow*sS.ncol), but matrix has $(sA.ncol) columns"))
elseif scale == SYM
if sA.nrow != sA.ncol
throw(DimensionMismatch("matrix must be square"))
elseif sS.nrow*sS.ncol != sA.nrow
throw(DimensionMismatch("scaling vector has length $(sS.nrow*sS.ncol), but matrix has $(sA.ncol) columns and rows"))
end
end
sA = unsafe_load(get(A.p))
@isok ccall((@cholmod_name("scale",SuiteSparse_long),:libcholmod), Cint,
(Ptr{C_Dense{Tv}}, Cint, Ptr{C_Sparse{Tv}}, Ptr{UInt8}),
get(S.p), scale, get(A.p), common())
A
end
function sdmult!{Tv<:VTypes}(A::Sparse{Tv}, transpose::Bool, α::Number, β::Number, X::Dense{Tv}, Y::Dense{Tv})
m, n = size(A)
nc = transpose ? m : n
nr = transpose ? n : m
if nc != size(X, 1)
throw(DimensionMismatch("incompatible dimensions, $nc and $(size(X,1))"))
end
@isok ccall((@cholmod_name("sdmult", SuiteSparse_long),:libcholmod), Cint,
(Ptr{C_Sparse{Tv}}, Cint,
Ref{Complex128}, Ref{Complex128},
Ptr{C_Dense{Tv}}, Ptr{C_Dense{Tv}}, Ptr{UInt8}),
get(A.p), transpose, α, β, get(X.p), get(Y.p), common())
Y
end
function vertcat{Tv<:VRealTypes}(A::Sparse{Tv}, B::Sparse{Tv}, values::Bool)
s = Sparse(ccall((@cholmod_name("vertcat", SuiteSparse_long), :libcholmod), Ptr{C_Sparse{Tv}},
(Ptr{C_Sparse{Tv}}, Ptr{C_Sparse{Tv}}, Cint, Ptr{UInt8}),
get(A.p), get(B.p), values, common()))
finalizer(s, free!)
s
end
function symmetry{Tv<:VTypes}(A::Sparse{Tv}, option::Integer)
xmatched = Array(SuiteSparse_long, 1)
pmatched = Array(SuiteSparse_long, 1)
nzoffdiag = Array(SuiteSparse_long, 1)
nzdiag = Array(SuiteSparse_long, 1)
rv = ccall((@cholmod_name("symmetry", SuiteSparse_long), :libcholmod), Cint,
(Ptr{C_Sparse{Tv}}, Cint, Ptr{SuiteSparse_long}, Ptr{SuiteSparse_long},
Ptr{SuiteSparse_long}, Ptr{SuiteSparse_long}, Ptr{UInt8}),
get(A.p), option, xmatched, pmatched,
nzoffdiag, nzdiag, common())
rv, xmatched[1], pmatched[1], nzoffdiag[1], nzdiag[1]
end
# cholmod_cholesky.h
# For analyze, analyze_p, and factorize_p!, the Common argument must be
# supplied in order to control if the factorization is LLt or LDLt
function analyze{Tv<:VTypes}(A::Sparse{Tv}, cmmn::Vector{UInt8})
f = Factor(ccall((@cholmod_name("analyze", SuiteSparse_long),:libcholmod),
Ptr{C_Factor{Tv}},
(Ptr{C_Sparse{Tv}}, Ptr{UInt8}),
get(A.p), cmmn))
finalizer(f, free!)
f
end
function analyze_p{Tv<:VTypes}(A::Sparse{Tv}, perm::Vector{SuiteSparse_long},
cmmn::Vector{UInt8})
length(perm) != size(A,1) && throw(BoundsError())
f = Factor(ccall((@cholmod_name("analyze_p", SuiteSparse_long),:libcholmod),
Ptr{C_Factor{Tv}},
(Ptr{C_Sparse{Tv}}, Ptr{SuiteSparse_long}, Ptr{SuiteSparse_long}, Csize_t, Ptr{UInt8}),
get(A.p), perm, C_NULL, 0, cmmn))
finalizer(f, free!)
