This file is indexed.

/usr/share/julia/base/reducedim.jl is in julia-common 0.4.7-6.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
# This file is a part of Julia. License is MIT: http://julialang.org/license

## Functions to compute the reduced shape

# for reductions that expand 0 dims to 1
reduced_dims(a::AbstractArray, region) = reduced_dims(size(a), region)

# for reductions that keep 0 dims as 0
reduced_dims0(a::AbstractArray, region) = reduced_dims0(size(a), region)

function reduced_dims{N}(siz::NTuple{N,Int}, d::Int, rd::Int)
    if d < 1
        throw(ArgumentError("dimension must be ≥ 1, got $d"))
    elseif d == 1
        return tuple(rd, siz[d+1:N]...)::typeof(siz)
    elseif 1 < d < N
        return tuple(siz[1:d-1]..., rd, siz[d+1:N]...)::typeof(siz)
    elseif d == N
        return tuple(siz[1:N-1]..., rd)::typeof(siz)
    else
        return siz
    end
end
reduced_dims{N}(siz::NTuple{N,Int}, d::Int) = reduced_dims(siz, d, 1)

function reduced_dims0{N}(siz::NTuple{N,Int}, d::Int)
    if d < 1
        throw(ArgumentError("dimension must be ≥ 1, got $d"))
    elseif d <= N
        return reduced_dims(siz, d, (siz[d] == 0 ? 0 : 1))
    else
        return siz
    end
end

function reduced_dims{N}(siz::NTuple{N,Int}, region)
    rsiz = [siz...]
    for i in region
        isa(i, Integer) || throw(ArgumentError("reduced dimension(s) must be integers"))
        d = convert(Int, i)::Int
        if d < 1
            throw(ArgumentError("region dimension(s) must be ≥ 1, got $d"))
        elseif d <= N
            rsiz[d] = 1
        end
    end
    tuple(rsiz...)::typeof(siz)
end

function reduced_dims0{N}(siz::NTuple{N,Int}, region)
    rsiz = [siz...]
    for i in region
        isa(i, Integer) || throw(ArgumentError("reduced dimension(s) must be integers"))
        d = convert(Int, i)::Int
        if d < 1
            throw(ArgumentError("region dimension(s) must be ≥ 1, got $d"))
        elseif d <= N
            rsiz[d] = (rsiz[d] == 0 ? 0 : 1)
        end
    end
    tuple(rsiz...)::typeof(siz)
end

function regionsize(a, region)
    s = 1
    for d in region
        s *= size(a,d)
    end
    s
end


###### Generic reduction functions #####

## initialization

for (Op, initfun) in ((:AddFun, :zero), (:MulFun, :one), (:MaxFun, :typemin), (:MinFun, :typemax))
    @eval initarray!{T}(a::AbstractArray{T}, ::$(Op), init::Bool) = (init && fill!(a, $(initfun)(T)); a)
end

for (Op, initval) in ((:AndFun, true), (:OrFun, false))
    @eval initarray!(a::AbstractArray, ::$(Op), init::Bool) = (init && fill!(a, $initval); a)
end

reducedim_initarray{R}(A::AbstractArray, region, v0, ::Type{R}) = fill!(similar(A,R,reduced_dims(A,region)), v0)
reducedim_initarray{T}(A::AbstractArray, region, v0::T) = reducedim_initarray(A, region, v0, T)

reducedim_initarray0{R}(A::AbstractArray, region, v0, ::Type{R}) = fill!(similar(A,R,reduced_dims0(A,region)), v0)
reducedim_initarray0{T}(A::AbstractArray, region, v0::T) = reducedim_initarray0(A, region, v0, T)

