/usr/share/julia/base/show.jl is in julia-common 0.4.7-6.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 | # This file is a part of Julia. License is MIT: http://julialang.org/license
show(x) = show(STDOUT::IO, x)
print(io::IO, s::Symbol) = (write(io,s);nothing)
show(io::IO, x::ANY) = show_default(io, x)
function show_default(io::IO, x::ANY)
t = typeof(x)::DataType
show(io, t)
print(io, '(')
nf = nfields(t)
if nf != 0 || t.size==0
recorded = false
shown_set = get(task_local_storage(), :SHOWNSET, nothing)
if shown_set === nothing
shown_set = ObjectIdDict()
task_local_storage(:SHOWNSET, shown_set)
end
try
if x in keys(shown_set)
print(io, "#= circular reference =#")
else
shown_set[x] = true
recorded = true
for i=1:nf
f = fieldname(t, i)
if !isdefined(x, f)
print(io, undef_ref_str)
else
show(io, x.(f))
end
if i < nf
print(io, ',')
end
end
end
catch e
rethrow(e)
finally
if recorded; delete!(shown_set, x); end
end
else
nb = t.size
print(io, "0x")
p = data_pointer_from_objref(x)
for i=nb-1:-1:0
print(io, hex(unsafe_load(convert(Ptr{UInt8}, p+i)), 2))
end
end
print(io,')')
end
# Check if a particular symbol is exported from a standard library module
function is_exported_from_stdlib(name::Symbol, mod::Module)
if (mod === Base || mod === Core) && isexported(mod, name)
return true
end
parent = module_parent(mod)
if parent !== mod && isdefined(mod, name) && isdefined(parent, name) &&
getfield(mod, name) === getfield(parent, name)
return is_exported_from_stdlib(name, parent)
end
return false
end
function show(io::IO, f::Function)
if isgeneric(f)
if !isdefined(f.env, :module) || is_exported_from_stdlib(f.env.name, f.env.module) || f.env.module === Main
print(io, f.env.name)
else
print(io, f.env.module, ".", f.env.name)
end
elseif isdefined(f, :env) && isa(f.env,Symbol)
print(io, f.env)
else
print(io, "(anonymous function)")
end
end
function show(io::IO, x::IntrinsicFunction)
print(io, "(intrinsic function #", box(Int32,unbox(IntrinsicFunction,x)), ")")
end
function show(io::IO, x::Union)
print(io, "Union")
sorted_types = sort!(collect(x.types); by=string)
show_comma_array(io, sorted_types, '{', '}')
end
show(io::IO, x::TypeConstructor) = show(io, x.body)
function show_type_parameter(io::IO, p::ANY)
if p === ByteString
print(io, "ByteString")
else
show(io, p)
end
end
function show(io::IO, x::DataType)
show(io, x.name)
if (length(x.parameters) > 0 || x.name === Tuple.name) && x !== Tuple
print(io, '{')
n = length(x.parameters)
for i = 1:n
show_type_parameter(io, x.parameters[i])
i < n && print(io, ',')
end
print(io, '}')
end
end
showcompact(io::IO, x) = show(io, x)
showcompact(x) = showcompact(STDOUT::IO, x)
showcompact_lim(io, x) = _limit_output ? showcompact(io, x) : show(io, x)
showcompact_lim(io, x::Number) = _limit_output ? showcompact(io, x) : print(io, x)
macro show(exs...)
blk = Expr(:block)
for ex in exs
push!(blk.args, :(println($(sprint(show_unquoted,ex)*" = "),
repr(begin value=$(esc(ex)) end))))
end
if !isempty(exs); push!(blk.args, :value); end
return blk
end
function show(io::IO, tn::TypeName)
if is_exported_from_stdlib(tn.name, tn.module) || tn.module === Main
print(io, tn.name)
else
print(io, tn.module, '.', tn.name)
end
end
show(io::IO, ::Void) = print(io, "nothing")
show(io::IO, b::Bool) = print(io, b ? "true" : "false")
show(io::IO, n::Signed) = (write(io, dec(n)); nothing)
show(io::IO, n::Unsigned) = print(io, "0x", hex(n,sizeof(n)<<1))
print(io::IO, n::Unsigned) = print(io, dec(n))
show{T}(io::IO, p::Ptr{T}) = print(io, typeof(p), " @0x$(hex(UInt(p), WORD_SIZE>>2))")
function show(io::IO, p::Pair)
if typeof(p.first) != typeof(p).parameters[1] ||
typeof(p.second) != typeof(p).parameters[2]
return show_default(io, p)
end
isa(p.first,Pair) && print(io, "(")
show(io, p.first)
isa(p.first,Pair) && print(io, ")")
print(io, "=>")
isa(p.second,Pair) && print(io, "(")
show(io, p.second)
isa(p.second,Pair) && print(io, ")")
end
function show(io::IO, m::Module)
if is(m,Main)
print(io, "Main")
else
print(io, join(fullname(m),"."))