f
end
function factorize!{Tv<:VTypes}(A::Sparse{Tv}, F::Factor{Tv}, cmmn::Vector{UInt8})
@isok ccall((@cholmod_name("factorize", SuiteSparse_long),:libcholmod), Cint,
(Ptr{C_Sparse{Tv}}, Ptr{C_Factor{Tv}}, Ptr{UInt8}),
get(A.p), get(F.p), cmmn)
F
end
function factorize_p!{Tv<:VTypes}(A::Sparse{Tv}, β::Real, F::Factor{Tv}, cmmn::Vector{UInt8})
# note that β is passed as a complex number (double beta[2]),
# but the CHOLMOD manual says that only beta[0] (real part) is used
@isok ccall((@cholmod_name("factorize_p", SuiteSparse_long),:libcholmod), Cint,
(Ptr{C_Sparse{Tv}}, Ref{Complex128}, Ptr{SuiteSparse_long}, Csize_t,
Ptr{C_Factor{Tv}}, Ptr{UInt8}),
get(A.p), β, C_NULL, 0, get(F.p), cmmn)
F
end
function solve{Tv<:VTypes}(sys::Integer, F::Factor{Tv}, B::Dense{Tv})
if size(F,1) != size(B,1)
throw(DimensionMismatch("LHS and RHS should have the same number of rows. LHS has $(size(F,1)) rows, but RHS has $(size(B,1)) rows."))
end
d = Dense(ccall((@cholmod_name("solve", SuiteSparse_long),:libcholmod), Ptr{C_Dense{Tv}},
(Cint, Ptr{C_Factor{Tv}}, Ptr{C_Dense{Tv}}, Ptr{UInt8}),
sys, get(F.p), get(B.p), common()))
finalizer(d, free!)
d
end
function spsolve{Tv<:VTypes}(sys::Integer, F::Factor{Tv}, B::Sparse{Tv})
if size(F,1) != size(B,1)
throw(DimensionMismatch("LHS and RHS should have the same number of rows. LHS has $(size(F,1)) rows, but RHS has $(size(B,1)) rows."))
end
s = Sparse(ccall((@cholmod_name("spsolve", SuiteSparse_long),:libcholmod),
Ptr{C_Sparse{Tv}},
(Cint, Ptr{C_Factor{Tv}}, Ptr{C_Sparse{Tv}}, Ptr{UInt8}),
sys, get(F.p), get(B.p), common()))
finalizer(s, free!)
s
end
# Autodetects the types
function read_sparse(file::Libc.FILE, ::Type{SuiteSparse_long})
ptr = ccall((@cholmod_name("read_sparse", SuiteSparse_long), :libcholmod),
Ptr{C_SparseVoid},
(Ptr{Void}, Ptr{UInt8}),
file.ptr, common())
if ptr == C_NULL
throw(ArgumentError("sparse matrix construction failed. Check that input file is valid."))
end
s = Sparse(ptr)
finalizer(s, free!)
s
end
function read_sparse(file::IO, T)
cfile = Libc.FILE(file)
try return read_sparse(cfile, T)
finally close(cfile)
end
end
function get_perm(F::Factor)
s = unsafe_load(get(F.p))
p = pointer_to_array(s.Perm, s.n, false)
p+1
end
get_perm(FC::FactorComponent) = get_perm(Factor(FC))
#########################
# High level interfaces #
#########################
# Convertion/construction
function convert(::Type{Dense}, A::VecOrMat)
T = promote_type(eltype(A), Float64)
d = allocate_dense(size(A, 1), size(A, 2), stride(A, 2), T)
s = unsafe_load(d.p)
for i in eachindex(A)
unsafe_store!(s.x, A[i], i)
end
d
end
convert(::Type{Dense}, A::Sparse) = sparse_to_dense(A)
# This constructior assumes zero based colptr and rowval
function convert{Tv<:VTypes}(::Type{Sparse}, m::Integer, n::Integer, colptr::Vector{SuiteSparse_long}, rowval::Vector{SuiteSparse_long}, nzval::Vector{Tv}, stype)
