This file is indexed.

/usr/share/julia/base/reflection.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
# This file is a part of Julia. License is MIT: http://julialang.org/license

# name and module reflection
module_name(m::Module) = ccall(:jl_module_name, Any, (Any,), m)::Symbol
module_parent(m::Module) = ccall(:jl_module_parent, Any, (Any,), m)::Module
current_module() = ccall(:jl_get_current_module, Any, ())::Module

function fullname(m::Module)
    m === Main && return ()
    m === Base && return (:Base,)  # issue #10653
    mn = module_name(m)
    mp = module_parent(m)
    if mp === m
        # not Main, but is its own parent, means a prior Main module
        n = ()
        this = Main
        while this !== m
            if isdefined(this, :LastMain)
                n = tuple(n..., :LastMain)
                this = this.LastMain
            else
                error("no reference to module ", mn)
            end
        end
        return n
    end
    return tuple(fullname(mp)..., mn)
end

names(m::Module, all::Bool, imported::Bool) = sort!(ccall(:jl_module_names, Array{Symbol,1}, (Any,Int32,Int32), m, all, imported))
names(m::Module, all::Bool) = names(m, all, false)
names(m::Module) = names(m, false, false)

isexported(m::Module, s::Symbol) = ccall(:jl_module_exports_p, Cint, (Any, Any), m, s)!=0

function isbindingresolved(m::Module, var::Symbol)
    ccall(:jl_binding_resolved_p, Cint, (Any, Any), m, var) != 0
end

binding_module(s::Symbol) = binding_module(current_module(), s)
function binding_module(m::Module, s::Symbol)
    p = ccall(:jl_get_module_of_binding, Ptr{Void}, (Any, Any), m, s)
    p == C_NULL && return m
    return unsafe_pointer_to_objref(p)::Module
end

function resolve(g::GlobalRef; force::Bool=false)
    if force || isbindingresolved(g.mod, g.name)
        return GlobalRef(binding_module(g.mod, g.name), g.name)
    end
    return g
end

fieldnames(t::DataType) = Symbol[n for n in t.name.names ]
function fieldnames(v)
    t = typeof(v)
    if !isa(t,DataType)
        throw(ArgumentError("cannot call fieldnames() on a non-composite type"))
    end
    return fieldnames(t)
end

fieldname(t::DataType, i::Integer) = t.name.names[i]::Symbol

isconst(s::Symbol) = ccall(:jl_is_const, Int32, (Ptr{Void}, Any), C_NULL, s) != 0

isconst(m::Module, s::Symbol) =
    ccall(:jl_is_const, Int32, (Any, Any), m, s) != 0

# return an integer such that object_id(x)==object_id(y) if is(x,y)
object_id(x::ANY) = ccall(:jl_object_id, UInt, (Any,), x)

# type predicates
isimmutable(x::ANY) = (isa(x,Tuple) || !typeof(x).mutable)
isstructtype(t::DataType) = nfields(t) != 0 || (t.size==0 && !t.abstract)
isstructtype(x) = false
isbits(t::DataType) = !t.mutable & t.pointerfree & isleaftype(t)
isbits(t::Type) = false
isbits(x) = isbits(typeof(x))
isleaftype(t::ANY) = ccall(:jl_is_leaf_type, Int32, (Any,), t) != 0

typeintersect(a::ANY,b::ANY) = ccall(:jl_type_intersection, Any, (Any,Any), a, b)
typeseq(a::ANY,b::ANY) = a<:b && b<:a

function fieldoffsets(x::DataType)
    offsets = Array(Int, nfields(x))
    ccall(:jl_field_offsets, Void, (Any, Ptr{Int}), x, offsets)
    offsets
end

type_alignment(x::DataType) = ccall(:jl_get_alignment,Csize_t,(Any,),x)
field_offset(x::DataType,idx) = ccall(:jl_get_field_offset,Csize_t,(Any,Int32),x,idx)