end
end
function show(io::IO, l::LambdaStaticData)
print(io, "AST(")
show(io, uncompressed_ast(l))
print(io, ")")
end
function show_delim_array(io::IO, itr::AbstractArray, op, delim, cl, delim_one, compact=false, i1=1, l=length(itr))
print(io, op)
newline = true
first = true
i = i1
if l > 0
while true
if !isassigned(itr, i)
print(io, undef_ref_str)
multiline = false
else
x = itr[i]
multiline = isa(x,AbstractArray) && ndims(x)>1 && length(x)>0
newline && multiline && println(io)
if !isbits(x) && is(x, itr)
print(io, "#= circular reference =#")
elseif compact
showcompact_lim(io, x)
else
show(io, x)
end
end
i += 1
if i > i1+l-1
delim_one && first && print(io, delim)
break
end
first = false
print(io, delim)
if multiline
println(io); println(io)
newline = false
else
newline = true
end
end
end
print(io, cl)
end
function show_delim_array(io::IO, itr, op, delim, cl, delim_one, compact=false, i1=1, n=typemax(Int))
print(io, op)
state = start(itr)
newline = true
first = true
while i1 > 1 && !done(itr,state)
_, state = next(itr, state)
i1 -= 1
end
if !done(itr,state)
while true
x, state = next(itr,state)
multiline = isa(x,AbstractArray) && ndims(x)>1 && length(x)>0
newline && multiline && println(io)
if !isbits(x) && is(x, itr)
print(io, "#= circular reference =#")
else
show(io, x)
end
i1 += 1
if done(itr,state) || i1 > n
delim_one && first && print(io, delim)
break
end
first = false
print(io, delim)
if multiline
println(io); println(io)
newline = false
else
newline = true
end
end
end
print(io, cl)
end
show_comma_array(io::IO, itr, o, c) = show_delim_array(io, itr, o, ',', c, false)
show(io::IO, t::Tuple) = show_delim_array(io, t, '(', ',', ')', true)
show(io::IO, v::SimpleVector) = show_delim_array(io, v, "svec(", ',', ')', false)
show(io::IO, s::Symbol) = show_unquoted_quote_expr(io, s, 0, 0)
## Abstract Syntax Tree (AST) printing ##
# Summary:
# print(io, ex) defers to show_unquoted(io, ex)
# show(io, ex) defers to show_unquoted(io, QuoteNode(ex))
# show_unquoted(io, ex) does the heavy lifting
#
# AST printing should follow two rules:
# 1. parse(string(ex)) == ex
# 2. eval(parse(repr(ex))) == ex
#
# Rule 1 means that printing an expression should generate Julia code which
# could be reparsed to obtain the original expression. This code should be
# unambiguous and as readable as possible.
#
# Rule 2 means that showing an expression should generate a quoted version of
# print’s output. Parsing and then evaling this output should return the
# original expression.
#
# This is consistent with many other show methods, i.e.:
# show(Set([1,2,3])) # ==> "Set{Int64}([2,3,1])"
# eval(parse("Set{Int64}([2,3,1])”) # ==> An actual set
# While this isn’t true of ALL show methods, it is of all ASTs.
typealias ExprNode Union{Expr, QuoteNode, SymbolNode, LineNumberNode,
LabelNode, GotoNode, TopNode, GlobalRef}
# Operators have precedence levels from 1-N, and show_unquoted defaults to a
# precedence level of 0 (the fourth argument). The top-level print and show
# methods use a precedence of -1 to specially allow space-separated macro syntax
print( io::IO, ex::ExprNode) = (show_unquoted(io, ex, 0, -1); nothing)
show( io::IO, ex::ExprNode) = show_unquoted_quote_expr(io, ex, 0, -1)
show_unquoted(io::IO, ex) = show_unquoted(io, ex, 0, 0)
show_unquoted(io::IO, ex, indent::Int) = show_unquoted(io, ex, indent, 0)
show_unquoted(io::IO, ex, ::Int,::Int) = show(io, ex)
## AST printing constants ##
const indent_width = 4
const quoted_syms = Set{Symbol}([:(:),:(::),:(:=),:(=),:(==),:(!=),:(===),:(!==),:(=>),:(>=),:(<=)])
const uni_ops = Set{Symbol}([:(+), :(-), :(!), :(¬), :(~), :(<:), :(>:), :(√), :(∛), :(∜)])
const expr_infix_wide = Set{Symbol}([:(=), :(+=), :(-=), :(*=), :(/=), :(\=), :(&=),
:(|=), :($=), :(>>>=), :(>>=), :(<<=), :(&&), :(||), :(<:), :(=>), :(÷=)])
const expr_infix = Set{Symbol}([:(:), :(->), symbol("::")])
const expr_infix_any = union(expr_infix, expr_infix_wide)
const all_ops = union(quoted_syms, uni_ops, expr_infix_any)
const expr_calls = Dict(:call =>('(',')'), :calldecl =>('(',')'), :ref =>('[',']'), :curly =>('{','}'))
const expr_parens = Dict(:tuple=>('(',')'), :vcat=>('[',']'), :cell1d=>("Any[","]"),
:hcat =>('[',']'), :row =>('[',']'), :vect=>('[',']'))
## AST decoding helpers ##
is_id_start_char(c::Char) = ccall(:jl_id_start_char, Cint, (UInt32,), c) != 0
is_id_char(c::Char) = ccall(:jl_id_char, Cint, (UInt32,), c) != 0
function isidentifier(s::AbstractString)
i = start(s)
done(s, i) && return false
(c, i) = next(s, i)
is_id_start_char(c) || return false
while !done(s, i)
(c, i) = next(s, i)
is_id_char(c) || return false
end
return true
end
isidentifier(s::Symbol) = isidentifier(string(s))
isoperator(s::Symbol) = ccall(:jl_is_operator, Cint, (Cstring,), s) != 0
operator_precedence(s::Symbol) = Int(ccall(:jl_operator_precedence, Cint, (Cstring,), s))
operator_precedence(x::Any) = 0 # fallback for generic expression nodes
const prec_power = operator_precedence(:(^))