# check if columns are sorted
iss = true
for i = 2:length(colptr)
if !issorted(sub(rowval, colptr[i - 1] + 1:colptr[i]))
iss = false
break
end
end
o = allocate_sparse(m, n, length(nzval), iss, true, stype, Tv)
s = unsafe_load(o.p)
unsafe_copy!(s.p, pointer(colptr), length(colptr))
unsafe_copy!(s.i, pointer(rowval), length(rowval))
unsafe_copy!(s.x, pointer(nzval), length(nzval))
@isok check_sparse(o)
return o
end
function convert{Tv<:VTypes}(::Type{Sparse}, m::Integer, n::Integer, colptr::Vector{SuiteSparse_long}, rowval::Vector{SuiteSparse_long}, nzval::Vector{Tv})
o = Sparse(m, n, colptr, rowval, nzval, 0)
# check if array is symmetric and change stype if it is
if ishermitian(o)
change_stype!(o, -1)
end
o
end
function convert{Tv<:VTypes}(::Type{Sparse}, A::SparseMatrixCSC{Tv,SuiteSparse_long}, stype::Integer)
o = allocate_sparse(A.m, A.n, length(A.nzval), true, true, stype, Tv)
s = unsafe_load(o.p)
for i = 1:length(A.colptr)
unsafe_store!(s.p, A.colptr[i] - 1, i)
end
for i = 1:length(A.rowval)
unsafe_store!(s.i, A.rowval[i] - 1, i)
end
unsafe_copy!(s.x, pointer(A.nzval), length(A.nzval))
@isok check_sparse(o)
return o
end
function convert{Tv<:VTypes,Ti<:ITypes}(::Type{Sparse}, A::SparseMatrixCSC{Tv,Ti})
o = Sparse(A, 0)
# check if array is symmetric and change stype if it is
if ishermitian(o)
change_stype!(o, -1)
end
o
end
convert{Ti<:ITypes}(::Type{Sparse}, A::SparseMatrixCSC{Float32,Ti}) = convert(Sparse, convert(SparseMatrixCSC{Float64,SuiteSparse_long}, A))
convert{Ti<:ITypes}(::Type{Sparse}, A::SparseMatrixCSC{Complex{Float32},Ti}) = convert(Sparse, convert(SparseMatrixCSC{Complex{Float64},SuiteSparse_long}, A))
convert(::Type{Sparse}, A::Symmetric{Float64,SparseMatrixCSC{Float64,SuiteSparse_long}}) = Sparse(A.data, A.uplo == 'L' ? -1 : 1)
convert{Tv<:VTypes}(::Type{Sparse}, A::Hermitian{Tv,SparseMatrixCSC{Tv,SuiteSparse_long}}) = Sparse(A.data, A.uplo == 'L' ? -1 : 1)
function convert{T,Ti<:ITypes}(::Type{Sparse},
A::Union{SparseMatrixCSC{T,Ti},
Symmetric{T,SparseMatrixCSC{T,Ti}},
Hermitian{T,SparseMatrixCSC{T,Ti}}},
args...)
return Sparse(float(A), args...)
end
# Useful when reading in files, but not type stable
function convert(::Type{Sparse}, p::Ptr{C_SparseVoid})
if p == C_NULL
throw(ArgumentError("sparse matrix construction failed for unknown reasons. Please submit a bug report."))
end
s = unsafe_load(p)
# Check integer type
if s.itype == INT
free_sparse!(p)
throw(CHOLMODException("the value of itype was $s.itype. Only integer type of $SuiteSparse_long is supported."))
elseif s.itype == INTLONG
free_sparse!(p)
throw(CHOLMODException("the value of itype was $s.itype. This combination of integer types shouldn't happen. Please submit a bug report."))