# TODO: better way to handle reducedim initialization
#
# The current scheme is basically following Steven G. Johnson's original implementation
#
promote_union(T::Union) = promote_type(T.types...)
promote_union(T) = T
function reducedim_init{S}(f, op::AddFun, A::AbstractArray{S}, region)
    T = promote_union(S)
    if method_exists(zero, Tuple{Type{T}})
        x = f(zero(T))
        z = zero(x) + zero(x)
        Tr = typeof(z) == typeof(x) && !isbits(T) ? T : typeof(z)
    else
        z = zero(sum(f, A))
        Tr = typeof(z)
    end
    return reducedim_initarray(A, region, z, Tr)
end

function reducedim_init{S}(f, op::MulFun, A::AbstractArray{S}, region)
    T = promote_union(S)
    if method_exists(zero, Tuple{Type{T}})
        x = f(zero(T))
        z = one(x) * one(x)
        Tr = typeof(z) == typeof(x) && !isbits(T) ? T : typeof(z)
    else
        z = one(prod(f, A))
        Tr = typeof(z)
    end
    return reducedim_initarray(A, region, z, Tr)
end

reducedim_init{T}(f, op::MaxFun, A::AbstractArray{T}, region) = reducedim_initarray0(A, region, typemin(f(zero(T))))
reducedim_init{T}(f, op::MinFun, A::AbstractArray{T}, region) = reducedim_initarray0(A, region, typemax(f(zero(T))))
reducedim_init{T}(f::Union{AbsFun,Abs2Fun}, op::MaxFun, A::AbstractArray{T}, region) =
    reducedim_initarray(A, region, zero(f(zero(T))))

reducedim_init(f, op::AndFun, A::AbstractArray, region) = reducedim_initarray(A, region, true)
reducedim_init(f, op::OrFun, A::AbstractArray, region) = reducedim_initarray(A, region, false)

# specialize to make initialization more efficient for common cases

for (IT, RT) in ((CommonReduceResult, :(eltype(A))), (SmallSigned, :Int), (SmallUnsigned, :UInt))
    T = Union{[AbstractArray{t} for t in IT.types]..., [AbstractArray{Complex{t}} for t in IT.types]...}
    @eval begin
        reducedim_init(f::IdFun, op::AddFun, A::$T, region) =
            reducedim_initarray(A, region, zero($RT))
        reducedim_init(f::IdFun, op::MulFun, A::$T, region) =
            reducedim_initarray(A, region, one($RT))
        reducedim_init(f::Union{AbsFun,Abs2Fun}, op::AddFun, A::$T, region) =
            reducedim_initarray(A, region, real(zero($RT)))
        reducedim_init(f::Union{AbsFun,Abs2Fun}, op::MulFun, A::$T, region) =
            reducedim_initarray(A, region, real(one($RT)))
    end
end
reducedim_init(f::Union{IdFun,AbsFun,Abs2Fun}, op::AddFun, A::AbstractArray{Bool}, region) =
    reducedim_initarray(A, region, 0)


## generic (map)reduction

has_fast_linear_indexing(a::AbstractArray) = false
has_fast_linear_indexing(a::Array) = true

function check_reducedims(R, A)
    # Check whether R has compatible dimensions w.r.t. A for reduction
    #
    # It returns an integer value (useful for choosing implementation)
    # - If it reduces only along leading dimensions, e.g. sum(A, 1) or sum(A, (1, 2)),
    #   it returns the length of the leading slice. For the two examples above,
    #   it will be size(A, 1) or size(A, 1) * size(A, 2).
    # - Otherwise, e.g. sum(A, 2) or sum(A, (1, 3)), it returns 0.
    #
    ndims(R) <= ndims(A) || throw(DimensionMismatch("Cannot reduce $(ndims(A))-dimensional array to $(ndims(R)) dimensions"))
    lsiz = 1
    had_nonreduc = false
    for i = 1:ndims(A)
        sRi = size(R, i)
        sAi = size(A, i)
        if sRi == 1
            if sAi > 1
                if had_nonreduc
                    lsiz = 0  # to reduce along i, but some previous dimensions were non-reducing
                else
                    lsiz *= sAi  # if lsiz was set to zero, it will stay to be zero
                end
            end
        else
            sRi == sAi ||
                throw(DimensionMismatch("Reduction on array of size $(size(A)) with output of size $(size(R))"))
            had_nonreduc = true
        end
    end
    return lsiz
end

function _mapreducedim!{T,N}(f, op, R::AbstractArray, A::AbstractArray{T,N})
    lsiz = check_reducedims(R,A)
    isempty(A) && return R
    sizA1 = size(A, 1)