is_expr(ex, head::Symbol) = (isa(ex, Expr) && (ex.head == head))
is_expr(ex, head::Symbol, n::Int) = is_expr(ex, head) && length(ex.args) == n
is_linenumber(ex::LineNumberNode) = true
is_linenumber(ex::Expr) = (ex.head == :line)
is_linenumber(ex) = false
is_quoted(ex) = false
is_quoted(ex::QuoteNode) = true
is_quoted(ex::Expr) = is_expr(ex, :quote, 1) || is_expr(ex, :inert, 1)
unquoted(ex::QuoteNode) = ex.value
unquoted(ex::Expr) = ex.args[1]
function is_intrinsic_expr(x::ANY)
isa(x, IntrinsicFunction) && return true
if isa(x, GlobalRef)
x = x::GlobalRef
return (x.mod == Base && isdefined(Base, x.name) &&
isa(getfield(Base, x.name), IntrinsicFunction))
elseif isa(x, TopNode)
x = x::TopNode
return (isdefined(Base, x.name) &&
isa(getfield(Base, x.name), IntrinsicFunction))
end
return false
end
## AST printing helpers ##
const indent_width = 4
function show_expr_type(io::IO, ty)
if is(ty, Function)
print(io, "::F")
elseif is(ty, IntrinsicFunction)
print(io, "::I")
else
emph = get(task_local_storage(), :TYPEEMPHASIZE, false)::Bool
if emph && !isleaftype(ty)
emphasize(io, "::$ty")
else
if !is(ty, Any)
print(io, "::$ty")
end
end
end
end
emphasize(io, str::AbstractString) = have_color ? print_with_color(:red, io, str) : print(io, uppercase(str))
show_linenumber(io::IO, line) = print(io," # line ",line,':')
show_linenumber(io::IO, line, file) = print(io," # ", file,", line ",line,':')
# show a block, e g if/for/etc
function show_block(io::IO, head, args::Vector, body, indent::Int)
print(io, head, ' ')
show_list(io, args, ", ", indent)
ind = is(head, :module) || is(head, :baremodule) ? indent : indent + indent_width
exs = (is_expr(body, :block) || is_expr(body, :body)) ? body.args : Any[body]
for ex in exs
if !is_linenumber(ex); print(io, '\n', " "^ind); end
show_unquoted(io, ex, ind, -1)
end
print(io, '\n', " "^indent)
end
show_block(io::IO,head, block,i::Int) = show_block(io,head, [], block,i)
function show_block(io::IO, head, arg, block, i::Int)
if is_expr(arg, :block)
show_block(io, head, arg.args, block, i)
else
show_block(io, head, Any[arg], block, i)
end
end
# show an indented list
function show_list(io::IO, items, sep, indent::Int, prec::Int=0, enclose_operators::Bool=false)
n = length(items)
if n == 0; return end
indent += indent_width
first = true
for item in items
!first && print(io, sep)
parens = enclose_operators && isa(item,Symbol) && isoperator(item)
parens && print(io, '(')
show_unquoted(io, item, indent, prec)
parens && print(io, ')')
first = false
end
end
# show an indented list inside the parens (op, cl)
function show_enclosed_list(io::IO, op, items, sep, cl, indent, prec=0, encl_ops=false)
print(io, op); show_list(io, items, sep, indent, prec, encl_ops); print(io, cl)
end
# show a normal (non-operator) function call, e.g. f(x,y) or A[z]
function show_call(io::IO, head, func, func_args, indent)
op, cl = expr_calls[head]
if isa(func, Symbol) || (isa(func, Expr) &&
(func.head == :. || func.head == :curly))
show_unquoted(io, func, indent)
else
print(io, '(')
show_unquoted(io, func, indent)
print(io, ')')
end
if !isempty(func_args) && isa(func_args[1], Expr) && func_args[1].head === :parameters
print(io, op)
show_list(io, func_args[2:end], ',', indent)
print(io, "; ")
show_list(io, func_args[1].args, ',', indent)
print(io, cl)
else
show_enclosed_list(io, op, func_args, ",", cl, indent)
end
end
## AST printing ##
show_unquoted(io::IO, sym::Symbol, ::Int, ::Int) = print(io, sym)
show_unquoted(io::IO, ex::LineNumberNode, ::Int, ::Int) = show_linenumber(io, ex.line, ex.file)
show_unquoted(io::IO, ex::LabelNode, ::Int, ::Int) = print(io, ex.label, ": ")
show_unquoted(io::IO, ex::GotoNode, ::Int, ::Int) = print(io, "goto ", ex.label)
show_unquoted(io::IO, ex::TopNode, ::Int, ::Int) = print(io,"top(",ex.name,')')
show_unquoted(io::IO, ex::GlobalRef, ::Int, ::Int) = print(io, ex.mod, '.', ex.name)
function show_unquoted(io::IO, ex::SymbolNode, ::Int, ::Int)
print(io, ex.name)
show_expr_type(io, ex.typ)
end
function show_unquoted(io::IO, ex::QuoteNode, indent::Int, prec::Int)
if isa(ex.value, Symbol)
show_unquoted_quote_expr(io, ex.value, indent, prec)
else
print(io, "\$(QuoteNode(")
show(io, ex.value)
print(io, "))")
end
end
function show_unquoted_quote_expr(io::IO, value, indent::Int, prec::Int)
if isa(value, Symbol) && !(value in quoted_syms)
s = string(value)
if isidentifier(s) || isoperator(value)
print(io, ":")
print(io, value)
else
print(io, "symbol(\"", escape_string(s), "\")")
end
else
if isa(value,Expr) && value.head === :block
show_block(io, "quote", value, indent)
print(io, "end")
else
print(io, ":(")
show_unquoted(io, value, indent+indent_width, -1)
print(io, ")")
end
end
end
# TODO: implement interpolated strings
function show_unquoted(io::IO, ex::Expr, indent::Int, prec::Int)
head, args, nargs = ex.head, ex.args, length(ex.args)
show_type = true
emphstate = get(task_local_storage(), :TYPEEMPHASIZE, false)
# dot (i.e. "x.y")
if is(head, :(.))