elseif s.itype != LONG # must be s.itype == LONG
free_sparse!(p)
throw(CHOLMODException("illegal value of itype: $s.itype"))
end
# Check for double or single precision
if s.dtype == DOUBLE
Tv = Float64
elseif s.dtype == SINGLE
# Tv = Float32 # this should be supported at some point
free_sparse!(p)
throw(CHOLMODException("single precision not supported yet"))
else
free_sparse!(p)
throw(CHOLMODException("illegal value of dtype: $s.dtype"))
end
# Check for real or complex
if s.xtype == COMPLEX
Tv = Complex{Tv}
elseif s.xtype != REAL
free_sparse!(p)
throw(CHOLMODException("illegal value of xtype: $s.xtype"))
end
return Sparse(convert(Ptr{C_Sparse{Tv}}, p))
end
convert(::Type{Sparse}, A::Dense) = dense_to_sparse(A, SuiteSparse_long)
convert(::Type{Sparse}, L::Factor) = factor_to_sparse!(copy(L))
function convert(::Type{Sparse}, filename::ByteString)
open(filename) do f
return read_sparse(f, SuiteSparse_long)
end
end
## convertion back to base Julia types
function convert{T}(::Type{Matrix{T}}, D::Dense{T})
s = unsafe_load(D.p)
a = Array(T, s.nrow, s.ncol)
if s.d == s.nrow
unsafe_copy!(pointer(a), s.x, s.d*s.ncol)
else
for j = 1:s.ncol
for i = 1:s.nrow
a[i,j] = unsafe_load(s.x, i + (j - 1)*s.d)
end
end
end
a
end
convert{T}(::Type{Matrix}, D::Dense{T}) = convert(Matrix{T}, D)
function convert{T}(::Type{Vector{T}}, D::Dense{T})
if size(D, 2) > 1
throw(DimensionMismatch("input must be a vector but had $(size(D, 2)) columns"))
end
reshape(convert(Matrix, D), size(D, 1))
end
convert{T}(::Type{Vector}, D::Dense{T}) = convert(Vector{T}, D)
function convert{Tv}(::Type{SparseMatrixCSC{Tv,SuiteSparse_long}}, A::Sparse{Tv})
s = unsafe_load(A.p)
if s.stype != 0
throw(ArgumentError("matrix has stype != 0. Convert to matrix with stype == 0 before converting to SparseMatrixCSC"))
end
return SparseMatrixCSC(s.nrow, s.ncol, increment(pointer_to_array(s.p, (s.ncol + 1,), false)), increment(pointer_to_array(s.i, (s.nzmax,), false)), copy(pointer_to_array(s.x, (s.nzmax,), false)))
end
function convert(::Type{Symmetric{Float64,SparseMatrixCSC{Float64,SuiteSparse_long}}}, A::Sparse{Float64})
s = unsafe_load(A.p)
if !issym(A)
throw(ArgumentError("matrix is not symmetric"))
end
return Symmetric(SparseMatrixCSC(s.nrow, s.ncol, increment(pointer_to_array(s.p, (s.ncol + 1,), false)), increment(pointer_to_array(s.i, (s.nzmax,), false)), copy(pointer_to_array(s.x, (s.nzmax,), false))), s.stype > 0 ? :U : :L)
end
function convert{Tv<:VTypes}(::Type{Hermitian{Tv,SparseMatrixCSC{Tv,SuiteSparse_long}}}, A::Sparse{Tv})
s = unsafe_load(A.p)
if !ishermitian(A)
throw(ArgumentError("matrix is not Hermitian"))
end
return Hermitian(SparseMatrixCSC(s.nrow, s.ncol, increment(pointer_to_array(s.p, (s.ncol + 1,), false)), increment(pointer_to_array(s.i, (s.nzmax,), false)), copy(pointer_to_array(s.x, (s.nzmax,), false))), s.stype > 0 ? :U : :L)
end
function sparse(A::Sparse{Float64}) # Notice! Cannot be type stable because of stype
s = unsafe_load(A.p)
if s.stype == 0
return convert(SparseMatrixCSC{Float64,SuiteSparse_long}, A)
end
return convert(Symmetric{Float64,SparseMatrixCSC{Float64,SuiteSparse_long}}, A)
end
function sparse(A::Sparse{Complex{Float64}}) # Notice! Cannot be type stable because of stype
s = unsafe_load(A.p)
if s.stype == 0
return convert(SparseMatrixCSC{Complex{Float64},SuiteSparse_long}, A)
end
return convert(Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},SuiteSparse_long}}, A)
end
function sparse(F::Factor)
s = unsafe_load(F.p)
if s.is_ll != 0
L = Sparse(F)
A = sparse(L*L')
else
LD = sparse(F[:LD])
L, d = getLd!(LD)
A = scale(L, d)*L'
end
SparseMatrix.sortSparseMatrixCSC!(A)
p = get_perm(F)
if p != [1:s.n;]
pinv = Array(Int, length(p))
for k = 1:length(p)
pinv[p[k]] = k
end
A = A[pinv,pinv]
end
A
end
sparse(D::Dense) = sparse(Sparse(D))
function sparse{Tv}(FC::FactorComponent{Tv,:L})
F = Factor(FC)
s = unsafe_load(F.p)
s.is_ll != 0 || throw(CHOLMODException("sparse: supported only for :LD on LDLt factorizations"))
sparse(Sparse(F))
end
sparse{Tv}(FC::FactorComponent{Tv,:LD}) = sparse(Sparse(Factor(FC)))
# Calculate the offset into the stype field of the cholmod_sparse_struct and
# change the value
let offidx=findfirst(fieldnames(C_Sparse) .== :stype)
global change_stype!