    if has_fast_linear_indexing(A) && lsiz > 16
        # use mapreduce_impl, which is probably better tuned to achieve higher performance
        nslices = div(length(A), lsiz)
        ibase = 0
        for i = 1:nslices
            @inbounds R[i] = op(R[i], mapreduce_impl(f, op, A, ibase+1, ibase+lsiz))
            ibase += lsiz
        end
    elseif size(R, 1) == 1 && sizA1 > 1
        # keep the accumulator as a local variable when reducing along the first dimension
        sizeR1 = size_skip1(size(R), A)
        sizeA1 = size_skip1(size(A), A)
        @inbounds for IA in CartesianRange(sizeA1)
            IR = min(sizeR1, IA)
            r = R[1,IR]
            @simd for i = 1:size(A, 1)
                r = op(r, f(A[i, IA]))
            end
            R[1,IR] = r
        end
    else
        sizeR1 = Base.size_skip1(size(R), A)
        sizeA1 = Base.size_skip1(size(A), A)
        @inbounds for IA in CartesianRange(sizeA1)
            IR = min(IA, sizeR1)
            @simd for i = 1:size(A, 1)
                R[i,IR] = op(R[i,IR], f(A[i,IA]))
            end
        end
    end
    return R
end

mapreducedim!(f, op, R::AbstractArray, A::AbstractArray) = (_mapreducedim!(f, op, R, A); R)

to_op(op) = op
function to_op(op::Function)
    is(op, +) ? AddFun() :
    is(op, *) ? MulFun() :
    is(op, &) ? AndFun() :
    is(op, |) ? OrFun() : op
end

mapreducedim!(f, op, R::AbstractArray, A::AbstractArray) =
    (_mapreducedim!(f, to_op(op), R, A); R)

reducedim!{RT}(op, R::AbstractArray{RT}, A::AbstractArray) =
    mapreducedim!(IdFun(), op, R, A, zero(RT))

mapreducedim(f, op, A::AbstractArray, region, v0) =
    mapreducedim!(f, op, reducedim_initarray(A, region, v0), A)
mapreducedim{T}(f, op, A::AbstractArray{T}, region) =
    mapreducedim!(f, op, reducedim_init(f, to_op(op), A, region), A)

reducedim(op, A::AbstractArray, region, v0) = mapreducedim(IdFun(), op, A, region, v0)
reducedim(op, A::AbstractArray, region) = mapreducedim(IdFun(), op, A, region)


##### Specific reduction functions #####

for (fname, Op) in [(:sum, :AddFun), (:prod, :MulFun),
                    (:maximum, :MaxFun), (:minimum, :MinFun),
                    (:all, :AndFun), (:any, :OrFun)]

    fname! = symbol(fname, '!')
    @eval begin
        $(fname!)(f::Union{Function,Func{1}}, r::AbstractArray, A::AbstractArray; init::Bool=true) =
            mapreducedim!(f, $(Op)(), initarray!(r, $(Op)(), init), A)
        $(fname!)(r::AbstractArray, A::AbstractArray; init::Bool=true) = $(fname!)(IdFun(), r, A; init=init)

        $(fname)(f::Union{Function,Func{1}}, A::AbstractArray, region) =
            mapreducedim(f, $(Op)(), A, region)
        $(fname)(A::AbstractArray, region) = $(fname)(IdFun(), A, region)
    end
end

for (fname, fbase, Fun) in [(:sumabs, :sum, :AbsFun),
                            (:sumabs2, :sum, :Abs2Fun),
                            (:maxabs, :maximum, :AbsFun),
                            (:minabs, :minimum, :AbsFun)]
    fname! = symbol(fname, '!')
    fbase! = symbol(fbase, '!')
    @eval begin
        $(fname!)(r::AbstractArray, A::AbstractArray; init::Bool=true) =
            $(fbase!)($(Fun)(), r, A; init=init)
        $(fname)(A::AbstractArray, region) = $(fbase)($(Fun)(), A, region)
    end
end