show_unquoted(io, args[1], indent + indent_width)
print(io, '.')
if is_quoted(args[2])
show_unquoted(io, unquoted(args[2]), indent + indent_width)
else
print(io, '(')
show_unquoted(io, args[2], indent + indent_width)
print(io, ')')
end
# infix (i.e. "x<:y" or "x = y")
elseif (head in expr_infix_any && nargs==2) || (is(head,:(:)) && nargs==3)
func_prec = operator_precedence(head)
head_ = head in expr_infix_wide ? " $head " : head
if func_prec <= prec
show_enclosed_list(io, '(', args, head_, ')', indent, func_prec, true)
else
show_list(io, args, head_, indent, func_prec, true)
end
# list (i.e. "(1,2,3)" or "[1,2,3]")
elseif haskey(expr_parens, head) # :tuple/:vcat/:cell1d
op, cl = expr_parens[head]
if head === :vcat
sep = ";"
elseif head === :hcat || head === :row
sep = " "
else
sep = ","
end
head !== :row && print(io, op)
show_list(io, args, sep, indent)
if (head === :tuple || head === :vcat) && nargs == 1
print(io, sep)
end
head !== :row && print(io, cl)
# function call
elseif head === :call && nargs >= 1
func = args[1]
fname = isa(func,GlobalRef) ? func.name : func
func_prec = operator_precedence(fname)
if func_prec > 0 || fname in uni_ops
func = fname
end
func_args = args[2:end]
if (in(ex.args[1], (GlobalRef(Base, :box), TopNode(:box), :throw)) ||
ismodulecall(ex) ||
(ex.typ === Any && is_intrinsic_expr(ex.args[1])))
show_type = task_local_storage(:TYPEEMPHASIZE, false)
end
# scalar multiplication (i.e. "100x")
if (func == :(*) &&
length(func_args)==2 && isa(func_args[1], Real) && isa(func_args[2], Symbol))
if func_prec <= prec
show_enclosed_list(io, '(', func_args, "", ')', indent, func_prec)
else
show_list(io, func_args, "", indent, func_prec)
end
# unary operator (i.e. "!z")
elseif isa(func,Symbol) && func in uni_ops && length(func_args) == 1
show_unquoted(io, func, indent)
if isa(func_args[1], Expr) || func_args[1] in all_ops
show_enclosed_list(io, '(', func_args, ",", ')', indent, func_prec)
else
show_unquoted(io, func_args[1])
end
# binary operator (i.e. "x + y")
elseif func_prec > 0 # is a binary operator
if length(func_args) > 1
sep = " $func "
if func_prec <= prec
show_enclosed_list(io, '(', func_args, sep, ')', indent, func_prec, true)
else
show_list(io, func_args, sep, indent, func_prec, true)
end
else
# 1-argument call to normally-binary operator
op, cl = expr_calls[head]
print(io, "(")
show_unquoted(io, func, indent)
print(io, ")")
show_enclosed_list(io, op, func_args, ",", cl, indent)
end
# normal function (i.e. "f(x,y)")
else
show_call(io, head, func, func_args, indent)
end
# other call-like expressions ("A[1,2]", "T{X,Y}")
elseif haskey(expr_calls, head) && nargs >= 1 # :ref/:curly/:calldecl
show_call(io, head, ex.args[1], ex.args[2:end], indent)
# comprehensions
elseif (head === :typed_comprehension || head === :typed_dict_comprehension) && length(args) == 3
isdict = (head === :typed_dict_comprehension)
isdict && print(io, '(')
show_unquoted(io, args[1], indent)
isdict && print(io, ')')
print(io, '[')
show_unquoted(io, args[2], indent)
print(io, " for ")
show_unquoted(io, args[3], indent)
print(io, ']')
elseif (head === :comprehension || head === :dict_comprehension) && length(args) == 2
print(io, '[')
show_unquoted(io, args[1], indent)
print(io, " for ")
show_unquoted(io, args[2], indent)
print(io, ']')
elseif is(head, :ccall)
show_unquoted(io, :ccall, indent)
show_enclosed_list(io, '(', args, ",", ')', indent)
# comparison (i.e. "x < y < z")
elseif is(head, :comparison) && nargs >= 3 && (nargs&1==1)
comp_prec = minimum(operator_precedence, args[2:2:end])
if comp_prec <= prec
show_enclosed_list(io, '(', args, " ", ')', indent, comp_prec)
else
show_list(io, args, " ", indent, comp_prec)
end
# function calls need to transform the function from :call to :calldecl
# so that operators are printed correctly
elseif head == :function && nargs==2 && is_expr(args[1], :call)
show_block(io, head, Expr(:calldecl, args[1].args...), args[2], indent)
print(io, "end")
# block with argument
elseif head in (:for,:while,:function,:if) && nargs==2
show_block(io, head, args[1], args[2], indent)
print(io, "end")
elseif is(head, :module) && nargs==3 && isa(args[1],Bool)
show_block(io, args[1] ? :module : :baremodule, args[2], args[3], indent)
print(io, "end")
# type declaration
elseif is(head, :type) && nargs==3
show_block(io, args[1] ? :type : :immutable, args[2], args[3], indent)
print(io, "end")
elseif is(head, :bitstype) && nargs == 2
print(io, "bitstype ")
show_list(io, args, ' ', indent)
# empty return (i.e. "function f() return end")
elseif is(head, :return) && nargs == 1 && is(args[1], nothing)
print(io, head)
# type annotation (i.e. "::Int")
elseif is(head, symbol("::")) && nargs == 1
print(io, "::")
show_unquoted(io, args[1], indent)
# var-arg declaration or expansion
# (i.e. "function f(L...) end" or "f(B...)")
elseif is(head, :(...)) && nargs == 1
show_unquoted(io, args[1], indent)
print(io, "...")