function change_stype!(A::Sparse, i::Integer)
offset = fieldoffsets(C_Sparse)[offidx]
unsafe_store!(convert(Ptr{Cint}, A.p), i, div(offset, 4) + 1)
return A
end
end
free!(A::Dense) = free_dense!(A.p)
free!(A::Sparse) = free_sparse!(A.p)
free!(F::Factor) = free_factor!(F.p)
eltype{T<:VTypes}(::Type{Dense{T}}) = T
eltype{T<:VTypes}(::Type{Factor{T}}) = T
eltype{T<:VTypes}(::Type{Sparse{T}}) = T
nnz(F::Factor) = nnz(Sparse(F))
function show(io::IO, F::Factor)
println(io, typeof(F))
showfactor(io, F)
end
# FactorComponent is a subtype of AbstractArray and we therefore define showarray instead of show
function showarray(io::IO, FC::FactorComponent; kargs...)
println(io, typeof(FC))
showfactor(io, Factor(FC))
end
function showfactor(io::IO, F::Factor)
s = unsafe_load(get(F.p))
@printf(io, "type: %12s\n", s.is_ll!=0 ? "LLt" : "LDLt")
@printf(io, "method: %10s\n", s.is_super!=0 ? "supernodal" : "simplicial")
@printf(io, "maxnnz: %10d\n", Int(s.nzmax))
@printf(io, "nnz: %13d\n", nnz(F))
end
isvalid(A::Dense) = check_dense(A)
isvalid(A::Sparse) = check_sparse(A)
isvalid(A::Factor) = check_factor(A)
copy(A::Dense) = copy_dense(A)
copy(A::Sparse) = copy_sparse(A)
copy(A::Factor) = copy_factor(A)
function size(A::Union{Dense,Sparse})
s = unsafe_load(get(A.p))
return (Int(s.nrow), Int(s.ncol))
end
function size(F::Factor, i::Integer)
if i < 1
throw(ArgumentError("dimension must be positive"))
end
s = unsafe_load(get(F.p))
if i <= 2
return Int(s.n)
end
return 1
end
linearindexing(::Dense) = LinearFast()
size(FC::FactorComponent, i::Integer) = size(FC.F, i)
size(FC::FactorComponent) = size(FC.F)
ctranspose{Tv}(FC::FactorComponent{Tv,:L}) = FactorComponent{Tv,:U}(FC.F)
ctranspose{Tv}(FC::FactorComponent{Tv,:U}) = FactorComponent{Tv,:L}(FC.F)
ctranspose{Tv}(FC::FactorComponent{Tv,:PtL}) = FactorComponent{Tv,:UP}(FC.F)
ctranspose{Tv}(FC::FactorComponent{Tv,:UP}) = FactorComponent{Tv,:PtL}(FC.F)
ctranspose{Tv}(FC::FactorComponent{Tv,:D}) = FC
ctranspose{Tv}(FC::FactorComponent{Tv,:LD}) = FactorComponent{Tv,:DU}(FC.F)
ctranspose{Tv}(FC::FactorComponent{Tv,:DU}) = FactorComponent{Tv,:LD}(FC.F)
ctranspose{Tv}(FC::FactorComponent{Tv,:PtLD}) = FactorComponent{Tv,:DUP}(FC.F)
ctranspose{Tv}(FC::FactorComponent{Tv,:DUP}) = FactorComponent{Tv,:PtLD}(FC.F)
function getindex(A::Dense, i::Integer)
s = unsafe_load(get(A.p))
0 < i <= s.nrow*s.ncol || throw(BoundsError())
unsafe_load(s.x, i)
end
linearindexing(::Sparse) = LinearSlow()
function getindex{T}(A::Sparse{T}, i0::Integer, i1::Integer)
s = unsafe_load(get(A.p))
!(1 <= i0 <= s.nrow && 1 <= i1 <= s.ncol) && throw(BoundsError())