# return all instances, for types that can be enumerated
function instances end

# subtypes
function _subtypes(m::Module, x::DataType, sts=Set(), visited=Set())
    push!(visited, m)
    for s in names(m,true)
        if isdefined(m,s)
            t = eval(m,s)
            if isa(t, DataType) && t.name.name == s && super(t).name == x.name
                ti = typeintersect(t, x)
                ti != Bottom && push!(sts, ti)
            elseif isa(t, Module) && !in(t, visited)
                _subtypes(t, x, sts, visited)
            end
        end
    end
    sts
end
subtypes(m::Module, x::DataType) = sort(collect(_subtypes(m, x)), by=string)
subtypes(x::DataType) = subtypes(Main, x)

# function reflection
isgeneric(f::ANY) = (isa(f,Function) && isa(f.env,MethodTable))

function_name(f::Function) = isgeneric(f) ? f.env.name : (:anonymous)

function to_tuple_type(t::ANY)
    if isa(t,Tuple) || isa(t,AbstractArray) || isa(t,SimpleVector)
        t = Tuple{t...}
    end
    if isa(t,Type) && t<:Tuple
        if !all(p->(isa(p,Type)||isa(p,TypeVar)), t.parameters)
            error("argument tuple type must contain only types")
        end
    else
        error("expected tuple type")
    end
    t
end

tt_cons(t::ANY, tup::ANY) = Tuple{t, (isa(tup, Type) ? tup.parameters : tup)...}

code_lowered(f, t::ANY) = map(m->uncompressed_ast(m.func.code), methods(f, t))
function methods(f::Function,t::ANY)
    if !isgeneric(f)
        throw(ArgumentError("argument is not a generic function"))
    end
    t = to_tuple_type(t)
    Any[m[3] for m in _methods(f,t,-1)]
end
methods(f::ANY,t::ANY) = methods(call, tt_cons(isa(f,Type) ? Type{f} : typeof(f), t))
function _methods(f::ANY,t::ANY,lim)
    if isa(t,Type)
        _methods(f, Any[t.parameters...], length(t.parameters), lim, [])
    else
        _methods(f, Any[t...], length(t), lim, [])
    end
end
function _methods(f::ANY,t::Array,i,lim::Integer,matching::Array{Any,1})
    if i == 0
        new = ccall(:jl_matching_methods, Any, (Any,Any,Int32), f, Tuple{t...}, lim)
        if new === false
            return false
        end
        append!(matching, new::Array{Any,1})
    else
        ti = t[i]
        if isa(ti, Union)
            for ty in (ti::Union).types
                t[i] = ty
                if _methods(f,t,i-1,lim,matching) === false
                    t[i] = ty
                    return false
                end
            end
            t[i] = ti
        else
            return _methods(f,t,i-1,lim,matching)
        end
    end
    matching
end

function methods(f::Function)
    if !isgeneric(f)
        throw(ArgumentError("argument is not a generic function"))
    end
    f.env
end

methods(x::ANY) = methods(call, Tuple{isa(x,Type) ? Type{x} : typeof(x), Vararg{Any}})

function length(mt::MethodTable)
    n = 0
    d = mt.defs
    while !is(d,nothing)
        n += 1
        d = d.next
    end
    n
end

start(mt::MethodTable) = mt.defs
next(mt::MethodTable, m::Method) = (m,m.next)
done(mt::MethodTable, m::Method) = false
done(mt::MethodTable, i::Void) = true

uncompressed_ast(l::LambdaStaticData) =
    isa(l.ast,Expr) ? l.ast : ccall(:jl_uncompress_ast, Any, (Any,Any), l, l.ast)

# Printing code representations in IR and assembly
function _dump_function(f, t::ANY, native, wrapper, strip_ir_metadata, dump_module)
    t = to_tuple_type(t)
    llvmf = ccall(:jl_get_llvmf, Ptr{Void}, (Any, Any, Bool), f, t, wrapper)

    if llvmf == C_NULL
        error("no method found for the specified argument types")
    end

    if (native)
        str = ccall(:jl_dump_function_asm, Any, (Ptr{Void},), llvmf)::ByteString
    else
        str = ccall(:jl_dump_function_ir, Any,
                    (Ptr{Void}, Bool, Bool), llvmf, strip_ir_metadata, dump_module)::ByteString
    end

    return str
end

code_llvm(io::IO, f::Function, types::ANY, strip_ir_metadata=true, dump_module=false) =
    print(io, _dump_function(f, types, false, false, strip_ir_metadata, dump_module))
code_llvm(f::ANY, types::ANY) = code_llvm(STDOUT, f, types)
code_llvm_raw(f::ANY, types::ANY) = code_llvm(STDOUT, f, types, false)
code_llvm(io::IO, f::ANY, t::ANY, args...) =
    code_llvm(io, call,
              tt_cons(isa(f, Type) ? Type{f} : typeof(f), t), args...)