elseif (nargs == 1 && head in (:return, :abstract, :const)) ||
head in (:local, :global, :export)
print(io, head, ' ')
show_list(io, args, ", ", indent)
elseif is(head, :macrocall) && nargs >= 1
# Use the functional syntax unless specifically designated with prec=-1
if prec >= 0
show_call(io, :call, ex.args[1], ex.args[2:end], indent)
else
show_list(io, args, ' ', indent)
end
elseif is(head, :typealias) && nargs == 2
print(io, "typealias ")
show_list(io, args, ' ', indent)
elseif is(head, :line) && 1 <= nargs <= 2
show_linenumber(io, args...)
elseif is(head, :if) && nargs == 3 # if/else
show_block(io, "if", args[1], args[2], indent)
show_block(io, "else", args[3], indent)
print(io, "end")
elseif is(head, :try) && 3 <= nargs <= 4
show_block(io, "try", args[1], indent)
if is_expr(args[3], :block)
show_block(io, "catch", is(args[2], false) ? Any[] : args[2], args[3], indent)
end
if nargs >= 4 && is_expr(args[4], :block)
show_block(io, "finally", Any[], args[4], indent)
end
print(io, "end")
elseif is(head, :let) && nargs >= 1
show_block(io, "let", args[2:end], args[1], indent); print(io, "end")
elseif is(head, :block) || is(head, :body)
show_block(io, "begin", ex, indent); print(io, "end")
elseif is(head, :quote) && nargs == 1 && isa(args[1],Symbol)
show_unquoted_quote_expr(io, args[1], indent, 0)
elseif is(head, :gotoifnot) && nargs == 2
print(io, "unless ")
show_list(io, args, " goto ", indent)
elseif is(head, :string) && nargs == 1 && isa(args[1], AbstractString)
show(io, args[1])
elseif is(head, :null)
print(io, "nothing")
elseif is(head, :kw) && length(args)==2
show_unquoted(io, args[1], indent+indent_width)
print(io, '=')
show_unquoted(io, args[2], indent+indent_width)
elseif is(head, :string)
a = map(args) do x
if !isa(x,AbstractString)
if isa(x,Symbol) && !(x in quoted_syms)
string("\$(", x, ")")
else
string("\$(", sprint(show_unquoted,x), ")")
end
else
sprint(print_escaped, x, "\"\$")
end
end
print(io, '"', a..., '"')
elseif (is(head, :&)#= || is(head, :$)=#) && length(args) == 1
print(io, head)
a1 = args[1]
parens = (isa(a1,Expr) && a1.head !== :tuple) || (isa(a1,Symbol) && isoperator(a1))
parens && print(io, "(")
show_unquoted(io, a1)
parens && print(io, ")")
# transpose
elseif (head === symbol('\'') || head === symbol(".'")) && length(args) == 1
show_unquoted(io, args[1])
print(io, head)
elseif is(head, :import) || is(head, :importall) || is(head, :using)
print(io, head)
first = true
for a = args
if first
print(io, ' ')
first = false
else
print(io, '.')
end
if !is(a, :.)
print(io, a)
end
end
# print anything else as "Expr(head, args...)"
else
show_type = false
emph = get(task_local_storage(), :TYPEEMPHASIZE, false)::Bool &&
(ex.head === :lambda || ex.head == :method)
task_local_storage(:TYPEEMPHASIZE, emph)
print(io, "\$(Expr(")
show(io, ex.head)
for arg in args
print(io, ", ")
show(io, arg)
end
print(io, "))")
end
if (ex.head == :(=) ||
ex.head == :boundscheck ||
ex.head == :gotoifnot ||
ex.head == :return)
show_type = false
end
show_type && show_expr_type(io, ex.typ)
task_local_storage(:TYPEEMPHASIZE, emphstate)
end
function ismodulecall(ex::Expr)
ex.head == :call && ex.args[1] == TopNode(:getfield) &&
isa(ex.args[2], Symbol) &&
isdefined(current_module(), ex.args[2]) &&
isa(getfield(current_module(), ex.args[2]), Module)
end
# dump & xdump - structured tree representation like R's str()
# - dump is for the user-facing structure
# - xdump is for the internal structure
#
# x is the object
# n is the depth of traversal in nested types (5 is the default)
# indent is a character string of spaces that is incremented at
# each descent.
#
# Package writers may overload dump for other nested types like lists
# or DataFrames. If overloaded, check the nesting level (n), and if
# n > 0, dump each component. Limit to the first 10 entries. When
# dumping components, decrement n, and add two spaces to indent.
#
# Package writers should not overload xdump.
function xdump(fn::Function, io::IO, x, n::Int, indent)
T = typeof(x)
print(io, T, " ")
if isa(T, DataType) && nfields(T) > 0
println(io)
if n > 0
for field in fieldnames(T)
if field != symbol("") # prevents segfault if symbol is blank
print(io, indent, " ", field, ": ")
if isdefined(x,field)
fn(io, getfield(x, field), n - 1, string(indent, " "))
else
println(io, undef_ref_str)
end
end
end
end
else
println(io, x)
end
end
function xdump(fn::Function, io::IO, x::Module, n::Int, indent)
print(io, Module, " ")
println(io, x)
end
function xdump_elts(fn::Function, io::IO, x::Array{Any}, n::Int, indent, i0, i1)
for i in i0:i1
print(io, indent, " ", i, ": ")
if !isdefined(x,i)
println(io, undef_ref_str)
else
fn(io, x[i], n - 1, string(indent, " "))
end
end
end
function xdump(fn::Function, io::IO, x::Array{Any}, n::Int, indent)
println(io, "Array($(eltype(x)),$(size(x)))")
if n > 0
xdump_elts(fn, io, x, n, indent, 1, (length(x) <= 10 ? length(x) : 5))
if length(x) > 10
println(io, indent, " ...")