s.stype < 0 && i0 < i1 && return conj(A[i1,i0])
s.stype > 0 && i0 > i1 && return conj(A[i1,i0])
r1 = Int(unsafe_load(s.p, i1) + 1)
r2 = Int(unsafe_load(s.p, i1 + 1))
(r1 > r2) && return zero(T)
r1 = Int(searchsortedfirst(pointer_to_array(s.i, (s.nzmax,), false), i0 - 1, r1, r2, Base.Order.Forward))
((r1 > r2) || (unsafe_load(s.i, r1) + 1 != i0)) ? zero(T) : unsafe_load(s.x, r1)
end
function getindex(F::Factor, sym::Symbol)
sym == :p && return get_perm(F)
FactorComponent(F, sym)
end
function getLd!(S::SparseMatrixCSC)
d = Array(eltype(S), size(S, 1))
fill!(d, 0)
col = 1
for k = 1:length(S.nzval)
while k >= S.colptr[col+1]
col += 1
end
if S.rowval[k] == col
d[col] = S.nzval[k]
S.nzval[k] = 1
end
end
S, d
end
## Multiplication
(*)(A::Sparse, B::Sparse) = ssmult(A, B, 0, true, true)
(*)(A::Sparse, B::Dense) = sdmult!(A, false, 1., 0., B, zeros(size(A, 1), size(B, 2)))
(*)(A::Sparse, B::VecOrMat) = (*)(A, Dense(B))
function A_mul_Bc{Tv<:VRealTypes}(A::Sparse{Tv}, B::Sparse{Tv})
cm = common()
if !is(A,B)
aa1 = transpose_(B, 2)
## result of ssmult will have stype==0, contain numerical values and be sorted
return ssmult(A, aa1, 0, true, true)
end
## The A*A' case is handled by cholmod_aat. This routine requires
## A->stype == 0 (storage of upper and lower parts). If neccesary
## the matrix A is first converted to stype == 0
s = unsafe_load(A.p)
if s.stype != 0
aa1 = copy(A, 0, 1)
return aat(aa1, SuiteSparse_long[0:s.ncol-1;], 1)
else
return aat(A, SuiteSparse_long[0:s.ncol-1;], 1)
end
end
function Ac_mul_B(A::Sparse, B::Sparse)
aa1 = transpose_(A, 2)
if is(A,B)
return A_mul_Bc(aa1, aa1)
end
## result of ssmult will have stype==0, contain numerical values and be sorted
return ssmult(aa1, B, 0, true, true)
end
Ac_mul_B(A::Sparse, B::Dense) = sdmult!(A, true, 1., 0., B, zeros(size(A, 2), size(B, 2)))
Ac_mul_B(A::Sparse, B::VecOrMat) = Ac_mul_B(A, Dense(B))
## Factorization methods
function fact_{Tv<:VTypes}(A::Sparse{Tv}, cm::Array{UInt8};
shift::Real=0.0, perm::AbstractVector{SuiteSparse_long}=SuiteSparse_long[],
postorder::Bool=true, userperm_only::Bool=true)
sA = unsafe_load(get(A.p))
sA.stype == 0 && throw(ArgumentError("sparse matrix is not symmetric/Hermitian"))
if !postorder
unsafe_store!(common_postorder, 0)
end
if isempty(perm)
F = analyze(A, cm)
else # user permutation provided
if userperm_only # use perm even if it is worse than AMD
unsafe_store!(common_nmethods, 1)
end
F = analyze_p(A, SuiteSparse_long[p-1 for p in perm], cm)
end
factorize_p!(A, shift, F, cm)
return F
end
function cholfact(A::Sparse; kws...)