code_native(io::IO, f::Function, types::ANY) =
    print(io, _dump_function(f, types, true, false, false, false))
code_native(f::ANY, types::ANY) = code_native(STDOUT, f, types)
code_native(io::IO, f::ANY, t::ANY) =
    code_native(io, call, tt_cons(isa(f, Type) ? Type{f} : typeof(f), t))

# give a decent error message if we try to instantiate a staged function on non-leaf types
function func_for_method_checked(m, types)
    linfo = Core.Inference.func_for_method(m[3],types,m[2])
    if linfo === Core.Inference.NF
        error("cannot call @generated function `", m[3], "` ",
              "with abstract argument types: ", types)
    end
    linfo::LambdaStaticData
end

function code_typed(f::Function, types::ANY; optimize=true)
    types = to_tuple_type(types)
    asts = []
    for x in _methods(f,types,-1)
        linfo = func_for_method_checked(x, types)
        if optimize
            (tree, ty) = Core.Inference.typeinf(linfo, x[1], x[2], linfo,
                                                true, true)
        else
            (tree, ty) = Core.Inference.typeinf_uncached(linfo, x[1], x[2],
                                                         optimize=false)
        end
        if !isa(tree, Expr)
            push!(asts, ccall(:jl_uncompress_ast, Any, (Any,Any), linfo, tree))
        else
            push!(asts, tree)
        end
    end
    asts
end

function code_typed(f, t::ANY; optimize=true)
    code_typed(call, tt_cons(isa(f, Type) ? Type{f} : typeof(f), t),
               optimize=optimize)
end

function return_types(f::Function, types::ANY)
    types = to_tuple_type(types)
    rt = []
    for x in _methods(f,types,-1)
        linfo = func_for_method_checked(x,types)
        (tree, ty) = Core.Inference.typeinf(linfo, x[1], x[2])
        push!(rt, ty)
    end
    rt
end

function return_types(f, t::ANY)
    return_types(call, tt_cons(isa(f, Type) ? Type{f} : typeof(f), t))
end

function which(f::ANY, t::ANY)
    t = to_tuple_type(t)
    if isleaftype(t)
        ms = methods(f, t)
        isempty(ms) && error("no method found for the specified argument types")
        length(ms)!=1 && error("no unique matching method for the specified argument types")
        ms[1]
    else
        if !isa(f,Function)
            t = Tuple{isa(f,Type) ? Type{f} : typeof(f), t.parameters...}
            f = call
        elseif !isgeneric(f)
            throw(ArgumentError("argument is not a generic function"))
        end
        m = ccall(:jl_gf_invoke_lookup, Any, (Any, Any), f, t)
        if m === nothing
            error("no method found for the specified argument types")
        end
        m
    end
end

which(s::Symbol) = which_module(current_module(), s)
# TODO: making this a method of which() causes a strange error
function which_module(m::Module, s::Symbol)
    if !isdefined(m, s)
        error("\"$s\" is not defined in module $m")
    end
    binding_module(m, s)
end

function functionloc(m::Method)
    lsd = m.func.code::LambdaStaticData
    ln = lsd.line
    if ln <= 0
        error("could not determine location of method definition")
    end
    (find_source_file(string(lsd.file)), ln)
end

functionloc(f::ANY, types::ANY) = functionloc(which(f,types))

function functionloc(f)
    m = methods(f)
    if length(m) > 1
        error("function has multiple methods; please specify a type signature")
    end
    functionloc(m.defs)
end

function function_module(f, types::ANY)
    m = methods(f, types)
    if isempty(m)
        error("no matching methods")
    end
    m[1].func.code.module
end