xdump_elts(fn, io, x, n, indent, length(x)-4, length(x))
end
end
end
xdump(fn::Function, io::IO, x::Symbol, n::Int, indent) = println(io, typeof(x), " ", x)
xdump(fn::Function, io::IO, x::Function, n::Int, indent) = println(io, x)
xdump(fn::Function, io::IO, x::Array, n::Int, indent) =
(print(io, "Array($(eltype(x)),$(size(x))) ");
show(io, x); println(io))
# Types
xdump(fn::Function, io::IO, x::Union, n::Int, indent) = println(io, x)
function xdump(fn::Function, io::IO, x::DataType, n::Int, indent)
println(io, x, "::", typeof(x), " ", " <: ", super(x))
fields = fieldnames(x)
if n > 0
for idx in 1:min(10, length(fields))
if fields[idx] != symbol("") # prevents segfault if symbol is blank
print(io, indent, " ", fields[idx], "::")
if isa(x.types[idx], DataType)
xdump(fn, io, fieldtype(x,idx), n - 1, string(indent, " "))
else
println(io, fieldtype(x,idx))
end
end
end
if length(fields) > 10
println(io, indent, " ...")
end
end
end
# dumptype is for displaying abstract type hierarchies like Jameson
# Nash's wiki page: https://github.com/JuliaLang/julia/wiki/Types-Hierarchy
function dumptype(io::IO, x, n::Int, indent)
# based on Jameson Nash's examples/typetree.jl
println(io, x)
if n == 0 # too deeply nested
return
end
typargs(t) = split(string(t), "{")[1]
# todo: include current module?
for m in (Core, Base)
for s in fieldnames(m)
if isdefined(m,s)
t = eval(m,s)
if isa(t, TypeConstructor)
if string(x.name) == typargs(t) ||
("Union" == split(string(t), "(")[1] &&
any(map(tt -> string(x.name) == typargs(tt), t.body.types)))
targs = join(t.parameters, ",")
println(io, indent, " ", s,
length(t.parameters) > 0 ? "{$targs}" : "",
" = ", t)
end
elseif isa(t, Union)
if any(tt -> string(x.name) == typargs(tt), t.types)
println(io, indent, " ", s, " = ", t)
end
elseif isa(t, DataType) && super(t).name == x.name
# type aliases
if string(s) != string(t.name)
println(io, indent, " ", s, " = ", t.name)
elseif t != Any
print(io, indent, " ")
dump(io, t, n - 1, string(indent, " "))
end
end
end
end
end
end
# For abstract types, use _dumptype only if it's a form that will be called
# interactively.
xdump(fn::Function, io::IO, x::DataType) = x.abstract ? dumptype(io, x, 5, "") : xdump(fn, io, x, 5, "")
xdump(fn::Function, io::IO, x::DataType, n::Int) = x.abstract ? dumptype(io, x, n, "") : xdump(fn, io, x, n, "")
# defaults:
xdump(fn::Function, io::IO, x) = xdump(xdump, io, x, 5, "") # default is 5 levels
xdump(fn::Function, io::IO, x, n::Int) = xdump(xdump, io, x, n, "")
xdump(fn::Function, io::IO, args...) = throw(ArgumentError("invalid arguments to xdump"))
xdump(fn::Function, args...) = xdump(fn, STDOUT::IO, args...)
xdump(io::IO, args...) = xdump(xdump, io, args...)
xdump(args...) = with_output_limit(()->xdump(xdump, STDOUT::IO, args...), true)
xdump(arg::IO) = xdump(xdump, STDOUT::IO, arg)
# Here are methods specifically for dump:
dump(io::IO, x, n::Int) = dump(io, x, n, "")
dump(io::IO, x) = dump(io, x, 5, "") # default is 5 levels
dump(io::IO, x::AbstractString, n::Int, indent) =
(print(io, typeof(x), " ");
show(io, x); println(io))
dump(io::IO, x, n::Int, indent) = xdump(dump, io, x, n, indent)
dump(io::IO, args...) = throw(ArgumentError("invalid arguments to dump"))
dump(arg::IO) = xdump(dump, STDOUT::IO, arg)
dump(args...) = with_output_limit(()->dump(STDOUT::IO, args...), true)
function dump(io::IO, x::Dict, n::Int, indent)
println(io, typeof(x), " len ", length(x))
if n > 0
i = 1
for (k,v) in x
print(io, indent, " ", k, ": ")
dump(io, v, n - 1, string(indent, " "))
if i > 10
println(io, indent, " ...")