##### findmin & findmax #####

function findminmax!{T,N}(f, Rval, Rind, A::AbstractArray{T,N})
    (isempty(Rval) || isempty(A)) && return Rval, Rind
    (ndims(Rval) <= N && ndims(Rind) <= N) || throw(DimensionMismatch("Cannot find-reduce $(ndims(A))-dimensional array to $(ndims(Rval)),$(ndims(Rind)) dimensions"))
    for i = 1:N
        (size(Rval, i) == size(A, i) || size(Rval, i) == 1) || throw(DimensionMismatch("Find-reduction on array of size $(size(A)) with output of size $(size(Rval))"))
        size(Rval, i) == size(Rind, i) || throw(DimensionMismatch("Find-reduction: outputs must be of the same size"))
    end
    # If we're reducing along dimension 1, for efficiency we can make use of a temporary.
    # Otherwise, keep the result in Rval/Rind so that we traverse A in storage order.
    sizeR1 = size_skip1(size(Rval), A)
    sizeA1 = size_skip1(size(A), A)
    k = 0
    if size(Rval, 1) < size(A, 1)
        @inbounds for IA in CartesianRange(sizeA1)
            IR = min(sizeR1, IA)
            tmpRv = Rval[1,IR]
            tmpRi = Rind[1,IR]
            for i = 1:size(A,1)
                k += 1
                tmpAv = A[i,IA]
                if f(tmpAv, tmpRv)
                    tmpRv = tmpAv
                    tmpRi = k
                end
            end
            Rval[1,IR] = tmpRv
            Rind[1,IR] = tmpRi
        end
    else
        @inbounds for IA in CartesianRange(sizeA1)
            IR = min(sizeR1, IA)
            for i = 1:size(A, 1)
                k += 1
                tmpAv = A[i,IA]
                if f(tmpAv, Rval[i,IR])
                    Rval[i,IR] = tmpAv
                    Rind[i,IR] = k
                end
            end
        end
    end
    Rval, Rind
end


"""
    findmin!(rval, rind, A, [init=true]) -> (minval, index)

Find the minimum of `A` and the corresponding linear index along singleton
dimensions of `rval` and `rind`, and store the results in `rval` and `rind`.
"""
function findmin!{R}(rval::AbstractArray{R},
                     rind::AbstractArray,
                     A::AbstractArray;
                     init::Bool=true)
    findminmax!(LessFun(), initarray!(rval, MinFun(), init), rind, A)
end

function findmin{T}(A::AbstractArray{T}, region)
    if isempty(A)
        return (similar(A, reduced_dims0(A, region)),
                zeros(Int, reduced_dims0(A, region)))
    end
    return findminmax!(LessFun(), reducedim_initarray0(A, region, typemax(T)),
            zeros(Int, reduced_dims0(A, region)), A)
end

"""
    findmax!(rval, rind, A, [init=true]) -> (maxval, index)

Find the maximum of `A` and the corresponding linear index along singleton
dimensions of `rval` and `rind`, and store the results in `rval` and `rind`.
"""
function findmax!{R}(rval::AbstractArray{R},
                     rind::AbstractArray,
                     A::AbstractArray;
                     init::Bool=true)
    findminmax!(MoreFun(), initarray!(rval, MaxFun(), init), rind, A)
end

function findmax{T}(A::AbstractArray{T}, region)
    if isempty(A)
        return (similar(A, reduced_dims0(A,region)),
                zeros(Int, reduced_dims0(A,region)))
    end
    return findminmax!(MoreFun(), reducedim_initarray0(A, region, typemin(T)),
            zeros(Int, reduced_dims0(A, region)), A)
end

size_skip1{T}(dims::Tuple{}, Aref::AbstractArray{T,0}) = CartesianIndex(())
size_skip1{T,N}(dims::NTuple{N,Int}, Aref::AbstractArray{T,N}) = CartesianIndex(skip1(dims...))
@inline size_skip1{T,M,N}(dims::NTuple{M,Int}, Aref::AbstractArray{T,N}) = size_skip1(tuple(dims..., 1), Aref)
skip1(x, t...) = t