cm = defaults(common()) # setting the common struct to default values. Should only be done when creating new factorization.
set_print_level(cm, 0) # no printing from CHOLMOD by default
# Makes it an LLt
unsafe_store!(common_final_ll, 1)
F = fact_(A, cm; kws...)
s = unsafe_load(get(F.p))
s.minor < size(A, 1) && throw(Base.LinAlg.PosDefException(s.minor))
return F
end
function ldltfact(A::Sparse; kws...)
cm = defaults(common()) # setting the common struct to default values. Should only be done when creating new factorization.
set_print_level(cm, 0) # no printing from CHOLMOD by default
# Makes it an LDLt
unsafe_store!(common_final_ll, 0)
# Really make sure it's an LDLt by avoiding supernodal factorisation
unsafe_store!(common_supernodal, 0)
F = fact_(A, cm; kws...)
s = unsafe_load(get(F.p))
s.minor < size(A, 1) && throw(Base.LinAlg.ArgumentError("matrix has one or more zero pivots"))
return F
end
for f in (:cholfact, :ldltfact)
@eval begin
$f(A::SparseMatrixCSC; kws...) = $f(Sparse(A); kws...)
$f(A::Symmetric{Float64,SparseMatrixCSC{Float64,SuiteSparse_long}}; kws...) = $f(Sparse(A); kws...)
$f(A::Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},SuiteSparse_long}}; kws...) = $f(Sparse(A); kws...)
end
end
function update!{Tv<:VTypes}(F::Factor{Tv}, A::Sparse{Tv}; shift::Real=0.0)
cm = defaults(common()) # setting the common struct to default values. Should only be done when creating new factorization.
set_print_level(cm, 0) # no printing from CHOLMOD by default
s = unsafe_load(get(F.p))
if s.is_ll!=0
unsafe_store!(common_final_ll, 1) # Makes it an LLt
end
factorize_p!(A, shift, F, cm)
end
update!{T<:VTypes}(F::Factor{T}, A::SparseMatrixCSC{T}; kws...) = update!(F, Sparse(A); kws...)
## Solvers
for (T, f) in ((:Dense, :solve), (:Sparse, :spsolve))
@eval begin
# Solve Lx = b and L'x=b where A = L*L'
function (\){T}(L::FactorComponent{T,:L}, B::$T)
($f)(CHOLMOD_L, Factor(L), B)
end
function (\){T}(L::FactorComponent{T,:U}, B::$T)
($f)(CHOLMOD_Lt, Factor(L), B)
end
# Solve PLx = b and L'P'x=b where A = P*L*L'*P'
function (\){T}(L::FactorComponent{T,:PtL}, B::$T)
F = Factor(L)
($f)(CHOLMOD_L, F, ($f)(CHOLMOD_P, F, B)) # Confusingly, CHOLMOD_P solves P'x = b
end
function (\){T}(L::FactorComponent{T,:UP}, B::$T)
F = Factor(L)
($f)(CHOLMOD_Pt, F, ($f)(CHOLMOD_Lt, F, B))
end
# Solve various equations for A = L*D*L' and A = P*L*D*L'*P'
function (\){T}(L::FactorComponent{T,:D}, B::$T)
($f)(CHOLMOD_D, Factor(L), B)
end
function (\){T}(L::FactorComponent{T,:LD}, B::$T)
($f)(CHOLMOD_LD, Factor(L), B)
end
function (\){T}(L::FactorComponent{T,:DU}, B::$T)
($f)(CHOLMOD_DLt, Factor(L), B)
end
function (\){T}(L::FactorComponent{T,:PtLD}, B::$T)
F = Factor(L)
($f)(CHOLMOD_LD, F, ($f)(CHOLMOD_P, F, B))
end
function (\){T}(L::FactorComponent{T,:DUP}, B::$T)
F = Factor(L)
($f)(CHOLMOD_Pt, F, ($f)(CHOLMOD_DLt, F, B))
end
end
end
function (\)(L::FactorComponent, b::Vector)
reshape(convert(Matrix, L\Dense(b)), length(b))
end
function (\)(L::FactorComponent, B::Matrix)
convert(Matrix, L\Dense(B))
end
function (\)(L::FactorComponent, B::SparseMatrixCSC)
sparse(L\Sparse(B,0))
end
Ac_ldiv_B(L::FactorComponent, B) = ctranspose(L)\B
(\)(L::Factor, B::Dense) = solve(CHOLMOD_A, L, B)
(\)(L::Factor, b::Vector) = reshape(convert(Matrix, solve(CHOLMOD_A, L, Dense(b))), length(b))
(\)(L::Factor, B::Matrix) = convert(Matrix, solve(CHOLMOD_A, L, Dense(B)))
(\)(L::Factor, B::Sparse) = spsolve(CHOLMOD_A, L, B)