break
end
i += 1
end
end
end
# More generic representation for common types:
dump(io::IO, x::DataType, n::Int, indent) = println(io, x.name)
dump(io::IO, x::DataType, n::Int) = dump(io, x, n, "")
dump(io::IO, x::DataType) = dump(io, x, 5, "")
dump(io::IO, x::TypeVar, n::Int, indent) = println(io, x.name)
alignment(x::Any) = (0, length(sprint(showcompact_lim, x)))
alignment(x::Number) = (length(sprint(showcompact_lim, x)), 0)
alignment(x::Integer) = (length(sprint(showcompact_lim, x)), 0)
function alignment(x::Real)
m = match(r"^(.*?)((?:[\.eE].*)?)$", sprint(showcompact_lim, x))
m === nothing ? (length(sprint(showcompact_lim, x)), 0) :
(length(m.captures[1]), length(m.captures[2]))
end
function alignment(x::Complex)
m = match(r"^(.*[\+\-])(.*)$", sprint(showcompact_lim, x))
m === nothing ? (length(sprint(showcompact_lim, x)), 0) :
(length(m.captures[1]), length(m.captures[2]))
end
function alignment(x::Rational)
m = match(r"^(.*?/)(/.*)$", sprint(showcompact_lim, x))
m === nothing ? (length(sprint(showcompact_lim, x)), 0) :
(length(m.captures[1]), length(m.captures[2]))
end
const undef_ref_str = "#undef"
const undef_ref_alignment = (3,3)
function alignment(
X::AbstractVecOrMat,
rows::AbstractVector, cols::AbstractVector,
cols_if_complete::Integer, cols_otherwise::Integer, sep::Integer
)
a = Tuple{Int, Int}[]
for j in cols
l = r = 0
for i in rows
if isassigned(X,i,j)
aij = alignment(X[i,j])
else
aij = undef_ref_alignment
end
l = max(l, aij[1])
r = max(r, aij[2])
end
push!(a, (l, r))
if length(a) > 1 && sum(map(sum,a)) + sep*length(a) >= cols_if_complete
pop!(a)
break
end
end
if 1 < length(a) < size(X,2)
while sum(map(sum,a)) + sep*length(a) >= cols_otherwise
pop!(a)
end
end
return a
end
function print_matrix_row(io::IO,
X::AbstractVecOrMat, A::Vector,
i::Integer, cols::AbstractVector, sep::AbstractString
)
for k = 1:length(A)
j = cols[k]
if isassigned(X,i,j)
x = X[i,j]
a = alignment(x)
sx = sprint(showcompact_lim, x)
else
a = undef_ref_alignment
sx = undef_ref_str
end
l = repeat(" ", A[k][1]-a[1])
r = repeat(" ", A[k][2]-a[2])
print(io, l, sx, r)
if k < length(A); print(io, sep); end
end
end
function print_matrix_vdots(io::IO,
vdots::AbstractString, A::Vector, sep::AbstractString, M::Integer, m::Integer
)
for k = 1:length(A)
w = A[k][1] + A[k][2]
if k % M == m
l = repeat(" ", max(0, A[k][1]-length(vdots)))
r = repeat(" ", max(0, w-length(vdots)-length(l)))
print(io, l, vdots, r)
else
print(io, repeat(" ", w))
end
if k < length(A); print(io, sep); end
end
end
function print_matrix(io::IO, X::AbstractVecOrMat,
sz::Tuple{Integer, Integer} = (s = tty_size(); (s[1]-4, s[2])),
pre::AbstractString = " ",
sep::AbstractString = " ",
post::AbstractString = "",
hdots::AbstractString = " \u2026 ",
vdots::AbstractString = "\u22ee",
ddots::AbstractString = " \u22f1 ",
hmod::Integer = 5, vmod::Integer = 5)
rows, cols = sz
cols -= length(pre) + length(post)
presp = repeat(" ", length(pre))
postsp = ""
@assert strwidth(hdots) == strwidth(ddots)
ss = length(sep)
m, n = size(X,1), size(X,2)
if m <= rows # rows fit
A = alignment(X,1:m,1:n,cols,cols,ss)
if n <= length(A) # rows and cols fit
for i = 1:m
print(io, i == 1 ? pre : presp)
print_matrix_row(io, X,A,i,1:n,sep)
print(io, i == m ? post : postsp)
if i != m; println(io, ); end
end
else # rows fit, cols don't
c = div(cols-length(hdots)+1,2)+1
R = reverse(alignment(X,1:m,n:-1:1,c,c,ss))
c = cols - sum(map(sum,R)) - (length(R)-1)*ss - length(hdots)
L = alignment(X,1:m,1:n,c,c,ss)
for i = 1:m
print(io, i == 1 ? pre : presp)
print_matrix_row(io, X,L,i,1:length(L),sep)
print(io, i % hmod == 1 ? hdots : repeat(" ", length(hdots)))
print_matrix_row(io, X,R,i,n-length(R)+1:n,sep)
print(io, i == m ? post : postsp)
if i != m; println(io, ); end
end
end
else # rows don't fit
t = div(rows,2)
I = [1:t; m-div(rows-1,2)+1:m]
A = alignment(X,I,1:n,cols,cols,ss)
if n <= length(A) # rows don't fit, cols do
for i in I
print(io, i == 1 ? pre : presp)
print_matrix_row(io, X,A,i,1:n,sep)
print(io, i == m ? post : postsp)
if i != I[end]; println(io, ); end
if i == t
print(io, i == 1 ? pre : presp)
print_matrix_vdots(io, vdots,A,sep,vmod,1)
println(io, i == m ? post : postsp)
end
end
else # neither rows nor cols fit
c = div(cols-length(hdots)+1,2)+1
R = reverse(alignment(X,I,n:-1:1,c,c,ss))
c = cols - sum(map(sum,R)) - (length(R)-1)*ss - length(hdots)
L = alignment(X,I,1:n,c,c,ss)
r = mod((length(R)-n+1),vmod)
for i in I
print(io, i == 1 ? pre : presp)
print_matrix_row(io, X,L,i,1:length(L),sep)
print(io, i % hmod == 1 ? hdots : repeat(" ", length(hdots)))
print_matrix_row(io, X,R,i,n-length(R)+1:n,sep)
print(io, i == m ? post : postsp)
if i != I[end]; println(io, ); end
if i == t
print(io, i == 1 ? pre : presp)
print_matrix_vdots(io, vdots,L,sep,vmod,1)
print(io, ddots)
print_matrix_vdots(io, vdots,R,sep,vmod,r)
println(io, i == m ? post : postsp)
end
end
end
end
end
summary(x) = string(typeof(x))
dims2string(d) = length(d) == 0 ? "0-dimensional" :
length(d) == 1 ? "$(d[1])-element" :
join(map(string,d), 'x')
summary(a::AbstractArray) =
string(dims2string(size(a)), " ", typeof(a))
function show_nd(io::IO, a::AbstractArray, limit, print_matrix, label_slices)
if isempty(a)
return
end
tail = size(a)[3:end]
nd = ndims(a)-2
for I in CartesianRange(tail)
idxs = I.I
if limit
for i = 1:nd
ii = idxs[i]
if size(a,i+2) > 10
if ii == 4 && all(x->x==1,idxs[1:i-1])
for j=i+1:nd
szj = size(a,j+2)
if szj>10 && 3 < idxs[j] <= szj-3
@goto skip
end
end
#println(io, idxs)
print(io, "...\n\n")
@goto skip
end
if 3 < ii <= size(a,i+2)-3
@goto skip
end
end
end
end
if label_slices
print(io, "[:, :, ")
for i = 1:(nd-1); print(io, "$(idxs[i]), "); end
println(io, idxs[end], "] =")
end
slice = sub(a, 1:size(a,1), 1:size(a,2), idxs...)
print_matrix(io, slice)
print(io, idxs == tail ? "" : "\n\n")
@label skip
end
end
# global flag for limiting output
# TODO: this should be replaced with a better mechanism. currently it is only
# for internal use in showing arrays.
_limit_output = false
function print_matrix_repr(io, X::AbstractArray)
compact, prefix = array_eltype_show_how(X)
prefix *= "["
ind = " "^length(prefix)
print(io, prefix)
for i=1:size(X,1)
i > 1 && print(io, ind)
for j=1:size(X,2)
j > 1 && print(io, " ")
if !isassigned(X,i,j)
print(io, undef_ref_str)
else
el = X[i,j]
compact ? showcompact_lim(io, el) : show(io, el)
end
end
if i < size(X,1)
println(io)
else
print(io, "]")
end
end
end
# NOTE: this is a possible, so-far-unexported function, providing control of
# array output. Not sure I want to do it this way.
showarray(X::AbstractArray; kw...) = showarray(STDOUT, X; kw...)
function showarray(io::IO, X::AbstractArray;
header::Bool=true, limit::Bool=_limit_output,
sz = (s = tty_size(); (s[1]-4, s[2])), repr=false)
rows, cols = sz
header && print(io, summary(X))
if !isempty(X)
header && println(io, ":")
if ndims(X) == 0
if isassigned(X)
return showcompact_lim(io, X[])
else
return print(io, undef_ref_str)
end
end
if !limit
rows = cols = typemax(Int)
sz = (rows, cols)
end
if repr
if ndims(X)<=2
print_matrix_repr(io, X)
else
show_nd(io, X, limit, print_matrix_repr, false)
end
else
punct = (" ", " ", "")
if ndims(X)<=2
print_matrix(io, X, sz, punct...)
else
show_nd(io, X, limit,
(io,slice)->print_matrix(io,slice,sz,punct...),
!repr)
end
end
end
end
show(io::IO, X::AbstractArray) = showarray(io, X, header=_limit_output, repr=!_limit_output)
function with_output_limit(thk, lim=true)
global _limit_output
last = _limit_output
_limit_output = lim
try
thk()
finally
_limit_output = last
end
end
showall(x) = showall(STDOUT, x)
function showall(io::IO, x)
if _limit_output==false
show(io, x)
else
with_output_limit(false) do
show(io, x)
end
end
end
showlimited(x) = showlimited(STDOUT, x)
function showlimited(io::IO, x)
if _limit_output==true
show(io, x)
else
with_output_limit(true) do
show(io, x)
end
end
end
# returns compact, prefix
function array_eltype_show_how(X)
e = eltype(X)
leaf = isleaftype(e)
plain = e<:Number || e<:AbstractString
if isa(e,DataType) && e === e.name.primary
str = string(e.name)
else
str = string(e)
end
leaf&&plain, (!isempty(X) && (e===Float64 || e===Int || (leaf && !plain)) ? "" : str)
end
function show_vector(io::IO, v, opn, cls)
compact, prefix = array_eltype_show_how(v)
print(io, prefix)
if _limit_output && length(v) > 20
show_delim_array(io, v, opn, ",", "", false, compact, 1, 10)
print(io, " \u2026 ")
n = length(v)
show_delim_array(io, v, "", ",", cls, false, compact, n-9, 10)
else
show_delim_array(io, v, opn, ",", cls, false)
end
end
show(io::IO, v::AbstractVector) = show_vector(io, v, "[", "]")
# printing BitArrays
# (following functions not exported - mainly intended for debug)
function print_bit_chunk(io::IO, c::UInt64, l::Integer = 64)
for s = 0:l-1
d = (c >>> s) & 1
print(io, "01"[d + 1])
if (s + 1) & 7 == 0
print(io, " ")
end
end
end
print_bit_chunk(c::UInt64, l::Integer) = print_bit_chunk(STDOUT, c, l)
print_bit_chunk(c::UInt64) = print_bit_chunk(STDOUT, c)
function bitshow(io::IO, B::BitArray)
length(B) == 0 && return
Bc = B.chunks
for i = 1:length(Bc)-1
print_bit_chunk(io, Bc[i])
print(io, ": ")
end
l = _mod64(length(B)-1) + 1
print_bit_chunk(io, Bc[end], l)
end
bitshow(B::BitArray) = bitshow(STDOUT, B)
bitstring(B::BitArray) = sprint(bitshow, B)
|