# When right hand side is sparse, we have to ensure that the rhs is not marked as symmetric.
(\)(L::Factor, B::SparseMatrixCSC) = sparse(spsolve(CHOLMOD_A, L, Sparse(B, 0)))
Ac_ldiv_B(L::Factor, B::Dense) = solve(CHOLMOD_A, L, B)
Ac_ldiv_B(L::Factor, B::VecOrMat) = convert(Matrix, solve(CHOLMOD_A, L, Dense(B)))
Ac_ldiv_B(L::Factor, B::Sparse) = spsolve(CHOLMOD_A, L, B)
Ac_ldiv_B(L::Factor, B::SparseMatrixCSC) = Ac_ldiv_B(L, Sparse(B))
## Other convenience methods
function diag{Tv}(F::Factor{Tv})
f = unsafe_load(get(F.p))
fsuper = f.super
fpi = f.pi
res = Base.zeros(Tv, Int(f.n))
xv = f.x
if f.is_super!=0
px = f.px
pos = 1
for i in 1:f.nsuper
base = unsafe_load(px, i) + 1
res[pos] = unsafe_load(xv, base)
pos += 1
for j in 1:unsafe_load(fsuper, i + 1) - unsafe_load(fsuper, i) - 1
res[pos] = unsafe_load(xv, base + j*(unsafe_load(fpi, i + 1) - unsafe_load(fpi, i) + 1))
pos += 1
end
end
else
c0 = f.p
r0 = f.i
xv = f.x
for j in 1:f.n
jj = unsafe_load(c0, j) + 1
assert(unsafe_load(r0, jj) == j - 1)
res[j] = unsafe_load(xv, jj)
end
end
res
end
function logdet{Tv<:VTypes}(F::Factor{Tv})
f = unsafe_load(get(F.p))
res = zero(Tv)
for d in diag(F) res += log(abs(d)) end
f.is_ll!=0 ? 2res : res
end
det(L::Factor) = exp(logdet(L))
function isposdef{Tv<:VTypes}(A::SparseMatrixCSC{Tv,SuiteSparse_long})
if !ishermitian(A)
return false
end
try
f = cholfact(A)
catch e
isa(e, LinAlg.PosDefException) || rethrow(e)
return false
end
true
end
function issym(A::Sparse)
s = unsafe_load(A.p)
if s.stype != 0
return isreal(A)
end
i = symmetry(A, 1)[1]
return i == MM_SYMMETRIC || i == MM_SYMMETRIC_POSDIAG
end
function ishermitian(A::Sparse{Float64})
s = unsafe_load(A.p)
if s.stype != 0
return true
else
i = symmetry(A, 1)[1]
return i == MM_SYMMETRIC || i == MM_SYMMETRIC_POSDIAG
end
end
function ishermitian(A::Sparse{Complex{Float64}})
s = unsafe_load(A.p)
if s.stype != 0
return true
else
i = symmetry(A, 1)[1]
return i == MM_HERMITIAN || i == MM_HERMITIAN_POSDIAG
end
end
(*){Ti}(A::Symmetric{Float64,SparseMatrixCSC{Float64,Ti}}, B::SparseMatrixCSC{Float64,Ti}) = sparse(Sparse(A)*Sparse(B))
(*){Ti}(A::Hermitian{Complex{Float64},SparseMatrixCSC{Complex{Float64},Ti}}, B::SparseMatrixCSC{Complex{Float64},Ti}) = sparse(Sparse(A)*Sparse(B))
end #module
|